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Abstract

Advances in mass spectrometry technologies have created new opportunities for discovering novel protein biomarkers in systemic lupus ery-
thematosus (SLE). We performed a systematic review of published reports on proteomic biomarkers identified in SLE patients using mass
spectrometry-based proteomics and highlight their potential disease association and clinical utility. Two electronic databases, MEDLINE and
EMBASE, were systematically searched up to July 2015. The methodological quality of studies included in the review was performed according
to Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Twenty-five studies were included in the review, identifying
241 SLE candidate proteomic biomarkers related to various aspects of the disease including disease diagnosis and activity or pinpointing speci-
fic organ involvement. Furthermore, 13 of the 25 studies validated their results for a selected number of biomarkers in an independent cohort,
resulting in the validation of 28 candidate biomarkers. It is noteworthy that 11 candidate biomarkers were identified in more than one study. A
significant number of potential proteomic biomarkers that are related to a number of aspects of SLE have been identified using mass
spectrometry proteomic approaches. However, further studies are required to assess the utility of these biomarkers in routine clinical practice.
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Introduction

SLE is a chronic autoimmune inflammatory disease with a broad higher incidence in non-Caucasian populations [2]. SLE is character-
spectrum of clinical manifestations, affecting the majority of organs  ized by the presence of high titres of autoantibodies directed against
and tissues. In most cases, vital organs are involved including brain,  a broad range of self-nuclear antigens. Accumulation of SLE autoanti-
heart, joints, skin and kidneys [1]. Remarkably, the disease occurs  bodies in the host tissues and formation of immune complexes, acti-
more often in women with a female-to-male ratio of 9:1 and has a  vate production of immune system cells that perpetuate a positive
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feedback loop resulting in organ damage [3]. Despite intensive
research, the precise aetiology and pathogenic mechanisms underly-
ing SLE are poorly understood. It is believed that SLE results from the
interaction between genetic, epigenetic, environmental, hormonal and
immunoregulatory factors [1].

The diagnosis of SLE is challenging due to its heterogeneous nat-
ure, variable clinical presentation and unpredictable course with peri-
ods of remission and flares [1]. Currently, patients need to fulfil at
least 4 of the 11 clinical and laboratory criteria outlined by the Ameri-
can Gollege of Rheumatology (ACR), for the formal diagnosis of SLE
[4, 5]. However, these criteria were formulated and validated for the
classification of patients with established disease and might exclude
patients with early signs or limited disease. Evidence from tertiary
care centres suggests that only 60% of the patients with SLE meet
the ACR criteria [6].

Besides the pressing need to improve the classification of patients
with SLE, assessment of disease activity remains another important
aspect in the management of patients with SLE. At present, conven-
tional disease assessment methods, including the use of acute phase
markers and autoimmune serologic tests (e.g. anti-double-stranded
DNA antibodies), are of limited sensitivity and specificity. In lupus
nephritis, renal biopsy remains the ‘gold standard’ not only for
assessing disease activity, but also for assessing prognosis and mon-
itoring therapy [7]. However, this is an invasive and cumbersome pro-
cedure that causes discomfort to the patients. Therefore, there is an
urgent need for discovering reliable SLE biomarkers that can be used
not only for diagnosis, but also for disease classification, monitoring,
identification of organ involvement and better prediction of response
to therapy.

A proteomic biomarker is defined as ‘a specific peptide/protein that
is associated with a specific condition, such as the onset, the manifes-
tation, or progression of a disease or a response to treatment’ [8]. Dur-
ing the last two decades, advances in mass spectrometry (MS) enable
the identification and quantification of thousands of proteins in com-
plex biological samples, in a single run [9]. Application of MS-based
proteomics to SLE provides unprecedented opportunities for identify-
ing novel protein biomarkers, which can be used for early diagnosis
and contribute to a more effective patient management. The aim of the
current systematic review is to summarize and evaluate protein
biomarkers identified in patients with SLE, in different biological speci-
mens using MS. In addition, our objective was to provide more com-
prehensive information about the number and relevant biological
function of the proteomic biomarkers detected in SLE, as well as their
possible diagnostic and therapeutic utility. This systematic review also
outlines the challenges that need to be addressed in future research
endeavour related to the discovery of SLE proteomic biomarkers.

Materials and methods

Data sources and searches

We performed a systematic review of the literature on the discovery of
proteomic biomarkers in patients with SLE using MS-based proteomic

994

approaches. Relevant studies were identified by searching two electronic
databases, MEDLINE and EMBASE, in July 2015. The search strategy in
MEDLINE (1950-July 2015) was developed using the following search
terms: [(‘Lupus Erythematosus, Systemic’[Mesh] OR ‘Systemic Lupus
Erythematosus’ OR ‘SLE’ OR ‘Lupus nephritis’ OR ‘Lupus’) AND (‘Mass
Spectrometry’[Mesh] OR ‘Mass Spectrometry’ OR ‘Electrophoresis, Gel,
Two-Dimensional’[Mesh] OR ‘Two-Dimensional Electrophoresis’ OR ‘pro-
teome’ OR ‘proteomics’)]. The literature search in EMBASE (1988-July
2015) was conducted in a similar way using the terms: [‘Systemic Lupus
Erythematosus’ OR ‘SLE’ OR ‘Lupus nephritis’ OR ‘Lupus’) AND (‘Mass
Spectrometry” OR ‘Two-Dimensional Electrophoresis’ OR ‘proteome’ OR
‘proteomics’)]. Searching results from the two databases were imported
in the bibliographic management software Endnote X5 (Thomson Reuters,
PA, USA). Duplicates were automatically removed. The articles were
reviewed in a two-stage procedure. In the first stage of the review pro-
cess, abstracts of all identified articles were screened. Review articles, edi-
torials, case reports, letters to the editor, conference abstracts, notes and
news were excluded. In the second stage of the review process, full texts
of the remaining studies were evaluated. A checklist of specified inclusion
criteria was used to ensure uniformity in the assessment of the identified
manuscripts. The final articles that were selected all fulfilled the following
eligibility criteria: written in English, used human samples, compared bio-
logical fluids from patients with SLE with a control group (healthy or other
type of control group), referred to SLE, were informative about the type of
biological fluid used, provided details about the mass spectrometry tech-
nique used as well as the proteomic biomarkers identified. Articles that
did not meet one or more of these inclusion criteria were excluded. This
review was performed by two independent reviewers (ON and AK) based
on Preferred Reporting Items for Systematic Reviews and Meta-analyses
(PRISMA) guidelines [10]. In case of any unsolved discrepancies between
the two reviewers, a third reviewer (KS) was consulted.

