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Abstract

Heme oxygenase 1 (HMOX1) plays an important role in the development of chronic obstructive pulmonary disease (COPD). However, the
association of HMOX1 length polymorphism in promoter region to the risk and severity of COPD has not been well studied. In this study,
we searched the databases including PubMed, EMBASE, Cochrane Library and China National Knowledge Infrastructure (CNKI) and
extracted the information from related articles. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to study the
effect of HMOX1 polymorphism on the risk and severity of COPD. As a result, nine studies were included for this meta-analysis. Higher
frequencies of L allele and type | genotype (containing at least one L allele) were found in patients with COPD (for L allele, OR 2.02, 95%
Cl: 1.32-3.11, P = 0.001; for type I genotype, OR 1.82, 95% Cl: 1.28-2.61, P = 0.001), especially in Asian population (for L allele, OR
2.23, 95% Cl: 1.68-2.95, P < 0.001; for type | genotype, OR 2.02, 95% Cl: 1.51-2.70, P < 0.001). Genotyping method, source of control
subjects, literature quality and language also affected the results to some extent. However, there was little difference in HMOX7 genotypes
distribution in patients with COPD with different severity. Our study indicated L allele and type | genotype were related to the susceptibility
but not the severity of COPD.
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Introduction

COPD is a common airway disease, leading to an increasing mortality
and morbidity in the world [1, 2]. Despite its high incidence in recent
years, the detail mechanism of this disease has not been fully eluci-
dated so far [3]. It is widely accepted that the imbalance of oxidation
and reduction reaction plays an important role in the development of
COPD [4, 5]. The overproduction of oxidative substance is attributed
to the pathogenesis of COPD.

Heme oxygenase has the ability to resist damage caused by oxida-
tive stress. There are three types of heme oxygenase isozymes [6, 7].
Among these, HMOX1 or HO-1, the inducible isoform responding to
various stimuli in the environment, was confirmed to play a pivotal
role in protecting against mucus hypersecretion [8], emphysema
[9-11], airway inflammation [12], which were the main characteris-
tics of COPD, in a series of studies. The activity of this gene is depen-
dent on its promoter, and length polymorphism caused by various
kinds of GT repeat numbers ((GT),) exists in promoter sequence. In
view of the great variety of GT repeat numbers in different

*Correspondence to: Yaging LI
E-mail: lidoctor03@126.com

doi: 10.1111/jcmm. 13028

populations, these polymorphisms are generally divided into three
types of alleles, named S, M and L alleles, representing short, med-
ium and long GT repeat sequence, respectively [13]. Different geno-
types lead to different activity levels of HMOX1, affect the degree of
oxidative stress in the organism and finally influence the susceptibility
to COPD. Thus, many researchers focused their attention on the rela-
tionship between (GT), polymorphism and COPD in the past decades.
However, they obtained inconsistent results, which might be due to
ethnicity, sample size and selection bias [14-22]. Based on these, we
conducted this meta-analysis to determine the association between
genetic polymorphism of heme oxygenase 1 promoter and COPD
occurrence and severity.

Materials and methods

Search strategy

We performed a comprehensive search strategy in several databases
including PubMed, EMBASE, Cochrane Library and CNKI to find out
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the articles about the association between HMOX1 polymorphisms and
COPD. The terms we used as follows: ‘chronic obstructive pulmonary
disease’, ‘COPD’, ‘emphysema’, ‘chronic bronchitis’; ‘heme oxygenasel’,
‘hmox1’, ‘ho1’; and ‘genetic polymorphism’, ‘variant’, ‘variation’, ‘associa-
tion’. Additional studies were identified by a manual search from refer-
ences of original studies or review articles on this topic. Only studies with
full-text articles published until October 2015 were included.

Study selection

The criteria for the papers selection were as follows: (/) studies with
case—control or prospective longitudinal cohort design; (i) studies
with at least two comparison groups (COPD versus control or less
severe COPD npatients versus more severe COPD patients (mea-
sured by lung function)); (iii) the study including HMOX1 length
polymorphisms (GT repeat number) in COPD cases and controls; and
(iv) provide the available allele and/or genotype frequency in each
group.

