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ABSTRACT: Large-scale metabolic profiling requires the
development of novel economical high-throughput analytical
methods to facilitate characterization of systemic metabolic
variation in population phenotypes. We report a fit-for-
purpose direct infusion nanoelectrospray high-resolution mass
spectrometry (DI-nESI-HRMS) method with time-of-flight
detection for rapid targeted parallel analysis of over 40 urinary
metabolites. The newly developed 2 min infusion method
requires <10 μL of urine sample and generates high-resolution
MS profiles in both positive and negative polarities, enabling
further data mining and relative quantification of hundreds of
metabolites. Here we present optimization of the DI-nESI-HRMS method in a detailed step-by-step guide and provide a
workflow with rigorous quality assessment for large-scale studies. We demonstrate for the first time the application of the method
for urinary metabolic profiling in human epidemiological investigations. Implementation of the presented DI-nESI-HRMS
method enabled cost-efficient analysis of >10 000 24 h urine samples from the INTERMAP study in 12 weeks and >2200 spot
urine samples from the ARIC study in <3 weeks with the required sensitivity and accuracy. We illustrate the application of the
technique by characterizing the differences in metabolic phenotypes of the USA and Japanese population from the INTERMAP
study.
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1. INTRODUCTION

Technological advancements including automated sample
handling, data processing, together with reduction in cost
have seen an increase in the application of metabolic profiling
approaches in molecular epidemiology.1,2 To achieve sufficient
power to discover statistically significant associations at the
population level, these studies require consecutive analysis of
tens or hundreds thousands of samples. Analyses on a
molecular epidemiology scale can deliver solutions for
metabolome-wide association (MWAS) studies, exploring the
statistical relationships between disease risk factors and
metabolite concentrations in large human sample cohorts.3

One strategy for achieving a higher sample throughput in
metabolic profiling is to completely omit the chromatographic
separation phase by using direct infusion mass spectrometry
(DIMS), which involves continuous ionization of a static

sample.4,5 This analytical technique has been used in untargeted
ESI−MS profiling studies of plant, food, and environmental
samples as well as in animal and human biofluid and tissue
samples for the last two decades.6 The first reports on the use
of DIMS for ESI−MS profiling of crude fungal extracts date
back to 1996.7 Application of DIMS with nESI, coupled to a
computational workflow for global metabolic profiling of
various tissue extracts using ultrahigh mass accuracy and
resolution Fourier transform ion cyclotron resonance (FT-
ICR) mass spectrometry, has been significantly developed and
optimized in the last 5 years.8−10 In addition to operating in
profiling mode for untargeted phenotyping of human plasma11

and urine,5 DIMS has been successfully applied to the
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quantification of serotonin-related compounds in urine
samples12 and free fatty acids in human serum.13 The
comparison studies of the DIMS and LC−MS approaches for
global metabolic profiling of human serum14 and targeted
analysis of heat shock proteins in cell line models15 have shown
comparable classification, prediction, and quantification capa-
bilities of both methods with a clear gain in analysis time when
using DIMS.
The main limitations of any DIMS method include the

strong matrix effect and ion suppression due to the fact that all
ionizable components of a sample are infused at the same time
and competing for charge. These limitations can be minimized

by employing nanoelectrospray ionization conveniently avail-
able in chip-based ionization interfaces such as the Advion
TriVersa NanoMate. The lower flow rates achieved with
nanoelectrospray improve ionization efficiencies for all analytes
in a mixture. This is explained by the formation of reduced size
charged droplets compared to conventional electrospray, which
leads to fewer droplet fusion events, less solvent evaporation
prior to ion release into the gas phase, and thus a larger portion
of analyte available for MS analysis.16 Despite advances in MS
technology and instrument resolution, DIMS methods also
suffer from an inability to distinguish structural isomers, which
requires chromatographic separation and additional off-line

Table 1. List of Metabolites for Quantification, Their Biochemical Function, and Linear Range (μg/mL) from Both INTERMAP
and ARIC Studies

metabolite biochemical function WS6−WS1 (INTERMAP/ARIC) (μg/mL) study (INTERMAP/ARIC)

hydroxycinnamic acid marker of polyphenols consumption 0.1−3.3 INTERMAP
acetylcarnitine fatty acid oxidation 0.05−1.7 both
arginine urea cycle 0.005−0.17 ARIC
ascorbic acid vitamin C 0.1−3.3 INTERMAP
benzoic acid Phe, Tyr metabolism 0.5−16.7 both
caffeic acid marker of polyphenols consumption 0.03−0.8 INTERMAP
carnitine fatty acids metabolism 0.05−1.7 both
cholic acid bile acid 0.05−1.7 INTERMAP
citric acid TCA cycle 0.3−12.5 both
citrulline urea cycle 0.01−0.4 ARIC
cotinine marker of smoking 0.01−0.4 INTERMAP
creatine cell’s energy shuttle 0.5−16.7 both
creatinine cell’s energy shuttle 1.6−50 both
daidzein marker of soya consumption 0.01−0.4 INTERMAP
deoxycholic acid bile acid 0.03−0.8 INTERMAP
genistein marker of soya consumption 0.01−0.4 INTERMAP
glutamic acid urea cycle, glucose-Ala cycle 0.2−6.7 both
glycocholic acid bile acid 0.03−0.8 INTERMAP
glycodeoxycholic acid bile acid 0.03−0.8 INTERMAP
hippuric acid marker of polyphenols consumption 0.8−25/1.0−33.3 both
homovanillic acid metabolite of dopamine 0.8−25 INTERMAP
hydroxybenzoic acid derivative of benzoic acid 0.1−3.3 ARIC
indoxyl sulfate Trp metabolism 0.4−12.5/0.3−8.3 both
isovalerylglycine BCAA metabolism 0.05−1.7 INTERMAP
2-oxoglutaric acid TCA cycle 0.1−3.3/0.2−6.7 both
ketoleucine BCAA degradation 0.03−0.8 both
kynurenine Trp metabolism 0.3−8.3 INTERMAP
leucine BCAA 0.1−3.3 both
malic acid TCA cycle 0.005−0.17 ARIC
methylsuccinic acid fatty acid oxidation 0.05−1.7 ARIC
N-acetylneuraminic acid amino sugar metabolism 0.1−3.3/0.05−1.7 both
nicotinamide vitamin B3 0.05−1.7 ARIC
nicotine marker of smoking 0.03−0.8 INTERMAP
nicotinic acid nicotinate and nicotinamide metabolism 0.1−3.3/0.02−0.8 both
N-α-acetyl-L-ornithine renal function marker 0.05−1.7 ARIC
ornithine urea cycle 0.05−1.7 ARIC
phenylacetic acid Phe and Tyr metabolism 0.05−1.7 both
phenylacetylglutamine Phe and Tyr metabolism 0.4−12.5 INTERMAP
phenylalanine amino acid 0.05−1.7 ARIC
proline betaine marker of citrus consumption 0.3−8.3 INTERMAP
propionylcarnitine fatty acid oxidation 0.03−0.8 INTERMAP
saccharin artificial sweetener 0.01−0.4 INTERMAP
succinic acid TCA cycle 0.4−12.5/0.3−8.3 both
tryptophan amino acid 0.05−1.7 ARIC
tyramine Phe and Tyr metabolism 0.3−8.3 INTERMAP
tyrosine amino acid 0.05−1.7 ARIC
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MS/MS experiments. The separation of isomeric compounds
cannot always be attained in general LC−MS profiling
methods. Another limitation of DIMS methods is the
simultaneous presence of multiple types of MS signals for
each metabolite in the spectrum in addition to its molecular
ion, such as adducts and in-source fragments. This complicates
the processing and interpretation of the data. Nevertheless, this
phenomenon can deliver useful structural and biochemical
information for biomarker discovery by using statistical
correlation approaches.17,18