Results

The initial literature search identified 1093 records. After duplicate
removal, 775 records remained. These were all screened, resulting in
a total of 25 selected full-text articles, published between 2007 and
2015, which were included in this systematic review. The detailed
review process with the eligibility criteria used is shown in Figure S1.
The main findings of each article are summarized in Table 1. The
table is divided into two parts. The first part includes targeted and
untargeted proteomic studies, whereas the second part lists the vali-
dation studies. Information about specimen type, controls, pro-
teomic/validation techniques used, biomarkers identified, disease
association and/or possible clinical use of the biomarkers is also
included. Additionally, the 25 articles were assessed according to the
recommendations proposed for biomarker identification and qualifica-
tion in clinical proteomics (Table S1) [8]. All selected articles fulfilled
at least four of the eight recommendations. It is noted that only the
first criterion, justification and description of clinical question, out-
come and selection of subjects’, is fulfilled by all the selected articles.

Types of specimens

In the 25 selected articles, a variety of specimen types obtained from
patients with SLE was used. This can be attributed to the clinical
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heterogeneity of the disease, affecting almost all organs and tissues.
Serum was the most frequently used biological fluid (9 of the 25 stud-
ies) [11-18], followed by the peripheral blood mononuclear cells
(PBMCs) (6 of the 25 studies) [19-24], and platelet-poor plasma (3
of 25 studies) [25-27]. Theoretically, blood serum or plasma may be
ideal to analyse as they contain specific biomarkers for almost all
human diseases, but it is recognized that potential biomarkers in
these samples may be present at very low concentrations [28]. Three
studies [29-31] examined the urine proteome and two studies [32,
33] analysed the protein extract from kidney biopsies. Potentially, uri-
nary biomarkers may be more meaningful as they reflect more accu-
rately renal disease than their serum counterparts. Indeed, an
emerging concept is that urine is potentially a liquid biopsy of the kid-
ney [34]. Nephritis is a common and serious complication of SLE;
thus, differentially expressed proteins during renal flare might be
potential novel and predictive lupus nephritis (LN) biomarkers.
Another study examined the proteome from skin biopsies, as skin is
the second most commonly affected organ in SLE after joint involve-
ment [35]. Finally, one study analysed cerebrospinal fluid as all parts
of the nervous system can be affected in patients with SLE causing
neuropsychiatric syndromes [36].

Proteomic techniques

The term proteomics describes the large-scale characterization of the
whole protein content of a cell, organ or organism at a given time
[37]. Herein, the proteomic studies were classified into two broad cat-
egories. The first category includes discovery or unbiased approaches
and the second targeted or biased approaches. A typical MS-based
workflow involves two main steps: (/) separation of proteins and pep-
tides present in a complex biological sample using gel-based or gel-
free techniques, (i) MS-based protein identification [38], which
involves protein digestion prior to analysis [39]. Alternatively, studies
using targeted proteomic approaches aim to detect specific proteins,
for example autoantigens. The experimental workflow is also different
compared with the untargeted approach. In studies included in this
systematic review, in which targeted approaches were used, the tis-
sue of interest was separated by either one-dimensional gel elec-
trophoresis (1-DE) or 2-DE, followed by immunoblotting with antisera
of patients with SLE. The immune-reactive bands were then subjected
to MS analysis for identification.

In the current systematic review, 10 studies used 2-DE, two stud-
ies used sodium dodecyl sulphate—polyacrylamide gel electrophoresis
(SDS-PAGE) [11, 20] and one study used 2D-PAGE combined with
Western blot [17] for protein separation. Moreover, four studies [12,
18, 36, 40] used weak cation exchange (WCX) magnetic beads to
enrich low molecular weight peptides prior to MS analysis. Indeed,
the combination of magnetic beads with matrix-assisted laser desorp-
tion/ionization-time-of-flight mass spectrometry (MALDI-TOF MS)
enables robust, precise and rapid protein profiling of complex sam-
ples [41, 42]. Subsequently, protein spots were analysed by MS and
proteins were identified by database searches.

A variety of MS approaches was used to obtain proteomic data
from different biological samples. These include MALDI-TOF MS,
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MALDI-TOF/TOF MS, surface-enhanced laser desorption/ionization
(SELDI)-TOF MS and liquid chromatography (LC) combined with tan-
dem MS (LC-MS/MS, including the use of triple-quadrupole MS
instruments and hybrid quadrupole-TOF instruments; Table 1). Both
label-free and labelled approaches were used. Particularly, 3 of the 25
studies used isobaric tags for relative and absolute quantitation,
namely isobaric tagging reagent for absolute quantitation (iTRAQ)-
labelled approach [22, 23, 33], whereas 3 of 25 used a label-free
approach [25-27]. Significantly, 13 of these studies validated the
identified candidate biomarkers. For validation, most studies used
well-established immune-based methods including Western blot
(WB), enzyme-linked immunosorbent assay (ELISA) and immunohis-
tochemistry (IHC) and four studies used additional proteomic
methods.