Quality assessment

All the included studies were assessed in three aspects consisting of
selection, comparability and exposure, with the use of Newcastle—
Ottawa Scale (NOS) [23], which has been widely applied in observa-
tional studies. Each study was assigned a score from 0 to 9 points, and
higher points meant higher quality.

Data extraction

The data were carefully extracted from all eligible publications indepen-
dently by two authors according to the inclusion criteria listed above.
Once encountering disagreements, we resolved them by discussions
with the third person. The information we extracted from papers con-
tains basic information of study (author, publication year), population
(sample size, ethnicity, age, source of control subjects, lung function
and smoking status), COPD definition, genotype distribution in cases
and controls, genotype identification method, etc.

Data synthesis

OR and 95% Cls were used to assess the strength of association
between HMOX1 polymorphisms and COPD risk and severity.
Heterogeneity assumption was checked by the Cochrane Q test. If P
value for the Q test is over 0.10, we consider that there is lack of
heterogeneity. We also used the statistic of /2 to detect the degree of
heterogeneity, with 2 <25%, 25-75% and >75% to represent low, mod-
erate and high degree of inconsistency, respectively [24, 25]. In the
analysis of pooled data, we used two different models according to the
trait of the included studies: If no heterogeneity was found, a fixed
effect model was adopted to determine the gene effect or the random
effect model was used. Moreover, if heterogeneity across studies
existed, subgroup analysis was performed to seek out the source of
heterogeneity. Studies were subdivided by ethnicity (Asian versus Cau-
casian), genotyping methods (automated sequencing versus PCR-
PAGE), source of control subjects (general population-based versus
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hospital-based), study quality [higher quality (NOS >7) versus lower
quality (NOS <7)] and language (Chinese versus English) to find the
source of any heterogeneity.

Hardy-Weinberg equilibrium (HWE) was tested in control subjects in
each study. Deviation from HWE was tested using the chi-square test. Stud-
ies with controls that depart from HWE (P < 0.05) were subjected to a sen-
sitivity analysis in order to check the consistency of the overall effect.

We made use of Begg’s funnel plot to examine the underlying publi-
cation bias, and also used Egger’s weighted regression method to cal-
culate P for bias [26, 27]. If no publication bias existed, the funnel plot
looked symmetrical.

All analyses were conducted with the use of REVIEW MANAGER,
V.5.2 (Revman, The Cochrane Collaboration) or STATA software, V.12.0
(STATA Corp, Lakeway Drive College Station, Texas, USA).

Results

Characteristics of included studies

We identified 79 related articles, of which 17 studies were poten-
tially suitable. Four studies were given up because objective popu-
lation were not patients with COPD (one for lung cancer and
others for general population). One study did not examine any
HMOX1 length polymorphism mentioned above. One study was
excluded because of lack of proper control. Furthermore, two
repeated studies were also ruled out. Thus, nine studies including
1447 cases and 891 controls met the including criteria (Fig. 1).
HOMX1 polymorphism was mentioned in seven studies, and four
studies provided the association of HMOX7 polymorphism with
COPD severity. The study characteristics are listed in Tables 1 & 2.
Patients with COPD were diagnosed through lung function index in
all studies as well as radiography manifestation in some studies.
General population and hospital-based controls were involved in
different studies. In addition, frequency-matched controls to the
cases by ethnicity, sex, age and smoking status were applied in

79 potentialy relevant artides
(including 8 from CNKI)

62 articles excluded (including 3
from CNKT)

15 reviews

33 animal or in vitro studies

14 not genetic studies

17 selected for ful-text review
(including 5 from CNKI)

8 articles excluded

4 not COPD patients

1 lack of proper control

1 other HMOX1 polymorphism

2 repeated studies

9 articles included for
meta-analysis

Fig. 1 Study identification, inclusion and exclusion for meta-analysis.
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some studies. Automated sequencer was applied to detect HMOX1
genotypes in five of the nine studies. The scores of included stud-
ies ranged from 5 to 7 by NOS.