The choice of mass analyzer can affect the quality of the data
obtained by DIMS. With ultrahigh mass accuracy and high-
resolution mass spectrometers such as Orbitrap and FT-ICR
the masses obtained during the measurement are expected to
be close to the theoretical mass of metabolites, which facilitates
the prediction of ion elemental formulas. However, the increase
in mass accuracy and resolution can be accompanied by the loss
of sensitivity and scan speed and decrease in detector dynamic
range, requiring specific data acquisition approaches to mitigate
these effects such as the previously reported spectral stitching
technique.9 The hybrid quadrupole-time-of-flight (Q-TOF)
instrument offers high-resolution mode (up to 50 000) and
flexible scan rates, and their costs are more accessible for many
research laboratories compared with the costs of purchasing
and maintaining ultrahigh mass accuracy and high-resolution
mass spectrometers.
Despite the aforementioned limitations, DI-nESI-HRMS

methods offer an appealing option for rapid MS sample
screening and parallel semiquantitative analysis of large sample
numbers and can be applied to large cohorts of biobanked
samples. Although the targeted LC−MS/MS methods
performed on triple quadrupole mass spectrometers are highly
precise and accurate, they are usually focused on specific
metabolic pathways, and the panels of analyzed metabolites are
limited.19,20 Wider coverage of metabolite space requires
consecutive implementation of several targeted LC−MS/MS
assays, which does not meet the increasing demands of time
and cost-efficiency in metabolic phenotyping applied to large
clinical and epidemiological sample sets. In addition, it can be
economically inefficient and environmentally unfriendly due to
the increased solvent consumption. It is evident that a decision
must be taken to balance the number of measured analytes and
selectivity of an assay against throughput and sensitivity.
Recently, we have reported the development and application of
a direct infusion nanoelectrospray high-resolution mass
spectrometry (DI-nESI-HRMS) method with time-of-flight
detection for multiplexed parallel metabolic profiling of urine
samples.21 As a proof of concept, this method was applied to a
relatively small set of 101 urine samples and was validated for
eight targeted metabolites showing to be precise and accurate
according to the standard requirements.
We and others have shown that the DI-nESI-HRMS method

using the NanoMate system, which requires minimal amounts
of sample owing to the injectable volume being on the order of
nanoliters, ensures a stable instrument performance and high
sensitivity and is not compromised by contamination.13,11,21 In
a single rapid analytical high-resolution sweep, the method
provides wide metabolome coverage including amino acids,
TCA cycle metabolites, fatty acids, acylcarnitines, gut microbial
cometabolites, and other, mostly polar, metabolites. The
quantification capability provided by the current method allows
characterization of population phenotypes and selection of
representative samples for further UPLC−MS (MS/MS)

analysis. Moreover, DI-nESI-HRMS provides high-resolution
accurate mass global profiles of samples that can be further
explored for discovery and semiquantification of biomarkers,
enabling interrogation of their association with metabolic
phenotypes and clinical outcomes.
The proposed DI-nESI-HRMS method for multiplexed

parallel untargeted and targeted semiquantitative metabolic
analysis of the urine samples is not an alternative to a
conventional UPLC−MS (MS/MS) analysis but a valuable
complementary tool in the research portfolio of large-scale
metabolic phenotyping laboratories.19,20,22 The main purpose
of this work is to show the applicability of the optimized DI-
nESI methodology with a Q-TOF mass analyzer to measure
multiple compounds in parallel, in accordance with standard
requirements of good precision, accuracy, stability, robustness,
and reproducibility on a scale of thousands of samples that is
able to deliver MWAS solutions. To validate the DI-nESI-
HRMS method, we applied it to two relatively large population
cohorts, The INTERnational study of MAcro/micronutrients
and blood Pressure (INTERMAP)23 and Atherosclerosis Risk
in Communities (ARIC),24 which address hypertension and
cardiovascular risk factors, respectively. On the basis of the
previous 1H NMR spectroscopic MWAS analysis of >10 000 24
h urine specimens from the INTERMAP study,3,25,26 we aimed
to extend coverage of the blood pressure related metabolome
and to quantify a panel of metabolites with varying biological
functions. A subcohort of >2200 spot urine samples from the
ARIC study was used for targeted metabolic analysis to
measure specific urinary markers of oxidative capacity and
assess their role as predictors of incident type 2 diabetes.
Analysis was based on 47 selected metabolites for quantification
in each study tailored to the research question, with 16
metabolites common for the two studies allowing comparison
of the performance of the method across different populations
(Table 1 and Table S-1).

2. MATERIALS AND METHODS

2.1. Materials and Preparation of Standard Solutions

A description of the solvents and reference standards (Table S-
1) is provided in Supporting Information (SI). The labeled and
nonlabeled standard stock solutions were prepared at a
concentration of 1 mg/mL in methanol or methanol/water
mixture if the standard was not soluble in methanol only. The
multianalyte mixture of labeled internal standards and the
multianalyte mixture of nonlabeled calibrators were prepared at
different levels of concentration by mixing stock solutions in
the total volume of 10 mL. In this way, the multianalyte mixture
of the nonlabeled standards with different levels of concen-
tration for each analyte was used as the most concentrated
calibrator, Working Solution (WS1). The concentrations of the
standards in the WS1 are shown as the upper limit of the linear
range in Table 1 for the INTERMAP and ARIC studies,
respectively. More working solutions (WS2−WS6) used for
generation of calibration curves and spiked validation quality
control (QC) samples were prepared from WS1 by serial
dilution. The concentration of each labeled internal standard
was fixed and within the expected linear range for each
metabolite.