Identified proteins

A total of 241 candidate biomarkers were identified in the 25 stud-
ies included in this review (Table 2). In 13 of the 25 studies, vali-
dation studies of a selected number of biomarkers were performed
in an independent cohort, which resulted in the validation of 28
candidate biomarkers. These include albumin, annexin A5, cytoker-
atin 18, cytokeratin 19, serotransferrin [32], annexin A2 antibody
[11], a panel of proteins with m/z ratio of 4070.09, 7770.45,
28045.1, 3376.02 [12], Rab guanosine diphosphate dissociation
inhibitor o («GDI) antibody [15], apolipoprotein Clll [16], peaks of
m/z 3340, m/z 3980 [29], galectin-3-binding protein (G3BP) anti-
bodies, anti-immunoglobulin G (IgG) [26], S100 calcium-binding
protein A9 (S100A9), heat-shock protein (HSP) 90 a/B, HSP70,
peptidyl-prolyl cis-trans isomerase A (PPlase A) [21], prostaglandin
H,D-isomerase [30], panel of proteins with m/z ratio 8595 (ubiqui-
tin), 7170, 7661, 7740, 5806 [36], serine-threonine kinase recep-
tor-associated protein (STRAP) [22], hepcidin [31] and annexin A5
[24].

Due to the systemic, chronic and heterogeneous nature of the dis-
ease, the selected studies covered a wide range of applicability of the
potential biomarkers relating to different aspects of SLE management
including disease diagnosis and activity, or specific organ involve-
ment. Interestingly, 11 potential biomarkers were identified indepen-
dently in more than one study (Table 3) and further details are
presented in the discussion section.

Discussion

The aim of this systematic review was to critically review proteomic
biomarkers identified in patients with SLE using MS-based pro-
teomics. Although in recent years many SLE protein biomarker
reports have been published, this is the first attempt to present a sys-
tematic review on this important topic. This review summarizes the
candidate proteomic biomarkers identified so far in SLE, as well as
their potential disease association and clinical use.

This review has revealed 241 potential SLE protein biomarkers
that have been identified by MS-based proteomics, using both

© 2016 The Authors.
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Table 2 Summary of identified biomarkers in different specimen types

Disease

Specimen type

Biomarkers

Reference

myz ratio 4070.09, 7770.45, 28045.1, 3376.02; Apolipoprotein A-I,
prothrombin, keratin type Il (cytoskeletal), keratin 1, albumin, type Il
keratin, transthyretin, haptoglobin 2; m/z ratio 9342.23, 4094.03,
5905.35, 7973.53

Annexin A2 antibody, ATP synthase subunit-alpha, mitochondrial, ATP
synthase subunit-beta, mitochondrial, alpha-enolase ENO1, Moesin,
glyceraldehyde-3-phosphate dehydrogenase, Elongation factor 1-alpha
1, guanine nucleotide-binding protein G(i) subunit-alpha-2, isoform 2 of
AP-2 complex subunit mu, isoform 2 of protein disulphide isomerase
AB, pyruvate kinase PKM, 60-kD heat-shock protein mitochondrial,
actin-related protein 3, V-type proton ATPase subunit B brain isoform,
myosin-9, isoform 3 of heterogeneous nuclear ribonucleoprotein,
septin-7, isoform 2 of coronin-1C, tubulin-beta-4A chain, T-complex
protein 1 subunit-gamma, isoform 2 of ATP-dependent RNA helicase,
isoform 2 of basigin, dolichyl-diphosphooligosaccharide—protein
glycosyltransferase 48-kD subunit, heat-shock protein HSP 90-beta,
ezrin, isoform 2 of neutral cholesterol ester hydrolase 1, isoform 2 of
heat-shock cognate 71-kD protein, heterogeneous nuclear
ribonucleoprotein U, Rho GTPase-activating protein 1, isoform 2 of fatty
aldehyde dehydrogenase, serine palmitoyltransferase 1, isoform 2 of
ATP-citrate synthase; IgM heavy chain, apolipoprotein Clil, HSA
fragment, haemopexin fragment; glyceraldehyde-3-phosphate
dehydrogenase, heterogeneous nuclear ribonucleoprotein A2/B1,
annexin A2, aldolase A, elongation factor 1-gamma, lupus La protein
(SS-B/La); m/z 4207 Da, 2658 Da, 1465 Da, 5332 Da, 5900 Da, 1943 Da

Peroxiredoxin-4, ubiquitin carboxyl-terminal hydrolase isozyme L1,
splicing factor arginine/serine-rich 3, histone H2A type 1

Stress-70 protein, Rab guanosine diphosphate dissociation inhibitor o
antibody, Isocitrate dehydrogenase [NAD] subunit-alpha, L-lactate
dehydrogenase B chain, F-actin-capping protein subunit-alpha-2, Rab
guanosine diphosphate dissociation inhibitor-beta