HMOX1 allele distribution in COPD and control
groups

First, the distribution of each allele of HMOX7 in both patients with
COPD and control subjects was analysed with the use of random
effect model. The frequencies of S and M allele were not different
between these two groups. However, compared with control subjects,
there was much higher frequency of L allele in patients with COPD
(OR 2.02, 95% Cl: 1.32-3.11, P = 0.001). Further analysis indicated
that S but not M allele was a protective factor for COPD in Asian peo-
ple (OR 0.62, 95% Cl: 0.40-0.96, P = 0.03). Conversely, L allele sug-
gested higher risk to COPD in this subpopulation (OR 2.23, 95% Cl:
1.68-2.95, P < 0.001). Other than ethnicity, subgroup analysis also
showed gene detection method, source of control subjects, the qual-
ity and language of included literature which could affect the results
to some extent. Whereas less S alleles were observed in patients with
COPD in PCR-PAGE subgroup, more L carriers were found in patients
with COPD in PCR-PAGE, hospital-based, lower quality and Chinese
subgroups (Fig. 2).

HMOX1 genotypes distribution in COPD and
control groups

HMOX1 genotypes from seven studies are presented in Table 3. As
a result, the proportion of type | genotype (L allele carrier) was
higher than that of type Il genotype (non-L allele carrier) in patients
with COPD (OR 1.82, 95% Cl: 1.28-2.61, P = 0.001). Further analy-
sis suggested that type | genotype was of dominant position in
patients with COPD in several subgroups, including Asian (OR 2.02,
95% Cl: 1.561-2.70, P < 0.001), hospital-based (OR 2.33, 95% Cl:
1.50-3.60, P < 0.001), lower quality (OR 1.86, 95% Cl: 1.17-2.96,
P=0.009) and Chinese subgroup (OR 2.37, 95% Cl: 1.46-3.87,
P <0.001). Moreover, in both subgroups divided by detection
method, more L allele carriers were observed in patients with COPD
than those in control subjects (for automated sequencing subgroup,
OR 1.61, 95% Cl: 1.13-2.30, P = 0.008; for PCR-PAGE subgroup,
OR 3.30, 95% Cl: 1.49-7.29, P = 0.003; Fig. 3).

HMOX1 genotypes distribution in patients with
COPD with different severity

Then, we further observed whether HMOX1 genotypes were associ-
ated with COPD patients with different severity. Patients with COPD
were divided into two groups according to their lung function. Unex-
pectedly, no evident difference of type | or type Il genotype frequency
was found in both groups (OR 0.97, 95% Cl: 0.49-1.92). Due to the
limited study numbers, subgroup analysis was not performed
(Table S1).
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Fig. 2 Correlation between L allele and COPD risk. The studies were divided into two groups according to ethnicity (Asian or Caucasian) (A), geno-
typing methods (automated sequencing or PCR-PAGE) (B), source of control subjects (general population-based or hospital-based) (C), study quality
(higher quality (NOS >7) or lower quality (NOS <7)) (D) and language (Chinese or English) (E) under the comparison of L versus S+M.

Heterogeneity and sensitivity analysis

For allele study, /7 showed a distinct variation degree in different com-
parisons, from very low (M versus S+L) to quite high (S versus M+L)
heterogeneity. In addition, moderate variation was found in genotype
comparisons (Table 4). Subgroup analysis showed reduced hetero-
geneity in some subgroups in majority comparisons (Tables S2 &
S3).

Sensitivity analysis was conducted to assess the effect of each
study on the overall results. Among these studies, Budhi et al.
recruited patients with COPD with different inclusion criteria,
whereas Ma et al. enrolled specific control subjects who were all
lung cancer patients without airflow limitation. Moreover, the
population in Fu’s report was not in accordance with HWE.
However, discarding these studies did not affect the pooled OR
value in genotype comparisons, and neither did other studies
(Fig. S1).
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Publication hias

Publication bias was detected by Begg’s and Egger’s tests. These
tests did not show significant results in almost all comparisons
(Table 4). The funnel plots exhibited approximate symmetry shape
(Fig. 4). These results indicated little publication bias.