2.2. Sample Preparation

The dilution factor of urine samples was optimized for each
study separately by assessing the effect of dilution on the
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intensities of endogenous metabolites and the added internal
standards.
Various reference and QC materials were developed and

used for method optimization and assessment of data quality
during the experiments. Pooled Study Reference samples (SR)
were prepared for both studies by pooling together 10 μL
aliquots of all urine samples. The pooled SR samples were
diluted by the same factor as urine samples from each study.
The SR dilution series were prepared by diluting pooled SR by
the factors of 1/10, 1/20, 1/50, and 1/100 and were used to
ensure that the detected MS features positively correlate with
sample dilution.
Urine Sample Preparation. Aliquots of 10 μL of thawed

urine samples stratified by the four populations (USA, U.K.,
Japan, and PRC) and two separate clinic visits (first-F and
repeated-R) from the INTERMAP study were pipetted in
randomized order into deep-well plates and diluted by a factor
of 50. Aliquots of 10 μL of each urinary sample were mixed to
obtain eight pooled SR samples for each population and visit.
The pooled SR samples were also diluted by a factor of 50. In
ARIC study, the individual urine samples and pooled SR
sample were prepared in the same way as for the INTERMAP
study using a dilution factor of 20.
Calibration Series and QC Samples. Calibration series

and QC samples were prepared by pipetting 50 μL of diluted
pooled SR samples in a well-plate, adding 25 μL of the
multianalyte mixture of labeled internal standards at fixed
concentration and 25 μL of the corresponding calibrator
solution (both prepared in methanol), and making up the total
volume to 150 μL by adding methanol to maintain 1:2 water/
methanol proportion. In this way, the urine samples were
diluted in a well-plate by a factor of 150 (1/50 and 50 μL/150
μL) for the INTERMAP study and by a factor of 60 (1/20 and
50 μL/150 μL) for ARIC study, while the calibrators used for
the calibration series and QC samples were diluted six times in
a well-plate (25 μL/150 μL). All of these factors have been
taken into account for the quantification of metabolites and
calculations of the limits of quantification (LOQ). The
description of the analyte-free matrix for external calibration
is presented in the SI.
Each sample plate, in addition to the study samples,

contained a calibration series, SR and dilution SR series,
validation QC samples (two samples prepared at three different
concentration levels), and blank solutions. The sample plates
were sealed and subjected to 1 min ultrasonication, followed by
10 min of centrifugation at 1500g at 4 °C before MS analysis.

2.3. Validation Experiments

Linear ranges, inter- and intraday accuracy and precision, long-
term stability, and method robustness were assessed for the DI-
nESI-HRMS method using FDA guidelines27,28 for the
validation of bioanalytical methods.
A standard addition method in pooled SR samples was used

by spiking the multianalyte series of nonlabeled standards into
each calibrator solution and validation QC sample. The mixture
of labeled analogues, used as internal standards, was spiked into
each sample at a known fixed concentration. The MS
quantification was performed using the ratio of intensities of
the metabolite to the intensity of its internal standard. The
response for each QC sample was compared with the generated
calibration curve to give concentration values.
Validation Study. The validation study was performed over

three separate days. On the first day, the well-plate contained

the calibration series consisting of six points plus zero point
(spiked with the mixture of labeled internal standards only), six
replicates of validation QC samples prepared at three different
concentration levels for each metabolite (low, medium, and
high), which were defined for each metabolite from the
corresponding linear range (Table 1). Blanks (1:2 water/
methanol) were injected after the calibration series and each
QC series to test carry-over. On the second and third days, each
plate contained a calibration series and one replicate of the QC
series. The calibration series and QC samples in analyte-free
matrix were prepared in the same way. The intra- and interday
accuracy and precision were calculated as closeness of a
measured value to a known value of spiked concentration (%)
and coefficient of variance (CV%), respectively. Method LOQ
was determined as 10 times the standard deviation of the y
intercept divided by the slope of the calibration curves obtained
in analyte-free matrix.

Stability Study. The stability study was carried out by
preparing three additional validation and QC series from the
INTERMAP study to assess the stability of the samples. One of
them was measured immediately, while the second one was
measured after three freeze−thaw cycles and the third one after
long-term (3 months) storage at −80 °C. The CV% values of
measurements were evaluated. Additionally, the untargeted
analysis of the full-scan data was done to assess possible
changes in global urine profiles.

Robustness of the Method. The robustness of the
method was assessed using the data from the spiked validation
QC samples, dilution SR series, and pooled SR samples
measured during the analysis of 144 sample plates from
INTERMAP study and 33 sample plates from ARIC study. The
DI-nESI-HRMS method robustness was also assessed from the
analysis of a synthetic test mixture (TM). The details of these
measurements are described in the SI.

2.4. Nanoelectrospray MS System

Chip-based nanoelectrospray infusion analysis was performed
using the TriVersa NanoMate system (Advion BioSciences,
Ithaca, New York) coupled to a Waters Synapt G2-Si (Waters
MS Technologies, U.K.) operating in high-resolution con-
tinuum mode in negative- and positive-ion modes with
automatic polarity switching. The MS experimental conditions
are detailed in the SI.

2.5. INTERMAP and ARIC Study Cohorts

To exemplify the application of the DI-nESI-HRMS method, it
was applied for the analysis of two independent epidemiological
studies. The INTERnational study of MAcro/micronutrients
and blood Pressure (INTERMAP) is an international
population-based cross-sectional study on relations of multiple
dietary factors to hypertension among 4680 men and women
ages 40 to 59 years from 17 diverse population samples in
China, Japan, United Kingdom, and the United States.23,25 Data
collected according to a common protocol include eight blood
pressure measurements, four 24 h dietary recalls, and two timed
24 h urine collections per person (>10 000 urine specimens in
total). Borate preservative was added to the urine specimen
bottles prior to collection.23 Institutional ethics committee
approval was obtained for each site, and all participants gave
written informed consent.
Atherosclerosis Risk in Communities (ARIC) community-

based prospective cohort addresses cardiovascular risk factors
and aims to measure urinary markers of oxidative capacity and
assess their role as predictors of incident type 2 diabetes. The
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participants, 15 792 predominantly black and white adults, aged
45−64 years at baseline, were from four U.S. communities and
attended four scheduled visits during the period 1987−1998.24
Written informed consent was obtained from all participants,
and the study protocol was approved by institutional review
boards at each clinical site. In this work we analyzed a
subcohort of >2200 spot urine specimens collected on the
fourth visit.

2.6. Data Preprocessing

Basic data visualization and QC were achieved using the
MassLynx 4.1 software (Waters Corporation, U.K.). For the
analysis, the raw data were converted to the mzML format with
ProteoWizard software,29 followed by processing using in-
house scripts in Python 2.7.4, as described previously.21 These
included averaging of the acquired scans, linear correction of
the mass accuracy drift using the observed m/z values of
internal standard compounds, interpolation of the data to a
final resolution of 0.00056 m/z, peak picking using the
Savitzky−Golay algorithm, and local linear baseline estima-
tion.30 For the untargeted analysis, a data matrix containing all
of the spectra in one ion mode interpolated on a common m/z
scale was used. Calibration curves plotting, quantification, and
corresponding calculations were performed in Microsoft Excel.
The full-scan spectra were preprocessed and normalized in
MATLAB R2014a (MathworksTM). The preprocessing
consisted of removal of background signals by subtracting the
spectrum of a blank sample from each sample profile and
removal of the m/z features showing high variation in SR
samples.