Immunoglobulin J chain, apolipoprotein A-IV precursor, glutathione S-
transferase, calprotectin L1H, zinc finger protein subfamily 1A; high-
mobility group box protein 1 (CD4* T cells); $100 calcium-binding
protein A9, heat-shock protein 90«/p, heat-shock protein 70, peptidyl-
prolyl cis-trans isomerase A; serine-threonine kinase receptor-
associated protein; cDNA FLJ61039, AF4/FMR2 family member 1,
cDNA FLJ55107, structural maintenance of chromosome protein 3,
protein S100-A9, protein S100-A8, protein S100-A12, lysozyme C,
glutathione S-transferase kappa 1 isoform c, isoform 2 of zinc finger
protein 549, 26-kD protein, histone H2A type 1, myeloblastin, brain
acid-soluble protein 1, protein S100-P, neutrophil defensin 1, isoform 2
of metalloendopeptidase OMA1 (mitochondrial), 42-kD protein, latent
transforming growth factor-beta-binding protein 1 isoform, resistin,
AF4/FMR2 family member 1, cDNA FLJ61340, HLA class |
histocompatibility-alpha chain, histone H1.2, cDNA FLJ51589, putative
uncharacterized protein GCA, FCGR3B protein, nucleolar protein 5A,
serine-threonine kinase receptor-associated protein, myosin regulatory
light polypeptide 9, isoform A of bromodomain and WD repeat-
containing protein 1, vacuolar protein sorting-associated protein 35,
putative uncharacterized protein PTMA, isoform 2 of retinol
dehydrogenase 11, ribosomal protein L10 (fragment), cathepsin A
isoform a precursor, high-mobility group protein B2, protein disulphide

Huang et al. [12]
Kazemipour et al. [14]
Wu et al. [40]

Caster et al. [11]
Morgan et al. [16]
Serada et al. [17]
Zhou et al. [18]

lizuka et al. [13]

Kimura et al. [15]

Dai et al. [19]
Li et al. [20]
Pavon et al. [21]
Wang et al. [22]
Wang et al. [23]

© 2016 The Authors.
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Table 2. Continued

Specimen type

Disease
association

Biomarkers

Reference

Platelet-poor
plasma

Urine

Biopsies

CSF

SLE
Thrombophilia

SLE

LN

LN

SLE Skin
lesions

CNS-SLE

isomerase A4, 17-kD protein, NADH dehydrogenase [ubiquinone] 1-
alpha subcomplex subunit 4, isoform 1 of multimerin-1, p180/ribosome
receptor, NUMA1 variant protein (fragment), 20-kD protein,
dihydrolipoyllysine residue succinyltransferase component of 2-
oxogluterate dehydrogenase complex (mitochondrial), isoform 2 of
heterochromatin protein 1-binding protein 3, 16-kD protein, cDNA
FLJ51702, myosin regulatory light chain MRCL2 isoform B,
apolipoprotein C-1, MHC class | antigen (fragment), protein XRP2,
tubulin-alpha-1B chain, Ras-related C3 botulinum toxin substrate 2,
leucocyte antigen HLA-A, 51-kD protein, HLA class | histocompatibility
antigen (B-58-alpha chain), isoform 2 of retinol dehydrogenase 11,
ribosomal protein L10 (fragment), cDNA FLJ55509, platelet basic
protein, membrane-associated progesterone receptor component 1,
hypothetical protein XP_02342881, isoform 1 of reticulon-4, putative
uncharacterized protein PARVB, isoform 1 of protein unc-13 homologue
D, putative uncharacterized protein LCN2, cathelicidin antimicrobial
peptide precursor, 66-kD protein

Annexin A5, glyceraldehyde-3-phosphate dehydrogenase, integrin-linked
protein kinase, adenylylcyclase-associated protein 1, transketolase,
proline-serine-threonine phosphatase-interacting protein 2,
triosephosphate isomerase, tyrosine-protein kinase CSK, dynamin-1-like
protein, elongation factor 1-alpha 1, T-complex protein 1 subunit zeta,
heat-shock protein-beta-1, phosphoglycerate kinase 1, alpha-enolase,
osteoclast-stimulating factor 1, heat-shock cognate 71 kD protein

19gG-MPs, IgM-MPs, C1g-MPs (proteins discussed by the author out of
248 proteins)

MP-G3BP, MP-C1q (3 subunits), MP-lg (most abundant: 1gJ, IgM, 1gG2),
Ig (1gG, IgM, 1gA), complement proteins (C1), fibronectin, 14-3-3",
desmosomal proteins, ficolin 2, galectin-3-binding protein, .-
glycoprotein |, Bg-tubulin, Boc-tubulin, lysosome-associated membrane
protein 1, transforming factor p1; m/z ratio 3340, 3980; prostaglandin
H,D-isomerase, serotransferrin, alpha-1-glucoprotein, alpha-2-HS-
glycoprotein, haptoglobin, alpha-1-antitrypsin, albumin, Zn-alpha-2-
glycoprotein, Ig kappa chain V-IIl SLE region, Ig kappa chain V-Ill HAH
region, Ig kappa chain C region, retinol-binding protein 4, beta-2-
microglobulin, transthyretin, hepeidin (isoforms 20 and 25), a1-
antitrypsin, N-terminal region of albumin

Renal: Ezrin P81, serotransferrin, cytokeratin 18, cytokeratin 19, alpha-
1-antitrypsin, albumin, plasma glutathione peroxidase, 1433 protein
epsilon, annexin A5; heterogeneous nuclear ribonucleoproteins A2/B1
isoform B1, lamin A protein, mimecan preproprotein, annexin A1,
annexin A2 isoform 2, alpha-1-antitrypsin precursor, glutathione S-
transferase-P1c, adenine phosphoribosyltransferase isoform a, collagen
type VI alpha-3 (isoform CRA_h), formiminotransferase cyclodeaminase
form C, aldolase B, aldehyde dehydrogenase, 2-oxoglutarate
dehydrogenase (mitochondrial isoform 1 precursor), L-arginine:glycine
amidinotransferase, pyrroline-5-carboxylate dehydrogenase, antiquitin

Skin: keratin 10, keratin 16, keratin 14, Keratin 6, keratin 5, keratin 2e,
keratin 1, involucrin

m/z peaks 8595 (ubiquitin), 7170, 7661, 7740, 5806

Zhou et al. [24]

Nielsen et al. [25]
Ostergaard et al.
[27]

Nielsen et al. [25]
Mosley et al. [29]
Somparn et al. [30]
Zhang et al. [31]

Alaiya et al. [32]
Sui et al. [33]

Fang et al. [35]

Sun et al. [36]

Only highlighted (bold) proteins in table were validated by the authors.
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Disease association and/or

Validation . L
possible clinical use

Proteomic techniques

Specimen type Sample size (SLE /Control)

Studies

Table 3. Continued
Biomarker

© 2016 The Authors.

