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Abstract

Since its inception four decades ago, both the clinical
and technologic aspects of continuous renal
replacement therapy (CRRT) have evolved
substantially. Devices now specifically designed for
critically ill patients with acute kidney injury are widely
available and the clinical challenges associated with
treating this complex patient population continue to
be addressed. However, several important questions
remain unanswered, leaving doubts in the minds of
many clinicians about therapy prescription/delivery
and patient management. Specifically, questions
surrounding therapy dosing, timing of initiation and
termination, fluid management, anticoagulation, drug
dosing, and data analytics may lead to inconsistent
delivery of CRRT and even reluctance to prescribe it.
In this review, we discuss current limitations of CRRT
and potential solutions over the next decade from
both a patient management and a technology
perspective. We also address the issue of sustainability
for CRRT and related therapies beyond 2027 and raise
several points for consideration.

Background
Continuous renal replacement therapy (CRRT) was de-
veloped originally as an alternative for hemodynamically
unstable acute renal failure (ARF) patients who could
not tolerate conventional hemodialysis [1, 2]. The early
application of CRRT largely involved technology adapted
from the maintenance dialysis setting and almost exclu-
sively occurred as a salvage therapy, typically in hyperca-
tabolic patients with severe, diuretic-resistant fluid
overload. As CRRT technology evolved over the past
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four decades to produce devices specifically designed for
the critically ill population, utilization of the therapy as a
first-line treatment for acute kidney injury (AKI) and the
patient populations treated have expanded substantially
[3]. Moreover, despite a lack of data definitively showing
outcome benefits for CRRT, consensus statements now
suggest its use, rather than conventional hemodialysis,
for hemodynamically unstable AKI patients [4].
While CRRT is now a mainstay therapy in the vast

majority of large ICUs around the world, this modality
can be challenging to implement at some institutions
and significant opportunity for improvement exists [5].
Clinicians’ uncertainty about numerous aspects of CRRT,
including therapy dosing, timing of initiation and
termination, fluid management, anticoagulation, drug
dosing, and data analytics, may lead to inconsistent de-
livery of the therapy and even reluctance to prescribe it.
In this review, we perform a critical assessment of CRRT,
discussing current limitations and potential solutions
over the next decade from both a patient management
and a technology perspective. In addition, we address
the issue of sustainability for CRRT and related therapies
beyond 2027 and raise several points for consideration.

Renal support in 2027: addressing CRRT’s current
limitations
Adoption of precision CRRT
In the most recent Acute Dialysis Quality Initiative
(ADQI) consensus conference, the participants rightly
identified the need for CRRT patient management to
align with the current focus on personalized medicine.
In this regard, the ADQI participants proposed the term
“precision CRRT” in calling for technology to be applied
on an individualized basis [6] rather than a “one size fits
all” approach that is all too common in current practice.
An important component of this individualized ap-
proach has been termed “dynamic CRRT”, in which the
treatment is adapted to the constantly changing clinical
status of the critically ill AKI patient [7]. In addition to
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ongoing clinical assessment of the patient, important
technical components of dynamic CRRT include solute
clearance, delivered/prescribed dose, effective treatment
time, solute control indicators, circuit/filter pressure
trends, fluid and hemodynamic management, and antic-
oagulation. Also assuming important roles in the imple-
mentation of precision CRRT are quality metrics [8],
biofeedback [9], and data analytics [10], all of which are
discussed further in the following.

Dosing of CRRT
Based on the landmark study performed by Ronco et al.
[11] and several other prospective trials [12–16], the use
of effluent-based dosing to guide CRRT prescription and
delivery is established firmly in clinical practice. Never-
theless, the effluent dose (expressed as ml/kg/hr) does
not provide an accurate estimation of actual solute clear-
ance and considerable confusion exists among clinicians,
especially those familiar with urea-based dose measure-
ments in the maintenance dialysis setting. Indeed, sub-
stantial differences between the effluent dose and actual
solute clearance may exist under many CRRT operating
conditions [17]. Therefore, we recently reappraised dose
prescription and delivery for CRRT [18], and proposed
an adaptation of a chronic dialysis parameter (standard
Kt/V) [19] as a benchmark to supplement effluent-based
dosing. Our proposal allows for the target standard Kt/V
to vary on a patient-to-patient basis according to clinical
circumstances and can be modified in an individual pa-
tient, depending on the clinical course (e.g., a hypercata-
bolic, septic patient in need of higher dose to control
azotemia). These dosage adjustments are entirely con-
sistent with the concept of dynamic CRRT.
The clinical relevance of urea as a toxin per se is very