2.7. Data Analysis

The measured concentration of metabolites (μg/mL) in urine
samples was normalized by creatinine concentration (mM,
measured as well by DI-nESI-HRMS method in each sample)
and used as μmol/mmol creatinine for further analyses.
Differences in metabolite concentrations in USA and Japanese
populations from INTERMAP study were investigated by linear
regression analysis using the default linear regression modeling
tools (lm) in R.31 The dependent variable (initially expressed in
metabolite concentration normalized by creatinine, μmol/
mmol creatinine) was log-transformed with country (USA or
Japan), gender (discrete variables), age, and BMI (continuous
variables) used as explanatory variables, without interactions (y
≈ population + gender + age + BMI).
Principal Component Analysis (PCA) and Orthogonal

Projection to Latent Structures−Discriminant Analysis
(OPLS-DA)32 were performed in SIMCA 14 (Umetrics,
Sweden) to further investigate metabolic phenotypic differences
in global urine profiles of two populations. The discriminant
features were annotated using additional MS/MS experiments,
statistical spectroscopy (STOCSY17), and online databases
(HMDB33 and Metlin34).

3. RESULTS AND DISCUSSION

3.1. DI-nESI-HRMS Method Optimization for Large-Scale
Metabolic Profiling

The requirements for validation of regulatory studies and
clinical diagnostic assays are normally very strict.27,35,36 In
accordance with the FDA guidelines,27 QC samples are
incorporated into a study to demonstrate that the analytical
method is sufficiently accurate, precise, and sensitive enough to
measure the actual concentration of a compound. The

acceptable levels for accuracy and precision in these studies
are set at 15% by FDA guidelines (except for the LLOQ level
QC, where 20% is acceptable).27 However, the method must be
“fit-for-purpose”, and the validation criteria should be
appropriate for the intended use and meet the predefined
needs of the study.37 Multiplexed studies, targeting tens or
hundreds of compounds in a single analysis, present a particular
challenge, especially in large population studies with a high
degree of within- and between-individual variability of urinary
metabolites. Different levels of assays have been proposed, each
of them obeying a certain level of rigor of validation. For
biomarker studies, FDA guidelines are slightly more “relaxed”,
following the 20 and 30% rule for accuracy and precision of QC
samples at high and LLOQ levels, respectively, which is more
appropriate for metabolic profiling studies.28,37 In the present
study we used these acceptance criteria taking into account not
only the biological variability of the metabolites in urine
samples from different populations but also the limitations of
the DIMS method mentioned in the Introduction.
Prior to starting the method validation work, we carried out

several prevalidation studies to assess the stability and purity of
the labeled and nonlabeled standards (the details are described
in the SI), selectivity of the method, dilution factor for the urine
samples from each study, and matrix effect using analyte-free
matrix and established the concentration ranges for each
metabolite. To facilitate the view of the multistep process, the
workflow followed in this work for DI-nESI-HRMS method
optimization and validation is depicted in Figure S-1 in the
Supporting Information.

Selectivity. Method selectivity refers to its ability to
measure each analyte in the presence of the others in the
matrix. This issue needs special control using the DIMS
methods as the chromatographic separation step is omitted. We
assessed the selectivity of DI−nESI−MS by measuring the
response factor for labeled and nonlabeled compounds in neat
methanol. The serially diluted mixtures of standard stock
solutions prepared at the same concentration at four different
levels were infused into mass spectrometer. The ratios of the
intensities of nonlabeled standard to its labeled internal
standard were calculated for each level of concentration. For
those standards where the ratio value was different from 1,
additional MS measurements using the mixtures with different
number of the standards were carried out. The standards that
interfered with the quantification of endogenous metabolites by
having very close accurate mass or experiencing a strong matrix
effect were excluded from further analysis. The remaining
metabolites together with their biochemical function, internal
standards, and corresponding m/z values are listed in Table 1
and Table S-1.
In addition, the signal purity of metabolites of interest was

analyzed by off-line MS/MS analysis of the pooled urine sample
and compared with the MS/MS spectra obtained for the
authentic standards in neat solvent. The MS/MS spectra
obtained for the standards of glutamic acid and phenyl-
acetylglutamine in neat methanol as well as in a spiked and
nonspiked urine sample from the INTERMAP study are shown
in Figure S-3. For some low-level metabolites the MS/MS
spectra in pooled urine sample showed the interference from
other compounds with close accurate mass caused by resolution
of the quadrupole and the absence of chromatographic
separation.

Dilution Study. The assessment of the optimal dilution
factor for urine samples is a key step in method optimization
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for each sample cohort. We characterized the dilution factors
for the urine samples from both INTERMAP and ARIC studies
by assessing the effect of dilution (1/10, 1/20, 1/50, and 1/
100) on the intensities of endogenous metabolites and the
added internal standards. In DIMS, sample dilution improves
ionization efficiency and reduces the matrix suppression effect
caused by the presence of inorganic salts. We found that the
optimal dilution factor for the urine samples from the
INTERMAP study was 1/50, whereas for the urine samples
from ARIC study it was 1/20. The INTERMAP urine samples
were preserved by adding boric acid during the sample
collection.23 The presence of boric acid in the urine specimens
from the INTERMAP study seemed to enhance the ionization
of analytes in DI-nESI-HRMS analysis. We calculated the ratio
of instrument responses obtained at 1/20 and 1/50 dilutions
for selected metabolites and their internal standards (Figure S-
4) in the urine samples from the INTERMAP study. The
relative increase in intensities of the labeled compounds was
100% in more diluted urine sample (1/50), while the relative
decrease in intensities of endogenous metabolites was minimal
(<20%). The full-scan spectra of 1/50 diluted pooled urine
samples of the USA-F and Japan-F populations (F-first visit)
from the INTERMAP study and a pooled urine sample from
the ARIC study are shown in Figure 1. The difference in sample

preparation for two different sample cohorts underscores the
importance of this optimization step and highlights DI-nESI-
HRMS method versatility. For successful implementation, the
assessment of the urine dilution factor for each study is a key
step. The selected factor should also be appropriate for the
analysis of metabolites tailored to the research question. Lower
level metabolites will require less dilution than metabolites

expected to be present at higher concentrations in urine
samples.

Matrix Effects. Matrix effects consist of the suppression or
enhancement of ionization of analytes by the presence of matrix
components in biological samples and can be very significant in
MS analysis, especially in DIMS, where there is no LC
separation involved. To account for this effect, which is
particularly accentuated in large-scale epidemiological studies
due to the high sample variability, the method of standard
additions can be used for metabolite quantification, as we
previously demonstrated in the proof-of-concept study using
DI-nESI-HRMS.21 The MS quantification was performed by
the back-calculation of the ratio of each selected metabolite to
its internal standard and the slope of the calibration curve
obtained for that metabolite in the pooled urine sample. Here,
to show the reliability of our method, we compared the method
of standard additions using the pooled urine sample as a matrix
with the method of external calibration in the analyte-free
matrix.38 The details of this parallel assay are presented in the
SI. To show the parallelism between the two matrices, standard
addition and external calibration curves were plotted for some
metabolites from the INTERMAP study (Figure S-5). The
figures of merit of the QC samples quantification by both
approaches are shown in Tables S-2 and S-3. However, because
of the high biological variability expected in multipopulation
studies, the use of an external calibration curve can result in
under- or overestimation of metabolite concentration, in
particular, at the extremes of the biological range.