SLE diagnosis and activity

No

MALDI-TOF/TOF

6 active SLE, 6 stable SLE/6

PBMCs

Wang et al. [23]

Apolipoprotein G-I

MS iTRAQ-labelled

Rheumatoid Arthritis, 6 age-

and sex-matched HC
9 SLE/ 7 age-matched HC

SLE diagnosis

2-DE, MALDI-

Dai et al. [19] PBMCs

Apolipoprotein A-IV

precursor

TOF/TOF MS

PLN: proliferative lupus nephritis; MLN: membranous lupus nephritis; LN: lupus nephritis; SLE: systemic lupus erythematosus; SDS-PAGE: sodium dodecyl sulphate—polyacrylamide gel

electrophoresis; LC: liquid chromatography; MS: mass spectrometry; DC: disease controls; HC: healthy controls; 2D-PAGE: two-dimensional polyacrylamide gel electrophoresis; WB: Wes-
tern blot analysis; ELISA: enzyme-linked immunosorbent assay; iTRAQ: isobaric tagging reagent for absolute quantitation; 2-DE: two-dimensional gel electrophoresis; MALDI: matrix-

assisted laser desorption/ionization; TOF: time-of-flight mass spectrometry; ANCA: antineutrophil cytoplasmic antibody vasculitis; GN: glomerulonephritis; PBMCs: peripheral blood

mononuclear cells; ESI-Q: electrospray ionization quadrupole; SELDI: surface-enhanced laser desorption/ionization.
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targeted and untargeted approaches. Due to the large number of
proteins detected, herein we are discussing the most promising
biomarkers for SLE by focusing on two particular aspects. The first
aspect includes studies in which proteins were validated in an inde-
pendent cohort, using either MS or immunobased techniques, and
the second includes the studies that had identified common
biomarkers. In order to present a more targeted discussion, we
divided the validated protein biomarkers into three main categories,
based on their association with different clinical aspects of the dis-
ease. These categories are as follows: (/) SLE biomarkers, (i) LN
biomarkers and (/i) biomarkers associated with neuropsychiatric
SLE (NPSLE).

SLE hiomarkers

The first category includes the most promising biomarkers that are
suitable for SLE diagnosis or activity assessment. An increased
expression of phosphorylated S100A9 isoforms was detected in the
proteome of SLE PBMCs, suggesting abnormal S100A9 signalling, as
well as reflecting the increased numbers of circulating low-density
granulocytes in these patients [21]. S100A9 is a pro-inflammatory
protein, expressed mainly in the cytosol of neutrophils and mono-
cytes [43], and it was suggested that mature neutrophils recruited to
the inflammatory sites may result in local S100A9 release, which
induces neutrophil degranulation [44]. These activated neutrophils
contribute to SLE pathogenesis via many mechanisms, including their
ability to form neutrophil extracellular traps (NETs), and produce
increased interferon-o. [45, 46].

Serine-threonine kinase receptor-associated protein is another
important biomarker that was found to be under-expressed in PBMCs
of active SLE [22]. STRAP was inversely correlated to SLEDAI, sug-
gesting an association with a favourable clinical course in patients
with SLE and could thus be used as a potential biomarker of clinical
SLE activity/severity. The mechanisms of action of STRAP in SLE
may be attributed to its interaction, either with transforming growth
factor-f3 receptor [47] or with apoptosis signal-regulating kinase 1
[48].

LN biomarkers

A significant number of biomarkers were found to be associated with
LN diagnosis or clinical activity/severity. Five biomarkers for diagnos-
ing LN in kidney biopsies of class IV LN patients including serotrans-
ferrin, cytokeratin 18, cytokeratin 19, albumin and annexin A5 were
identified [32].

Serotransferrin, an iron-binding transport protein coregulated by
interferon-o., plays a role in iron metabolism and the innate immune
system [49, 50]. Plasma levels of serotransferrin were associated
with SLE disease activity [49] and high urinary levels were associated
with paediatric LN activity and severity, suggesting that it may be
used as a predictive LN biomarker [51]. More recently, transferrin in
combination with other urine biomarkers predicted the decline of
renal function in LN patients [52].
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Cytokeratins (CKs) are a family of intermediate filament proteins,
comprising 20 known CKs, which are classified into type | keratins
(K9—K20) or type Il keratins (K1-K8) [53]. CKs, particularly cytoker-
atins 18 and 19, undergo caspase-mediated degradation during apop-
tosis, in which organized cell fragmentation prevents initiation of
inflammatory responses. Thus, programmed destruction of cytoker-
atin components may affect the sensitivity of the cell to apoptose
[54-56]. CKs have also been associated with other autoimmune dis-
eases. Particularly, increased levels of anti-CK18 and anti-CK19 anti-
bodies were observed in the sera of patients with autoimmune
hepatitis [57]. In the kidney, they were recently shown to represent
early markers of tubular injury and stress [58].