much an open question, especially in light of large pro-
spective studies performed in patients with end-stage
renal disease (ESRD), and many experts give credence to
the potential importance of other uremic toxin classes
[20, 21]. However, identification of a larger molecular
weight toxin which is easily measured in clinical practice
and has well understood kinetic properties for different
renal replacement therapies has been elusive [22].
Because the current reality is that urea is the only surro-
gate molecule whose kinetics during renal replacement
therapy are well understood, we believe our proposal for
application of standard Kt/V to CRRT is rational.
For the future, we believe the incorporation of effluent

urea nitrogen measurements, first through clinical proto-
cols [23] and then CRRT machines equipped with online
sensors [24], will occur in clinical practice. In addition,
machines will provide clinicians with automated alerts
when therapy trends suggest filter clotting, based on
changes in effluent measurements or circuit pressures.
Moreover, we predict that additional molecules, having

specific relevance for AKI pathophysiology [25, 26], will
be validated by 2027 as CRRT dose surrogates for patients
with AKI and other disorders.

Timing of CRRT initiation
Recent data have cast doubt on the use of conventional
ESRD-based criteria for RRT initiation in AKI patients
[27]. Nevertheless, decisions about initiation of RRT for
AKI continue to be difficult due to the lack of a clinically
relevant parameter that has been validated in prospect-
ive trials. Moreover, recent prospective trials employing
different initiation criteria have provided conflicting re-
sults [28, 29]. In a recently completed pilot trial from
Canada, Wald et al. [30] demonstrated the validity of
changes in urine output, whole-blood NGAL concentra-
tion, and serum creatinine as initiation criteria—a full-
scale RCT is now being performed.
We believe the concept of demand/capacity imbalance,

proposed recently by Mehta and colleagues [31, 32], will
be validated in clinical trials as a useful parameter guid-
ing decisions about CRRT initiation and incorporated
into clinical practice by 2027. The components of renal
demand include AKI disease burden, solute load, and
fluid load. A significant imbalance between this demand
and diminished renal function in AKI patients should
prompt serious consideration of RRT initiation.
The concept of demand/capacity balance will also be

useful to guide decisions about renal recovery and RRT
cessation. The ADQI group has recommended explicitly
that RRT should be discontinued if kidney function has re-
covered sufficiently to reduce the demand–capacity imbal-
ance (current and expected) to acceptable levels [32]. We
believe the preliminary work defining the important con-
siderations with respect to renal recovery [33, 34] will be
refined over the next decade, allowing clinicians to make
more informed decisions about RRT termination.
While awaiting the results from clinical trials, we also

believe further progress will be made by 2027 in the
clinical application of biomarkers [35, 36], not only for
the initial diagnosis of AKI but also for decisions about
CRRT initiation and termination. In addition, progress
will be made in validating real-time GFR measurements
for both of these applications [37]. We predict that these
technologies will be used routinely in conjunction with
established clinical criteria, especially the extent of fluid
overload (see later), to guide CRRT initiation. Likewise,
these technologies will be useful in decisions for CRRT
discontinuation or transition to another modality.

Management of fluid overload
Severe fluid overload continues to be a common trigger
for CRRT initiation, especially in septic shock patients
who have received aggressive volume resuscitation in the
face of worsening renal function [38]. A quantitative
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parameter of fluid accumulation, percent fluid overload
(%FO), has been employed in many recent clinical trials
[39, 40] and positive values have been associated with in-
creased mortality, especially when >10% at RRT initiation.
In addition to septic AKI patients, postsurgical patients
are also at high risk of developing severe fluid overload
once AKI develops. Xu et al. [41] found that a cumulative
%FO ≥ 7.2% had a significant impact on 90-day outcome
in critically ill AKI patients after cardiac surgery.
Even while approaches designed to assess fluid overload

and quantify fluid responsiveness are refined [42], we pre-
dict that the occurrence of fluid overload as the primary
trigger for CRRT initiation will increase over the next dec-
ade. The basis for this belief relates to the demographics
of severe AKI, for which the primary cause will increas-
ingly be severe sepsis and septic shock during this time.
Thus, in conjunction with %FO (or similar measurement)
and other clinical parameters, technologies providing real-
time fluid assessment capabilities, including bioimpedance
and ultrasound, will be used routinely by 2027 [43].