Linear Ranges of Metabolites. The most challenging step
in the development of any multiplexed assay of biofluids, in
particular, urine, is to determine individual concentration levels
for each of the targeted analytes. For the present DI-nESI-
HRMS method development, we performed the initial
estimation of expected concentrations for each metabolite
from the values reported in the literature and compared the
experimentally obtained response of metabolites in urine
samples to the response obtained for the authentic standards
in neat solvent. During the prevalidation stage the linear ranges
for each metabolite were continuously refined on the basis of
the linearity and analysis of QC samples until the results were
acceptable for all analytes of interest. The concentrations of
metabolites in total pooled urine samples, calculated from the
standard addition curves, compared to the expected levels of
concentration from the literature33 for the ARIC and
INTERMAP studies are provided in Tables S-3 and S-4,
respectively. In addition, the tables contain the LOQ values in
nmol/mL estimated from the standard deviation of the y-
intercept of the external calibration curves obtained in analyte-
free matrix. These values are within or lower than the expected
concentrations ranges, and thus our method is appropriate for
the quantification of selected metabolites. The metabolite
concentrations in mM quantified by DI-nESI-HRMS method
using the standard addition curve for eight different pooled
urine samples from the INTERMAP study and the pooled
urine sample from the ARIC study are shown in Table S-5 in
the SI.

3.2. DI-nESI-HRMS Method Validation

Accuracy and Precision. For each metabolite of interest,
the linear range (LLOQ and ULOQ as the lower and upper
extremes of the range shown in the Table 1), accuracy (%), and
precision (CV%) were determined from the replicates of
calibration curves and inter- and intraday analyses of the

Figure 1. Full-scan spectra acquired in negative ion mode of 1/50
diluted pooled urine samples of the USA and Japan populations (first
visit) from the INTERMAP study and 1/20 diluted pooled urine
sample from the ARIC study.
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validation QC sample prepared at three different levels of
concentration according to the FDA guidelines for bioanalytical
method validation.27 The intra- and interday accuracy and
precision values for the metabolites quantified in the validation
QC samples from USA-F and Japan-F populations from the
INTERMAP study shown in Table S-6 were acceptable
according to the criteria adopted for this study. As observed
from Table S-6, 8 of 37 quantified metabolites showed the
values of error in accuracy and precision >30%. Some of them
were metabolites expected to be present at low concentration
level in urine such as ketoleucine or phenylacetic acid. It was
surprising that three of the high concentration metabolites,
namely, creatinine, creatine, and citric acid, were not as accurate
and precise as expected according to the acceptance criteria of
our study. We assume that this phenomenon could be due to
their high concentration and likely saturation of the detector
even at high sample dilution. In addition, citric acid was
previously shown to form complexes with boric acid added as
preservative to all INTERMAP urine samples.39 Their accurate
analysis by DI-nESI-HRMS may require greater than 1/50
dilution of urine samples. During the analysis of the study
samples, the in-study validation was carried out by analyzing the
validation QC samples during the measurements of each
sample plate to ensure that the assays continued to perform
according to defined acceptable standards. As an example, the
results of the in-study validation of the QC samples measured
in sample plates from the ARIC study are presented in Table S-
7. These results show that the optimized method gives accurate
and reproducible results for the majority of selected
metabolites. The sheer number of urine samples to be analyzed
imposes a necessity to balance the number of analytes to
quantify (with high degree of accuracy and precision) against
the requirements of sample throughput.
Stability Study. The stability assay performed for standard

stock solutions and biofluid samples is a key requirement for
method development and validation. Freeze−thaw cycles may
affect the stability of some targeted compounds in the course of
the large-scale long-term studies. For the INTERMAP study, it
has been previously shown that cryostorage and the use of boric
acid preservation do not compromise the biochemical integrity
of the urinary specimens.40−42

In the present study, three additional calibration and QC
samples series were prepared to assess method performance
and stability of the INTERMAP urine samples. One of the
series was measured immediately after preparation, while the
second one was measured following three freeze−thaw cycles
and the third one was measured after the three months storage
at −80 °C. The acceptance criteria for the stability study were
set as for the validation study.
To demonstrate the effect of various storage protocols on the

stability of metabolites, more detailed analysis was performed
with the data from two different populations from the
INTERMAP study, USA and Japan. The CV% values of the
slopes of the standard addition curves and concentrations of the
QC samples for selected metabolites measured as an example in
Japan-F pooled urine samples in three stability series (Figure S-
6) were <20% for the most part of metabolites. The values
>20% were obtained for some metabolites measured in the QC
samples prepared at low concentration level. The acquired full-
scan data for stability validation series for USA and Japan
populations were used for untargeted fingerprinting to further
assess general sample integrity. The PCA scores plots obtained
for pooled SR samples (1) and QC samples spiked at low (2)

and medium (3) concentration levels in three stability
validation series (fresh, green; three freeze−thaw cycles, blue;
long-term storage, red) for the USA (U) and Japan (J)
populations are shown in Figure 2. The separation of the global

profiles observed in the plots is due to the biological difference
between two populations (PC2 separating Japan and USA
samples: Figure 2) and different levels of concentration (PC1
and PC3 in Figure 2 separating nonspiked and spiked urine
samples for negative and positive ion mode, respectively).
Almost perfect matching of the global profiles of the same type
of sample (1, 2, and 3) for each population (U and J)
confirmed the presence of minimal analytical variability and
general sample stability with respect to the freeze−thaw cycles
and long-term storage, which guarantees reliable and
reproducible results using this protocol.

Method Robustness. The analysis of large-scale epidemio-
logical sample cohorts may span over several months; therefore,
the methods applied for these long-term metabolic studies
should meet the requirements of robustness and repeatability.43

The DI−nESI−MS analysis of >10 000 INTERMAP samples
was completed in 12 weeks in batches (sample plates) created
for each population and clinic visit separately. To demonstrate
that our method is robust for the long-term analysis, we used
the data obtained for different types of SR and QC samples
from randomly selected sample plates (14 and 10) from the
USA and Japanese populations (first visit), respectively. The
calibration series, dilution SR series, and validation QC samples
from each selected sample plates were processed for targeted

Figure 2. PCA scores plots obtained for USA-F (U) and Japan-F (J)
nonspiked pooled urine samples (1), QC at low (2), and QC at
medium (3) concentration level in three different validation series
(freshly prepared, green; three freeze−thaw cycles, blue; long-term
storage, red) in negative, R2X = 87.1%, Q2X = 75.6% (A), and positive,
R2X = 85.7, Q2X = 76.0% (B) ion modes.
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analysis for two populations. For the untargeted global profile
analysis, only pooled SR samples from two populations were
processed together to assess the analytical against biological
variability.
The interbatch CV% values presented in Table S-8 obtained

for each metabolite did not exceed 20% for the most part of
quantified metabolites in validation QC samples. The largest
CV% values were obtained for the most diluted SR samples 1/
100 (Table S-8). However, for the majority of the metabolites
the 30% cutoff level acceptable for biomarker assays was not
exceeded. From the selected sample plates, the concentration
values for six metabolites quantified in positive and negative ion
modes in global QC samples are shown in Figure S-7. The
dashed lines represent the mean concentration ±2 standard
deviation values.