Annexins are calcium-dependent, phospholipid-binding proteins
[59], involved in several cell functions including vesicle trafficking,
calcium signalling, cell growth, division and apoptosis [60]. Some of
the annexins have anti-inflammatory actions. Annexins A1 and A2
play a crucial role in the phagocytosis of apoptotic lymphocytes,
reducing inflammation through the release of immunosuppressive
cytokines [61]. Annexins could be used as potential LN biomarkers;
however, their implication in LN pathogenesis is not known. Annexin
A5 was found to be elevated in kidney biopsy samples of class IV, LN
patients [32] and was associated with SLE-related thrombophilia
[24]. Heterogeneous transcellular distribution of annexin A5 in
patients with SLE, which is increased in PBMCs and decreased in
sera, indicated a protective response to SLE-related thrombophilia
[24]. Annexins A2 and A5 have a high affinity for phospholipids,
which are involved in the regulation of the coagulation cascade. Anti-
bodies against annexins A5 and A2 were detected in thrombotic-asso-
ciated diseases and other autoimmune diseases besides SLE, such as
primary antiphospholipid syndrome and systemic sclerosis [60].
Besides annexin A5, anti-annexin A2 antibodies were also reported as
possible biomarkers for the proliferative form of LN (PLN, class Il or
IV). Serum anti-annexin A2 antibody levels discriminated PLN
patients, not only from patients with other autoimmune diseases and
healthy controls, but also from patients with a membranous form of
LN [11]. Annexin A2 was also identified as a target of serum antibod-
ies in patients with SLE [17]. In addition, studies in LN patients and
SLE-prone mice showed that annexin A2 facilitates the binding of
anti-dsDNA antibodies to mesangial cells, contributing to the LN
pathogenesis [62].

Serum apolipoprotein Clll (apoClll) was associated with an
increased atherosclerotic risk in LN patients [16]. Apo-ClII involved in
the regulation of triglyceride level and elevated apo-ClIl production is
related with hypertriglyceridemia [63]. In this content, increased apo
C-11l levels in patients with SLE may result from increased plasma
very low-density lipoprotein (VLDL) cholesterol and triglycerides and
decreased high-density lipoprotein (HDL) cholesterol [16]. Finally,
Apo C-lll-containing Apo B lipoprotein subclasses were associated
with increased atherosclerosis risk, in patients with rheumatoid arthri-
tis [64].

Urinary prostaglandin HoD-isomerase (PGDS) was identified as a
candidate biomarker for LN activity [30]. PGDS catalyses the conver-
sion of prostaglandin H, (PGH2) to PGD2, which is implicated in
physiological processes such as sleep regulation, prevention of plate-
let aggregation, allergy and inflammation [65, 66]. Studies on
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monkeys demonstrated de novo synthesis of PGDS in podocytes, and
Bowman’s capsule of the glomeruli [67]. Interestingly, in paediatric
SLE patients urinary PGDS was associated with LN activity. However,
no comparison with non-LN glomerular diseases was performed [51].
In murine SLE models, elevated levels of urinary PGDS were associ-
ated with LN severity [68] and PGDS correlated with glomerular
inflammation in adriamycin-induced nephropathy in mice [69].

Hepcidin is a 25-amino acid peptide hormone mainly produced by
hepatocytes and a key regulator of systemic iron homeostasis [70,
71]. It is known to be involved in the pathogenesis of the anaemia of
chronic inflammation including that of chronic kidney disease [71]. It
appears to be associated with proinflammatory cytokines such as
interleukin-6 and tumour necrosis factor-o [72, 73], molecules that
are known to be implicated in SLE pathogenesis [74, 75]. Hepcidin
isoforms were differentially expressed in the urine of LN patients dur-
ing renal flares, indicating hepcidin as a promising biomarker for the
assessment of renal severity in LN patients. Interestingly, it was sug-
gested that hepcidin may be produced within kidney during renal
flare, rather than being only filtered [31]. Additionally, serum pro-hep-
cidin levels were shown to reflect disease activity, in patients with
rheumatoid arthritis [76].

Biomarkers associated with NPSLE

SLE affects both the central and the peripheral nervous system.
NPSLE is a common manifestation of SLE, with a prevalence of 14—
80% in adults and 22-95% in children. It has been suggested that
NPSLE pathogenesis may be associated with autoantibody-mediated
neuronal dysfunction and vasculopathy [77].

Anti-aGDI antibody was identified as a potential diagnostic bio-
marker of psychosis-associated NPSLE [15]. oGDI is a small GTP-
binding protein, which is involved in the regulation of vesicle traffick-
ing [78]. In addition, it is a brain-specific antigen, which is localized in
neurons [79, 80]. Mutations in the Gdi7 gene that encodes «GDI were
reported in families with X-linked non-specific mental retardation
[81]. Experiments in Gdi7-deficient mice demonstrated damage of
associative memory as well as changes in social behaviour without
any anatomic abnormality [82]. Kimura and colleagues suggested that
the function of «GDI may be prevented by anti-oGDI antibodies,
affecting the exocytosis of synaptic vesicles during neurotransmitter
release that is related with psychosis in patients with NPSLE [15].
More recent studies in mice suggest a key role of aGDI by specific
Ras-related protein in brain (RAB) GTPases acting specifically in fore-
brain regions at the pre-synaptic sites involved in memory formation
[83].