Antibiotic dosing during CRRT
The increased prevalence of sepsis-associated severe AKI
over the next decade will result in the need for antibiotic
therapy in an increasingly greater percentage of CRRT
patients [44]. The lack of reliable clinical data to guide
antibiotic use and the associated risk of under-dosing
during CRRT have been identified as major proble-
ms—dosing continues to be done largely on an empiric
basis [45] (Table 1). Over the next decade, multiple clinical
trials evaluating the antibiotics most commonly prescribed
to CRRT patients will be performed. The typical range of
CRRT flow parameters will be evaluated in these trials,
along with commonly used filters, so that the contribu-
tions of diffusive, convective, and adsorptive clearance can
be ascertained. These trials will provide relatively precise
dosing recommendations for a series of widely used

antibiotics, leading to the routine incorporation of this
information into the CRRT prescription by clinicians.

Anticoagulation
A series of recent prospective trials have demonstrated
that regional citrate anticoagulation (RCA) significantly
reduces the risk of hemorrhage for patients treated with
CRRT (in comparison with heparin) [46]. The majority
of these recent studies have involved physiologic (as op-
posed to hypertonic) citrate solutions, allowing them to
serve as both anticoagulant and replacement solutions.
Moreover, some of these studies involved machines cap-
able of semi-automated RCA delivery in which citrate
infusion rates are modulated by device software, at least
to some extent [47]. We predict that CRRT machines
will provide more fully automated RCA by 2027, as has
been proposed for other acute RRT modalities [48]. Fi-
nally, we foresee that the use of heparin as an anticoagu-
lant for CRRT will be markedly reduced by 2027, due to
its hemorrhagic risks in the CRRT population.
In parallel with advances in RCA, we believe manufac-

turers will continue in the pursuit of developing antith-
rombogenic membranes that either minimize or obviate
the requirement for anticoagulation during CRRT.
Surface-modified versions of the AN69 membrane [49]
have been developed but clinical data demonstrating ac-
ceptable circuit lives during CRRT performed with no
anticoagulation are currently lacking.
Finally, another issue related to thrombogenicity during

CRRT is from the perspective of catheter use. Catheter
thrombosis is a very common treatment complication,
resulting in decreased therapy delivery and contributing to
significant morbidity and cost. Recent data suggest that
use of a surface-modified catheter (in comparison with a
standard unmodified polyurethane catheter) results in a
longer catheter life and less dysfunction (as measured by
blood flow rate) [50]. We believe further progress in the
development of surface-modified catheters will occur over
the next decade, leading to less catheter-related dysfunc-
tion and higher blood flow capabilities.

Quality metrics
One of the current factors potentially limiting outcome
improvements and further dissemination of the therapy is
the lack of standardization for CRRT. A specific limitation
that contributes to this lack of standardization is an insuf-
ficient evidence base—the current confusion regarding the
timing of CRRT initiation is a good example. As such, we
predict that both randomized and pragmatic clinical trials
performed over the next decade will address such critical
issues and improve therapy standardization.
Another major factor limiting therapy standardization

is the lack of consensus CRRT quality metrics. Rewa
et al. [8] are currently evaluating which aspects of CRRT

Table 1 Proposed elements for CRRT pharmacokinetic
assessment

• Estimation of pharmacokinetic parameters, including variability

• Comparison of pharmacokinetic parameters with those of typical
patients with normal kidney function (literature or sponsor data)
or the appropriate reference population

• Quantification of the impact of changes in the prescribed QE on
the pharmacokinetic parameters of interest, and interpolation for
flow rates not evaluated in this study

• Assessment of whether dosage adjustment is warranted in
CRRT recipients

• If dosage adjustment is warranted, derivation of specific dosing
recommendations for the studied conditions

Reprinted with permission from [45]
CRRT continuous renal replacement therapy
QE - effluent rate (ml/hr)
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prescription and delivery should be targets for quality
metric development, namely dose (including treatment
downtime), anticoagulation, vascular access, and circuit-
related issues (Table 2). As is the case in maintenance dia-
lysis, we predict that a number of these quality metrics will
be established by consensus initiatives and be part of rou-
tine clinical practice in 2027. Another recent development
which will support therapy standardization is the use of
simulation-based CRRT training, which has demonstrated
tangible improvements in the delivery of CRRT [51].