The untargeted analysis performed on the pooled SR
samples from USA and Japan populations together allowed
estimation of the biological and analytical variability. Using
OPLS-DA fitted models to explore systematic differences in
two populations, clear separation of the two populations was
apparent, as demonstrated by the cross-validated scores plots in
Figure S-8 obtained for the full-scan global profile analysis in
negative (A) and positive (B) ion modes. The model
characteristics describe models with high predictive values
(Q2Y = 0.908 and 0.921, respectively), indicating that the
biological differences are higher compared with analytical
variability, which was <20%, as shown from the targeted
analysis.
The precision of the targeted analysis was also assessed for

the ARIC study using CV% values of the metabolites quantified
in pooled SR samples and dilution SR series measured in all 33

Table 2. Metabolites Quantified by DI−nESI−MS Differing in USA (positive correlation) and Japanese (negative correlation)
Populations and Their Association with Covariates Gender, Age, and BMIa

country gender BMI age

metabolite β p value β p value β p value β p value

hydroxycinnamic acid (isomers) 0.004 5.05 × 10−1 0.048 1.22 × 10−18 −0.002 6.64 × 10−5 0.005 4.42 × 10−19

ascorbic acid 0.564 4.85 × 10−94 0.337 2.78 × 10−49 −0.007 1.17 × 10−3 0.013 1.05 × 10−9

benzoic acid 0.062 2.48 × 10−2 0.228 2.40 × 10−22 −0.020 2.94 × 10−17 0.014 4.73 × 10−11

caffeic acid 0.019 1.26 × 10−20 0.024 8.69 × 10−43 −0.002 9.36 × 10−25. 0.001 2.22 × 10−8

cholic acid −0.026 2.91 × 10−11 0.010 2.97 × 10−3 0.0004 2.22 × 10−1 0.001 1.16 × 10−4

citric acid 0.246 4.91 × 10−29 0.521 1.17 × 10−156 −0.009 2.70 × 10−7 0.006 1.35 × 10−3

daidzein −0.014 5.24 × 10−34 0.007 5.03 × 10−14 −0.0003 3.42 × 10−3 0.000 1.22 × 10−3

deoxycholic acid 0.007 2.97 × 10−12 0.009 6.98 × 10−30 −0.0004 4.91 × 10−6 0.000 3.51 × 10−8

fumaric acid 0.115 7.69 × 10−26 0.071 1.82 × 10−14 −0.001 5.41 × 10−1 0.004 8.98 × 10−6

genistein −0.008 3.89 × 10−20 0.003 7.02 × 10−4 −0.0001 1.34 × 10−1 0.000 1.15 × 10−1

glutamic acid 0.014 2.36 × 10−1 0.210 5.27 × 10−95 −0.003 7.35 × 10−4 0.008 2.05 × 10−19

glycocholic acid −0.007 8.38 × 10−12 0.010 2.88 × 10−28 −0.0003 4.41 × 10−4 0.000 4.29 × 10−1

glycodeoxycholic acid −0.004 1.18 × 10−5 0.007 6.71 × 10−25 −0.0001 6.79 × 10−2 0.000 1.56 × 10−2

hippuric acid 0.643 1.48 × 10−84 0.306 6.08 × 10−29 −0.020 2.25 × 10−13 0.013 5.79 × 10−7

homovanillic acid 0.013 4.17 × 10−1 0.235 9.74 × 10−65 −0.014 1.54 × 10−25 0.011 2.75 × 10−17

indoxyl sulfate 0.056 8.83 × 10−5 0.173 1.26 × 10−44 −0.003 4.65 × 10−3 0.004 9.62 × 10−4

isovalerylglycine −0.084 4.39 × 10−47 0.093 1.19 × 10−78 −0.004 8.28 × 10−14 0.002 3.10 × 10−5

2-oxoglutaric acid −0.206 1.70 × 10−33 0.342 4.97 × 10−116 0.002 2.31 × 10−1 0.005 1.69 × 10−4

ketoleucine 0.107 1.64 × 10−15 0.122 2.20 × 10−26 −0.005 1.08 × 10−5 0.007 4.21 × 10−10

leucine 0.011 5.58 × 10−1 0.256 4.11 × 10−56 −0.007 3.45 × 10−5 0.012 6.48 × 10−17

N-acetylneuraminic acid 0.058 6.00 × 10−11 0.157 1.29 × 10−92 0.001 1.79 × 10−1 0.006 2.97 × 10−17

phenylacetylglutamine 0.186 2.82 × 10−15 0.287 9.39 × 10−46 −0.007 3.81 × 10−4 0.012 6.03 × 10−10

saccharin 0.084 6.52 × 10−4 0.086 3.37 × 10−5 0.006 3.47 × 10−3 0.001 6.55 × 10−1

succinic acid 0.155 7.44 × 10−28 0.235 2.85 × 10−82 0.001 4.09 × 10−1 0.007 2.81 × 10−10

vanillylmandelic acid 0.180 2.83 × 10−57 0.175 7.92 × 10−74 −0.008 1.53 × 10−15 0.008 3.86 × 10−20

p-cresol sulfate 0.737 6.48 × 10−55 0.560 7.73 × 10−45 −0.020 3.18 × 10−7 0.015 3.07 × 10−5

phenylalanine 0.011 1.48 × 10−4 0.033 1.04 × 10−41 −0.001 4.15 × 10−3 0.001 2.96 × 10−7

acetylcarnitine 0.004 6.89 × 10−1 0.003 7.02 × 10−1 0.001 4.93 × 10−1 −0.001 1.47 × 10−1

carnitine −0.008 6.01 × 10−1 0.019 1.55 × 10−1 0.002 9.40 × 10−2 0.001 6.00 × 10−1

cotinine −0.016 6.94 × 10−7 −0.017 8.52 × 10−10 −0.001 1.57 × 10−7 0.000 7.08 × 10−1

creatine −0.126 7.74 × 10−9 0.498 1.36 × 10−145 −0.006 6.33 × 10−4 0.012 1.77 × 10−12

creatinine −0.142 2.15 × 10−40 −0.156 2.63 × 10−65 0.008 6.29 × 10−19 −0.008 5.47 × 10−24

kynurenine 0.073 7.82 × 10−7 0.122 7.58 × 10−22 −0.003 6.69 × 10−3 0.007 2.19 × 10−10

nicotine 0.021 2.31 × 10−3 −0.008 1.89 × 10−1 −0.001 2.15 × 10−1 0.001 3.92 × 10−2

nicotinic acid −0.239 3.79 × 10−47 0.092 4.08 × 10−11 −0.003 4.97 × 10−2 0.000 7.96 × 10−1

phenylacetic acid −0.002 3.03 × 10−1 0.006 3.52 × 10−6 0.000 4.00 × 10−2 0.000 8.74 × 10−2

phenylethylamine 0.125 8.68 × 10−9 0.110 2.31 × 10−9 −0.008 4.85 × 10−6 0.009 4.87 × 10−7

proline betaine 0.201 7.99 × 10−9 0.148 5.12 × 10−7 −0.014 1.95 × 10−6 0.015 1.16 × 10−7

tyramine −0.035 1.22 × 10−1 0.129 1.15 × 10−11 −0.008 4.41 × 10−5 0.007 1.06 × 10−4

aCorrelation coefficients (β) and p values are listed for all metabolites. The correlation of metabolites with each variable is calculated by linear
regression with other variables fixed.