Ubiquitin is a small regulatory protein, member of a family of struc-
turally conserved proteins, which regulate numerous processes in
eukaryotic cells. The most significant function of ubiquitin is targeting
proteins for degradation [84]. Ubiquitin is part of the ubiquitin-protea-
some system, which is involved in several important cellular processes
such as regulation of apoptosis, cell cycle progression, cell division,
cell development and differentiation, cell trafficking as well as modula-
tion of immune and inflammatory responses [85]. Imbalances in the
ubiquitin-proteasome system may lead to systemic autoimmunity and
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neurodegenerative disorders [86] and elevated levels of ubiquitin in
cerebrospinal fluid (CSF) of NPSLE are associated with disease activity
[36]. Studies in other neurological disorders, including Creutzfeldt—
Jakob [87] and Alzheimer’s disease [88], demonstrated also elevated
ubiquitin levels in the CSF of patients, indicating a possible role of ubig-
uitin in neural degradation and apoptosis.

Biomarkers identified in multiple studies

This systematic review has also identified 11 biomarkers that were
detected in at least two independent studies (Table 3). These
biomarkers are as follows: annexins A2 and A5, alpha-1-antitrypsin
(A1AT), serotransferrin, ezrin, elongation factor-1-alpha 1, glyceralde-
hyde-3-phosphate dehydrogenase, alpha-enolase, haptoglobin, trans-
thyretin and apolipoproteins (A-I, CllI, C-I, A-IV) (Table S1). Four of
these, namely annexins A2 and A5, serotransferrin and apolipopro-
teins, were also validated in independent cohorts and were discussed
above. It is noteworthy that 5 of the 11, annexins A2 and A5, A1AT,
serotransferrin and ezrin were detected in kidney biopsies and it is of
interest that these were also present in serum, urine and/or PBMCs,
supporting the notion that these biomarkers can be utilized as poten-
tial LN diagnostic tools.

In this content, A1AT was found in the urine of active LN and dur-
ing SLE renal flares [31], as well as in renal tissue of class IV LN
patients [32]. A1AT is an acute phase protein and the most prominent
circulating protease inhibitor that also plays an important role in regu-
lating immunity, inflammation and apoptosis [89]. Although it is
mainly produced in the liver, it was shown that A1AT is also produced
in the kidney in response to injury [90] and confers cytoprotective
effects [90, 91]. Moreover, it was found in the urine and serum of
patients with GN [92] and in the urine of patients with SLE, distin-
guishing them from patients suffering from other proteinuric diseases
[93].

Ezrin was identified as a candidate antigen for serum autoantibod-
ies in proliferative LN forms [11]; it was also found to be upregulated
in class IV nephritis kidney tissue [32]. Ezrin is the prototypic mem-
ber of the ezrin protein subfamily, which serves as a linker between
the plasma membrane and the cytoskeleton. Indeed, these proteins
act as intracellular scaffolds [94, 95], regulating B- and T-cell activa-
tion [96]. A recent study showed that ezrin plays a role in regulating
inflammation, via limiting the B-cell IL-10 production [97].

Elongation factor 1-alpha 1 (EF-1A1) was also a candidate antigen
in proliferative LN and was downregulated in PBMCs from patients
with SLE, compared with healthy controls [24]. Moreover, elongation
factor 1-gamma (EF-1v) was identified as a target antigen of serum
antibodies in patients with SLE compared with RA, polymyositis and
healthy controls [17]. Elongation factor 1 (EF1) is a major transla-
tional factor that consists of four different subunits, EF-1aBvd. Apart
of its canonical function, EF-1 is a multifunctional protein that has
been implicated in various important cellular processes such as cell
growth, signal transduction, cytoskeletal organization apoptosis and
tumorigenesis [98].

Another interesting protein, glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH), was found to be a candidate antigen for
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antibodies in patients with proliferative LN [11] and in patients with
SLE compared with RA, polymyositis and healthy controls [17].
GAPDH was also downregulated in PBMCs from patients with SLE
compared with healthy controls [24]. GAPDH is a classical glycolytic
enzyme involved in energy production, but it is also implicated in
numerous important cellular pathways including receptor-mediated
cell signalling, transcriptional and post-transcriptional gene regula-
tion, maintenance of DNA integrity, oxidative stress response and
apoptosis [99]. In patients with SLE, GAPDH was found to interact
with proliferating cell nuclear antigen, a known autoantigen targeted
by antibodies, indicating its possible role in autoimmune responses
induction against proliferating cell nuclear antigen complexes in SLE
[100].

In addition, alpha-enolase was identified as a candidate antigen in
proliferative LN forms [11] and was upregulated in SLE PBMCs com-
pared with healthy controls [24]. Alpha-enolase is a multifunctional
glycolytic enzyme that is involved in various biological and patho-
physiological processes [101, 102]. Evidence revealed that «-enolase
plays a role in systemic autoimmune diseases. Anti-o-enolase anti-
bodies were present in patients with SLE with active LN and other
autoimmune diseases such as systemic sclerosis [103]. In addition,
anti-a-enolase 1gG2 levels were increased in LN serum, enabling the
discrimination between SLE patients with LN, SLE patients without
LN and patients with rheumatoid arthritis [104].

