Skip to main content
. 2016 Jun 9;18(4):495–517. doi: 10.1007/s10198-016-0805-2

Table 19.

Regression analysis results of missing data

Missing = 1 alc_missing INCOME_missing UNEMP_missing
INCOME2 −0.005** 0.007***
(0.002) (0.002)
INCOME3 −0.003 −0.007***
(0.002) (0.002)
INCOME4 −0.011*** −0.016***
(0.002) (0.002)
INCOME5 −0.017*** −0.017***
(0.003) (0.002)
INCOME6 −0.016*** −0.019***
(0.003) (0.002)
GYMNASIET −0.008*** −0.019*** 0.009***
(0.002) (0.002) (0.001)
UNIVERSITET −0.007*** −0.025*** 0.013***
(0.002) (0.002) (0.001)
LNAGE −0.013*** 0.017*** −0.010***
(0.002) (0.003) (0.001)
MALE 0.012*** −0.015*** −0.010***
(0.001) (0.001) (0.001)
INACTIVE −0.008*** 0.033***
(0.002) (0.002)
UNEMP 0.007* 0.049***
(0.004) (0.005)
STUDENT −0.003 0.028***
(0.003) (0.003)
COHABIT −0.006*** 0.000 0.005***
(0.001) (0.001) (0.001)
Observations 132,239 140,949 134,973
R-squared 0.028 0.012 0.007

Monitor project data years 2004–2011. Month dummies to capture resampling effects and seasonality and regional dummies are included in all models (reference categories: Stockholm and January). Robust standard errors are reported in parentheses. Testing the null of no effect: *** p < 0.01; ** p < 0.05; * p < 0.1