CRRT data analytics and biofeedback
The technical limitations of current CRRT machines
make efficient management of patient and treatment
data difficult in some respects [10]. As opposed to the
automated, real-time data capture that characterizes
many interventions in the ICU, CRRT machine data
generally are collected and analyzed manually at present.
This is a laborious, time-consuming process that fre-
quently delays necessary treatment intervention and is a
barrier to providing dynamic CRRT. A desired technical
aspect of dynamic CRRT is the availability of real-time
CRRT machine data as part of a biofeedback system.
While any prescription changes needed to close a bio-
feedback loop have to be made manually by the clinical
team at present, we predict that such changes will be
made automatically by the CRRT machine in 2027 [52]
(Fig. 1). This will be accomplished by the incorporation
of online tools for continuous, real-time measurement of
dose delivery and fluid overload. Moreover, in addition
to treatment data from the CRRT machine, patient-level
data from the electronic medical record (EMR) will play
a critical role in these biofeedback loops [53].
A dynamic CRRT program also implies the ability to

use information technology beyond the real-time phase
for longer-term purposes. At present, CRRT machine

data are not routinely stored in an accessible warehouse,
rendering impossible the systematic generation of re-
ports for review by the clinical team. We predict that by
2027 clinicians will routinely be able to assess historical
trends on a facility-level basis, especially those related to
the basic quality metrics mentioned earlier, or to use
these data for quality assurance purposes. Moreover,
these data will facilitate design and implementation of
pragmatic trials, including registries. Again, patient-level
data from the EMR will supplement technical data.

Extracorporeal multiorgan support
While several extracorporeal approaches have been used
as adjunctive therapies for organ failures beyond AKI [49,
54–60], additional clinical outcome data are clearly
needed. We believe prospective trials performed over the
next decade will demonstrate outcome benefits for such
approaches as adjunctive therapies (Fig. 2). We feel that
extracorporeal systems designed to eliminate CO2 (as an
adjunct to low tidal volume ventilation) [54] and modulate
inflammatory mediators (as an adjunct to sepsis therapy)
have the greatest likelihood of showing these benefits.
With regard to sepsis adjunctive therapies, we predict that
mediator modulation will be achieved through both filter-
based [57, 58] and hemoperfusion [59, 60] techniques.

Miniaturization of technology
As is the case with data analytics and information man-
agement, CRRT is lagging behind many other therapies
with respect to technology “down-sizing”. The incorpor-
ation of microfluidics, micromechanics, and nanotechnol-
ogy is driven by the desire not only to decrease the
physical footprint of medical technologies (thus enhancing
portability) but also to extend their applicability to greater
numbers and subsets of patients [61]. We predict that the
enhanced portability of future devices will allow for a set
of similar devices to be used over the entire RRT spectrum
(ICU, ward, and even home) in a given patient. In turn,
this will allow for more seamless transitions in care, lead-
ing to increased simplicity and possibly lower costs.
One clear example of this trend within the renal re-

placement field is the development of wearable dialysis
and ultrafiltration devices, on which several investigative
groups have made significant progress during the past
decade [62, 63]. While the initial application of these de-
vices has largely been focused on ESRD patients, they
may yet prove useful in the management of fluid over-
load, especially in the setting of heart failure. Another
potential application in the future is their use for severe
AKI survivors who need supplementation of kidney
function in the recovery phase.
The recent development of a CRRT device specifically

designed to treat pediatric AKI patients is a more
immediate-term example of technology miniaturization.

Table 2 Proposed quality metrics for CRRT

Theme Measures

Dose prescription High vs low dose

Dose delivery Percentage of prescribed dose delivered

Anticoagulation selection Heparin vs citrate vs none

Anticoagulation monitoring PTT monitoring, citrate monitoring

Anticoagulation
complications

Bleeding, hypocalcemia, incidence of HIT

Treatment interruption Number of interruptions and duration
of interruptions; time to establish
new circuit

Catheter-related issues Infections, bleeding, obstruction/
thrombosis

Circuit-related issues Hiter clotting, pressure alarming

Reprinted with permission from [8]
CRRT continuous renal replacement therapy, PTT partial thromboplastin time,
HIT heparin-induced thrombocytopenia
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Fig. 1 Various approaches for biofeedback in CRRT. Reprinted with permission from [52]. CRRT continuous renal replacement therapy

Fig. 2 Components of extracorporeal multiorgan support
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While treatment of pediatric AKI with CRRT has grown
substantially over the past decade [64], pediatricians
have been forced to use equipment designed primarily
for adult patients. The design features of traditional
CRRT equipment, especially with regard to fluid accur-
acy of the machine and extracorporeal blood volume of
the circuit, have rendered pediatric treatments proble-
matic—this is especially true for neonatal patients, who
typically weigh <3 kg. Based on the recent success
reported by Ronco et al. in the management of neonatal
AKI with the CARPEDIEM device [65], we predict
further growth in the utilization of CRRT for pediatric
AKI will occur over the next decade. Furthermore, we
believe the technology advances that made the CARPE-
DIEM device possible will accelerate the application of
miniaturization principles to other aspects of both
pediatric and adult CRRT.