Transthyretin and haptoglobin (Hp) were upregulated in urine
samples from active LN [30] patients, compared with inactive LN and
were also be upregulated in the serum proteome of patients with SLE,
compared to healthy controls [14]. Transthyretin is a serum and cere-
brospinal fluid transporter of the thyroid hormone thyroxine (T4) and
retinol [105]. It has been associated with numerous disorders includ-
ing, familial amyloid cardiomyopathy and senile systemic amyloidosis
[106, 107]. A pilot study showed that transthyretin levels were upreg-
ulated in the sera of paediatric SLE patients compared to healthy con-
trols [108]. Additionally, increased serum levels of transthyretin were
associated with the severity of rheumatoid arthritis, suggesting a role
in disease pathogenesis [109]. The main biological role of Hp is to
bind haemoglobin, prevent iron loss and subsequent kidney damage
during haemolysis. It is also an acute phase protein with antioxidant
and immunomodulatory properties. Hp expression was associated
with inflammatory autoimmune diseases, including arthritis and SLE,
and as a marker of disease activity [110]. Plasma levels of Hp were
associated with disease severity in patients with SLE [111]. In addi-
tion, Hp2-2 phenotype was found to be over-represented in patients
with SLE, and may be contribute to cardiovascular complications in
SLE due to its lower antioxidant capacity [111, 112].

Genome research of lupus

Finally, advances in genomic technologies during the past decade
have enabled the identification of numerous risk genetic factors asso-
ciated with susceptibility to SLE. To date, more than 60 SLE suscepti-
bility loci have been identified by genome-wide association studies
(GWAS) in different population cohorts, including HLA, STAT4 and
IRF5. However, risk variants identified so far explain only a small
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fraction of the overall SLE heritability [113]. A number of next-genera-
tion DNA sequencing (NGS) methodologies have been used not only
to validate previously identified susceptibility genes and loci associ-
ated with SLE such as IRF2, IRF5, UBE2LS3, IFIHI, TNIP1, TNFAIP3
and BLK, but also enabled the discovery of additional gene variants,
especially rare variants that are not identified by GWAS [114, 115].
Although the genetic aspects of SLE are beyond the scope of this
review, we attempted to correlate the protein biomarkers summarized
in this review with susceptibility genes identified using high-through-
put genomic methodologies such as NGS and GWAS [113-116].
Overall, no direct associations were found linking proteins or
biomarkers as described in this review to their corresponding genes
or loci. This may be partly explained by the fact that most of GWAS
identified susceptibility loci are located within non-coding DNA
regions. Evidently these have no apparent role in encoding proteins,
suggesting a possible regulatory role of these variants in protein dys-
function and consequently in disease pathology [117]. In addition,
epigenomics may explain part of the missing heritability [118].
Recently, the term ‘proteogenomics’ has been introduced, which is an
area of research at the interface of genomics and proteomics,
with great potential towards the discovery of biomarkers for many
diseases and in particular SLE [119, 120].

Study limitations

An ideal SLE biomarker would be biologically and pathophysiologi-
cally relevant, reproducible, simple to apply in routine practice (inex-
pensive, easy and rapid to quantify) and would have a high degree of
sensitivity and specificity [121]. At present, no SLE biomarker exists
that fulfils all of the above. It is appreciated that some of the above-
described candidate biomarkers are non-specific stress proteins,
linked with a multitude diseases and conditions. One of the main limi-
tations of the majority of the reviewed studies was the small sample
size and lack of disease control groups. Other limitations that
emerged include the absence of details about the ethnic group and
age of the subjects as well as lack of validation of the results. In addi-
tion, although a number of studies validated their results in an inde-
pendent cohort, the size of the cohort used for the validation was not
always sufficient. Finally, bias due to the absence of standardized pro-
tocol for preparing and presenting patient samples constitutes
another important limitation, showed by most of the reviewed
studies.

Future prospects

Although a significant number of SLE biomarker reports have been
published to date, there are still many challenges that need to be
overcome in future proteomic studies that aim to identify clinically
useful SLE biomarkers. Firstly, differences in proteomic results
across different studies can be attributed to differences in the
selection criteria of the samples. A recent published study uncov-
ered the molecular heterogeneity of SLE, providing an explanation
for the failure of the clinical trials [122]. Thus, there is a need to
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establish universally accepted sample selection criteria in order to
better streamline phenotype-genotype correlations and make
results across different proteomic studies more comparable. Future
studies need to recruit a larger number of patients. Secondly, MS
identified SLE biomarkers should be validated in multicentre studies
using standardized immunobased proteomic techniques or other
MS methodologies. In addition, future proteomic studies should
focus on hiomarkers that have already been identified in multiple
studies and in several, invasive as well as non-invasive specimen
types. Due to the heterogeneous nature of SLE, it is more likely
that a panel of proteomic biomarkers rather than a single protein
will be needed by the physicians, for SLE diagnosis and treatment.
Therefore, studies working with panels of biomarkers that are
involved in biologically relevant pathways may be more meaningful
and more substantial than studies focus on single biomarkers.
Finally, although promising panels of biomarker protein peaks have
been identified, the exact identity of the detected proteins is still
not known.

Conclusions

Advances in high-throughput MS technologies have undoubtedly cre-
ated new avenues for discovering sensitive and specific SLE biomark-
ers. MS-based proteomics have been used to study a plethora of
biological specimens from patients with SLE, leading to the identifica-
tion of biomarkers related to disease diagnosis and activity as well as
to specific organ involvement. There are already a number of valuable
MS-based proteomic studies in the literature that fulfil most of the
requirements for clinical proteomic biomarker reporting. A significant
number of potential biomarkers have been identified to be associated
with many clinical aspects of SLE, including diagnosis, disease activ-
ity and prognosis. It is noteworthy that almost half of these studies
have validated their results in an independent cohort. What is lacking
and should be addressed in future biomarker studies, is the use of
larger patient cohorts, as well as the validation of already identified
biomarkers in independent patient cohorts. Furthermore, protein
biomarkers, which have been already identified in multiple studies,
particularly those that were also detected in non-invasive biological
samples, hold a great promise. Such biomarkers should form the
backbone and be at the forefront of executing larger multicentre stud-
ies in future using well-characterized patient cohorts, in order to
prove their clinical utility.
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