Discussion

As a complex disease, genetic background is considered to be
another important factor related to COPD, other than environmen-
tal exposure [28]. In the past years, genomewide association
studies (GWAS) indicated several genes, including FAM13A
(4922), HHIP (4g31), CHRNA3/5 (15q25), IREB2 (15¢25), MYO1D
(17q11), VWA8 (13q14) and BICD1 (12p11), were related to
COPD susceptibility [29-32]. However, heme oxygenase 1, a gene
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Table 3 the distribution of HMOX1 alleles and genotypes in patients with COPD and control subjects

Allele Genotype
Author S Case Control Case Control HWE(P)
S M L S M L Type I* Type I Type | Type 1l
Budhi 2003 - - - - - - 55 8 140 32 -
Du 2006 42 56 30 54 46 12 26 38 12 44 0.208
Fu 2007 233 195 84 243 240 49 72 184 45 221 <0.001
Ma 2005 29 49 22 31 26 3 20 30 3 27 0.172
Matokanovi¢ 2012 107 140 13 70 108 12 12 118 11 84 0.088
Putra 2013 - - - - - - 40 8 140 32 -
Yamada 2000 67 93 42 92 88 20 38 63 20 80 0.103

*The subjects with at least one L allele.
The subjects without L allele.

responsible for redox reactions in the microenvironment, has not
been mentioned in these studies. There are several kinds of
genetic polymorphisms, among which single nucleotide polymor-
phism (SNP) is the most common type. In our study, the genetic
polymorphism we discussed is length polymorphism, which is the
product of microsatellite DNA or short tandem repeat (STR) usu-
ally consisting of 2-6 repeated base pairs [33]. GWAS mainly
focused on SNP, but little attention has been paid to length poly-
morphism. Compared with SNP, the technique for accurate
assessment of STR in whole genome is still under development
[34]. Moreover, the statistical models to analyse the association
between STR phenotype and human disease in GWAS are consid-
ered to be defective [34]. As a typical example of STR, previous
researches suggested a long (GT), sequence in HMOX1 promoter
led to lower activity of antioxidation, which gave rise to the ten-
dency to increased risk of COPD occurrence [19, 22, 35] and
refractoriness to regular treatment [36], but there is still a lack
of clear conclusion.

Our results indicated that L allele and type | genotype (L carri-
ers) were the risk factors of COPD, especially for Asian population.
These results were rather robust after sensitivity analysis. On the
contrary, there was little association between HMOX7 and COPD
risk in Caucasians. It was in line with several GWAS, which were
carried out in Western countries, and the enrolled subjects were
largely Caucasians. Despite the ethnic difference, several reasons
might be worthy to point out. First, there were no unified standard
for classification of three kinds of alleles. For example, L allele was
defined when the GT repeat number was equal to or more than 30
in Yamada’s study [22], but this allele was not recognized unless
the GT repeat number was larger than 31 in the Caucasian popula-
tion [20]. The inconsistent definitions of allele and genotype might
cause the different results. Second, the inclusion criteria of patients
with COPD were different among studies. In the report by Budhi
et al. [14] the researches selected the patients whose disease were

© 2016 The Authors.

at early stage, which was quite different from other studies. Third,
the selection of control subjects also need to note. In three stud-
ies, hospital-derived control subjects were recruited to compare
with COPD. Coincidently, positive results were observed in all these
studies, especially in the study by Ma et al. [19]. So selection bias
might influence the overall effects.

In contrast to the association between HMOX1 and COPD
occurrence, we did not find that HMOX1 (GT), polymorphism was
related to COPD severity. Lung function is the most important
index to assess the severity of COPD. So far, only a few studies
have reported the relationship between HMOX1 polymorphism and
lung function. Guenegou ef al. found a long HMOX1 gene promoter
was associated with accelerated decline in lung function in a gen-
eral population, especially in heavy smokers [37, 38]. In addition,
the study by Nakayama et al. [39] revealed that the patients with
COPD with L allele were at a much higher risk of rapid decrease in
lung function than those without L allele. These results indicated
that lung function was affected by HMOX1, which was observed in
both Eastern and Western countries. However, our present study
did not get positive result, and further research was needed to
explain the discrepancy.