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.6b01003
J. Proteome Res. 2017, 16, 1646−1658

1653

http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.6b01003/suppl_file/pr6b01003_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.6b01003/suppl_file/pr6b01003_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.6b01003/suppl_file/pr6b01003_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.6b01003/suppl_file/pr6b01003_si_001.pdf
http://dx.doi.org/10.1021/acs.jproteome.6b01003


sample plates (Table S-9). For the majority of metabolites in
the pooled SR and 1/10 diluted SR samples the CV% values
did not exceed 20%, with only 2 of 26 metabolites having CV%
of 20−30%. The higher CV% values were observed, as
expected, for the most diluted SR sample 1/50. Additionally,
the analytical error and system stability was assessed using the
synthetic test mixture (TM) analyzed using the same
experimental protocol as urine samples. The details and results
of this assessment are presented in the Supporting Information
and in Figure S-8. In brief, using normalization by the total
intensity, CV% values for all analytes from the mixture
measured over 3 days and after instrument maintenance did
not exceed 20%.

3.3. Metabolic Differences between Population
Phenotypes: Application of DI-nESI-HRMS

The DI-nESI-HRMS method proposed herein provides a
framework for high-throughput metabolic phenotyping of
biological samples from large biobank sample collections.
After thorough optimization and validation of the method,

we applied it for the analysis of >10 000 24 h collection urine
samples from the INTERMAP study and >2200 spot urine
samples from the ARIC study. With all of the data we obtained
in a time window on the order of weeks, we are now able to
explore metabolic phenotypes of different populations and
obtain systems-level information reflecting genetic (inheritable)
and environmental (e.g., diet-related) influences. As an example
of DI-nESI-HRMS method application at the population level,
we present the comparison of metabolic profiles of USA and
Japanese population from the INTERMAP study. We used
both semiquantitative and global profile data and applied
univariate and multivariate statistical approaches to identify
metabolic differences between the two populations.
Metabolite concentrations obtained from the targeted

analyses of 2075 urine samples from USA (first visit; 1036
male and 1039 female) and 1119 samples from Japan (first

visit; 560 male and 559 female) were normalized by creatinine
measured by DI-nESI-HRMS in each sample, and log-
transformed prior to the calculation of a linear regression
model with concentration (as μmol/mmol creatinine) as the
dependent variable and population (USA, Japan), gender, age,
and BMI as the explanatory variables, which are also covariates
of each other. The test comparing the levels of metabolites in
two populations revealed significant differences for 32 out of 39
quantified metabolites (Table 2), p < 0.05. Metabolites that
differed the most between the two population were ascorbic
acid, citric acid, hippuric acid, vanillylmandelic acid, and p-
cresol sulfate (higher in the USA population) and daidzein and
(iso)valerylglycine (higher in the Japanese population). In the
previous exploratory analysis of the INTERMAP samples using
1H NMR data3 it was shown that the urinary excretion patterns
of East Asian and Western populations were different due to
contrasting diets and diet-related major risk factors of
hypertension, and the discriminant metabolites were predom-
inantly of dietary origin. Here, we show higher levels of
excretion of daidzein, a metabolite related to soy consumption,
in the Japanese population. Ascorbic acid is a component of
several medications, for example, mixtures with paracetamol
used to treat fever and pain, the metabolites of which detected
by DI-nESI-HRMS were higher in urine samples from the USA
population. Analgesic use was previously reported to be higher
in Western populations of the INTERMAP study.44 We also
find that gut−microbial mammalian cometabolites, hippuric
acid, p-cresol sulfate, vanillylmandelic acid, phenylacetylglut-
amine, and indoxyl sulfate were discriminant and higher in the
USA population. This is consistent with previous findings,3,41

but also, analysis by mass spectrometry has revealed the
detection and estimation of other phenolic compounds not
previously seen by 1H NMR spectroscopy and thus facilitates
deeper analysis of gut−microbial mammalian interactions in
different populations.

Figure 3. Box plots showing difference in population (Japan and USA) and gender metabolite concentration levels obtained from DI-nESI-HRMS
by the standard addition method.
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The linear regression model also provided effect size
estimates (β) and p values for the covariates that allow
assessment of the differences in metabolite levels related to
other factors such as gender, age, and BMI to be assessed
(Table 2). We observed that some metabolites were
significantly different between males and females in each of
the two populations. Citric acid, creatine, and 2-oxoglutaric acid
were the most discriminant metabolites and were excreted in
higher concentration in females. Higher concentration of these
metabolites in female urine has already been described.45 The
comparison of several metabolite levels in two different
populations stratified by gender is shown in the boxplots in
Figure 3 and Figure S-10. The correlation of metabolite
concentrations obtained by DI-nESI-HRMS was also assessed
in relation to BMI (Table 2). Some of the measured
metabolites have been previously shown to be associated with
BMI and adiposity in an exploratory study of urinary metabolic
signatures using 1H NMR spectroscopic data.46 In this study we
found that citric acid, hippuric acid, ketoleucine, phenyl-
acetylglutamine, p-cresol sulfate, and proline betaine were
inversely correlated with BMI, and N-acetylneuraminic acid,
creatinine, and acetylcarnitine were directly correlated with
BMI, which underpins previous findings.
To further explore the differences in metabolic phenotypes of

USA and Japanese populations, we modeled the global MS
metabolic profiles using multivariate approaches. Randomly

selected 449 high-resolution metabolic profiles (225 male and
224 female) from the USA population and 451 high-resolution
metabolic profiles (240 male and 211 female) from the
Japanese population obtained in positive and negative
ionization modes were preprocessed as described above and,
after exclusion of the samples with high concentration of
glucose (m/z 203.05 [M + Na]), were analyzed by PCA and
OPLS-DA. The OPLS-DA cross-validated score plots of the DI-
nESI-HRMS data (positive and negative ionization modes)
shown in Figure 4 provide more evidence of clear
discrimination between the USA and Japanese populations
based on metabolic phenotype. Both models yielded high
predictive values (Q2Y = 0.608 and 0.680, respectively),
indicating a high degree of biological differences between the
two populations. The loadings S-plots corresponding to both
OPLS-DA models are illustrated in Figure S-11 and allow the
observation and the assignment of the major features driving
the separation between the two populations. In negative ion
mode, these were mostly attributed to drug metabolites (such
as acetaminophen and its glucuronide and sulfate and aspirin
metabolites) excreted at higher concentration in USA
population along with hippuric acid, citric acid, and p-cresol
sulfate. Uric acid (m/z 167.02) and its fragment ion (m/z
124.01) were among the metabolites excreted in higher
concentration in Japanese population. The excretion of uric
acid can be related to the consumption of seafood. In positive

Figure 4. OPLS-DA cross-validated scores plots for the DI-nESI-HRMS data obtained in positive and negative ionization modes for the 449 and 451
urine samples from USA (blue) and Japanese (green) populations.