Nondialytic management of AKI
The need for efficient processing of data in the manage-
ment of critically ill AKI patients has been highlighted dur-
ing a recent ADQI conference focused on the implications
of “big data” for this population [66]. While the ability to
utilize data efficiently is a challenge during CRRT, limita-
tions also exist upstream with regard to AKI diagnosis.
Moreover, recent data also demonstrate that postdischarge
management of patients who have had an AKI episode is
fragmented and unpredictable [67]. While early studies
evaluating “sniffers” and alerts designed to facilitate the
diagnosis of AKI have provided conflicting results [68], we
predict that their utility will be demonstrated conclusively
in prospective trials and they will become part of standard
clinical practice by 2027. Likewise, over the next decade,
web-based algorithms will be developed to triage post-AKI
follow-up to nephrologists or other medical specialties ac-
cording to AKI severity, extent of CKD, and comorbidities.
These algorithms will be used routinely in clinical practice
to minimize the risk of progression to ESRD.

Health economics
The cost of medical care for both chronic diseases and
acute conditions is increasingly being scrutinized by gov-
ernment agencies and payers, in both the developed and
the developing world. Because the societal costs of treating
relatively small numbers of patients with ESRD are dispro-
portionately high, health economic analyses and cost-
effectiveness studies are now performed frequently upon
the introduction of new chronic dialysis therapies. While
visibility for the costs of treating AKI seems to be low and
few health economic assessments have been performed, it
is a costly disorder [69, 70]. Recent health economic assess-
ments have demonstrated that simplistic comparisons of
only product costs for different AKI renal replacement mo-
dalities are not informative, because they capture only a

very short-term time window. Valid comparisons instead
have to incorporate the costs of long-term outcomes poten-
tially related to modality choice, including ESRD [71]. We
predict that more rigorous health economic analyses will be
performed in the AKI setting over the next decade and ro-
bust assessments will be required on a routine basis in
2027 for new technologies [72].
Another important consideration is the general af-

fordability of acute RRT in the future. In the developed
world, acute RRT costs typically are not an important
factor due to widespread health insurance coverage and
relatively generous reimbursement policies. On the
other hand, hospital reimbursement and patient self-
payment policies vary considerably across the develop-
ing world [73], resulting in the need for some patients
and their families to make very difficult decisions about
potentially life-saving medical technology. We believe
an increased demand for CRRT in the developing world
will be satisfied by a combination of expanded insur-
ance coverage and lower overall cost of CRRT delivery
in the future.

Renal support in 2027: sustainability of dialysis
techniques
A final consideration over the next decade is the need to
begin developing acute dialysis techniques designed to
provide sustainability beyond 2027. One of the major en-
vironmental footprints associated with most extracorpor-
eal dialysis modalities is the generation of large masses of
plastic disposables, including filters and tubing sets. The
development of miniaturized technologies, including
wearable devices, would be an important advance in ad-
dressing this problem. Another important dialysis-related
environmental footprint is the large volume of fluid gener-
ated as waste [74]. Both sorbent-based techniques [61, 62,
75] and membrane-based reclamation of spent fluid [76]
are potential approaches for reducing the volume of efflu-
ent generated during CRRT and other dialysis modalities.
We predict that progress in addressing long-term sustain-
ability for acute renal support modalities will begin to be
made over the next decade.

Conclusion
As the utilization of CRRT and ancillary therapies in the
management of critically ill patients increases, their limi-
tations have become more evident to many clinicians.
These limitations apply both to the manner in which
patients are clinically managed and how the technology
is used. We have critically assessed these problems and
rendered predictions about the manner in which they
will be solved over the next decade. While we have tried
to prognosticate on several topics, we have not
attempted to address certain contentious issues that we
believe will continue to be debated even in 2027. For
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example, we believe questions about the optimal CRRT
mode [77] and nutritional regimen [78] will not be re-
solved completely. We have also attempted to raise
awareness about the issue of sustainability for CRRT
beyond 2027 and have raised several points for consider-
ation. While a number of problems currently exists, we
believe the future of extracorporeal therapy for critically
ill patients is very bright and its use in this patient
population will continue to grow.
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