In our study, moderate to high heterogeneity existed in some
comparisons, so subgroup analysis was introduced to seek out the
source of heterogeneity. During the analysis, all the studies were
divided into two subgroups according to ethnicity, source of con-
trol subjects, detection method, quality and language of literature.
After stratification, one subgroup presented reduced or nearly dis-
appeared heterogeneity in most comparisons, which demonstrated
these factors were at least part source of heterogeneity. Among
these factors, quality and language of literature were particularly
noticeable because some papers were written in Chinese which
might be considered as poor quality. However, there was little dif-
ference in quality between Chinese-written papers and English-writ-
ten papers according to NOS score. As we did not set up language
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Fig. 3 Correlation between HMOX1 genotype and COPD risk. The studies were divided into two groups according to ethnicity (Asian or Caucasian)
(A), genotyping methods (automated sequencing or PCR-PAGE) (B), source of control subjects (general population-based or hospital-based) (C),
study quality (higher quality (NOS >7) or lower quality (NOS <7)) (D) and language (Chinese or English) (E) under the comparison of type | versus

type Il.

restriction of inclusion criteria, studies written in Chinese were also
adopted into final analysis. In fact, we found in some subgroups,
including Chinese subgroup, the role of L allele and genotype | as
risk factor of COPD was reinforced. However, this phenomenon
would rather be attributed to ethnicity rather than language. Com-
pared with Chinese-written studies, the subjects were mixed ethnic-
ities in English-written studies, including the one reported by
Matokanovic ef al. [20] which was the only study on Caucasian
population. If this study was removed, positive results could be
also observed in English subgroup. Nevertheless, it may remind us
to distinguish confounder factors in future research.

There were some shortcomings in our work. First, the studies
were limited in quantity and could not represent the whole population
in the world. There were only about 1500 COPD subjects in these
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studies, which was a small part of patients with COPD worldwide.
Moreover, the majority studies included in our present analysis
were on Asian, and only one study mentioned Caucasian, to say
nothing of Africans. Second, there were confounder factors in
almost all the studies. As discussed above, the source of control
subjects and method for genotype identification might amplify the
main effect due to genetic factors. Last but not least, COPD is a
chronic disease which is not fully reversible. So it is of significance
to study the linkage between genotype and the degree of disease
progression. However, we are lack of such data, which prevent us
from further exploration.

In conclusion, we demonstrated L allele and genotype | were
the risk factor of COPD, but not find HMOX7 length polymor-
phism in promoter region was associated with COPD severity.

© 2016 The Authors.
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Table 4 Pooled odds ratio for COPD susceptibility and severity, heterogeneity and publication bias in meta-analysis: comparison of alleles and

genotypes
Heterogeneity Publication hias

Comparison Study number OR [95% Cl] P value 4 J— Begy Egger
COPD susceptibility

S versus M+L 5 0.72 [0.49, 1.04] 0.08 76% 0.002 0.142 0.126

M versus S+L 5 0.91 [0.76, 1.10] 0.33 15% 0.32 0.142 0.021

L versus S+M 5 2.02 [1.31, 3.11] 0.001 52% 0.08 0.327 0.79

type | versus type Il 7 1.82 [1.28, 2.61] 0.001 37% 0.14 0.453 0.949
COPD severity

type | versus type Il 4 0.97 [0.49, 1.92] 0.94 59% 0.06 0.497 0.335
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Fig. 4 Publication bias on HMOX1 polymorphism. (A) Begg’s funnel plot
of the seven eligible studies of HMOX1 genotype distribution in COPD
risk; (B) Begg’s funnel plot of the four eligible studies of HMOX1 geno-
type distribution in COPD severity.

Due to the various deficiencies in present studies, future studies

with larger sample size, covering different populations, selecting
proper control subjects and detection methods should be carried

© 2016 The Authors.

out to further validate the relationship between HMOX7 and this
disease.
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