Figure 5. STOCSY on the DI-nESI-HRMS full-scan data in positive ionization mode driven from the peak at m/z 170.10 (1- and 3-methylhistidine)
highlighting correlations to the in-source fragments at (m/z 141.07, m/z 126.10, and m/z 96.07).
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ion mode, the putatively identified metabolites found at higher
levels in USA urine samples, were isomers of 1- and 3-
methylhistidine (m/z 170.10), creatinine, and proline betaine
(H+ and Na+ adducts). Both 3-methylhistidine and creatinine
are related to muscle turnover, whereas 1-methylhistidine is
related to meat consumption and proline betaine is a biomarker
of citrus fruit consumption. We applied statistical total
correlation spectroscopy (STOCSY) to DI-nESI-HRMS data
to assist in the assignment some of these discriminatory
metabolites. An example of a spectra-like STOCSY plot
illustrated in Figure 5 shows the correlation of the signal at
m/z 170.10 detected in positive ion mode with the signals at
m/z 141.07, m/z 126.10, and m/z 96.07 that are in-source
fragments of 1- and 3-methylhistidine. The MS/MS spectrum
for the ion at m/z 170.10 is shown in the Figure S-12 in the SI.
The same approach was used to assign uric acid and its
fragment in negative ion mode. In negative ionization mode, we
also found an ion at m/z 182.00 to be present at higher
concentration in the USA population. The STOCSY analysis
revealed the correlation of this ion with a small signal at 105.96,
which allowed the assignment of saccharin and its fragment ion.
These preliminary results further highlight diet-related
metabolites that drive metabolic differences between popula-
tions. The comparison of population phenotypes requires
further data mining using a range of statistical approaches,
metabolite structure elucidation, and the use of metabolic
networks to translate metabolic spectroscopic data into
biological knowledge.

4. CONCLUSIONS
The current trend toward deep metabolic phenotyping of tens
and hundreds of thousands of biobanked samples to gain an
understanding of pathological conditions, physiological stimuli,
or gene−environmental interactions on population-scale
demands the urgent development of high-throughput analytical
approaches and the creation of dedicated phenotyping centers.
In this work we demonstrated the use of a high-throughput

direct infusion nanoelectrospray high-resolution mass spec-
trometry (DI-nESI-HRMS) method with the time-of-flight
detection for parallel targeted analysis of multiple metabolites
in urine samples for large population studies using two
epidemiological sample cohorts, INTERMAP and ARIC, as
exemplar data sets. We propose a workflow for optimization of
this analytical platform for metabolic phenotyping on a scale of
molecular epidemiology. The acceptance criteria for analytical
quality were established taking into account the complexity of
the samples, population variability, the nature of multiplexed
assays, and the limitation of the experimental platform. For
successful implementation, method optimization is a key step
consisting of careful and detailed prevalidation assays to assess
method selectivity, urine dilution factor, matrix effect, and
established concentration ranges for each metabolite. The MS
quantification was performed by back-calculation of the ratio of
each metabolite to its internal standard and the slope of the
standard addition calibration curve obtained in the pooled urine
sample. The reliability of this approach was tested by
comparing it with the method of external calibration curve
obtained in an analyte-free matrix. The method has shown the
intra- and interday accuracy and precision values for targeted
metabolites in accordance with the adopted acceptance criteria.
The analysis of sample stability under different measurement
and storage conditions as well as robustness study using sample
batches from different population and analysis time points from

the two cohorts proved that the method is suitable for large-
scale long-term epidemiological studies.
The main advantages accruing from this method are

significantly decreased time of analysis (2 min for acquiring
metabolic profiles in both positive and negative polarities), an
easy experimental design due to instrumental simplicity and
data processing requirements, and the possibility to avoid the
problems related to LC column deterioration and LC system
maintenance, which all increase the robustness of the analytical
procedure and reduce associated costs. The profiling of 10 000
urine specimens in one polarity by reversed-phase UPLC−MS
would span 100 days with 24 h continuous measurement cycle,
whereas the same nonstop 24 h regime by DI-nESI-HRMS
permitted analysis of these samples in two polarities in <30
days. The difference in costs of UPLC−MS profiling in only
one polarity can be estimated to be 3 times higher than the
costs of the DI-nESI-HRMS analysis in two polarities. The data
presented here demonstrate that the application of DI-nESI-
HRMS method is feasible for large-scale urinary metabolic
phenotyping in molecular epidemiology with high degree of
reproducibility and stability.
In conclusion, we propose the DI-nESI-HRMS method as a

complementary and time-efficient tool in the research portfolio
for molecular epidemiologists to define metabolic phenotypes
and establish reference ranges in human populations. The use
of DI-nESI-HRMS for large-scale epidemiological studies is an
optimal and low-cost means of accelerating MS analysis,
compared with conventional UPLC−MS methods.

■ ASSOCIATED CONTENT

*S Supporting Information

The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jproteo-
me.6b01003.

Experimental section contains detailed description of the
preparation of standard solutions, MS experimental
conditions, and test mixture analysis. Table S-1. List of
metabolites and internal standards. Tables S-2 and S-3.
Comparison of standard addition and external calibration
curves (INTERMAP and ARIC study, respectively).
Table S-4. Concentration of metabolites measured in a
pooled urine sample and LOQ value (INTERMAP
study). Table S-5. Concentration of metabolites in mM
calculated by standard addition method for eight pooled
SR from the INTERMAP study. Table S-6. Parameters of
method validation (INTERMAP) study. Table S-7.
Parameters of in-study validation (ARIC study). Tables
S-8 and S-9. Parameters of the method robustness
(INTERMAP and ARIC study, respectively). Figure S-1.
Flowchart for DI-nESI-HRMS method optimization.
Figure S-2. 1H NMR spectra of labeled standards. Figure
S-3. MS/MS spectra of metabolites. Figure S-4, histo-
gram of metabolite and labeled standards intensities at
different dilutions. Figure S-5. Calibration curves
obtained in pooled urine sample by the method of
standard additions and in analyte-free matrix. Figure S-6.
CV% values for the QC samples in stability assay. Figure
S-7. Concentration of metabolites measured in QC
samples measured over 12 weeks in the INTERMAP
study. Figure S-8. OPLS-DA scores plot from stability
study. Figure S-9. Results of Test mixture analysis. Figure
S-10. Box plot showing difference in metabolite levels in

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.6b01003
J. Proteome Res. 2017, 16, 1646−1658

1656

http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.6b01003/suppl_file/pr6b01003_si_001.pdf
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.jproteome.6b01003
http://pubs.acs.org/doi/abs/10.1021/acs.jproteome.6b01003
http://dx.doi.org/10.1021/acs.jproteome.6b01003


two different populations. Figure S-11. Loadings S-plots
from OPLS-DA model comparing two populations.
Figure S-12. MS/MS spectrum of the feature m/z
170.10 detected in urine samples in positive ion mode.
(PDF)

■ AUTHOR INFORMATION
Corresponding Authors

*E.C.: E-mail: e.chekmeneva@imperial.ac.uk.
*E.H.: E-mail: elaine.holmes@imperial.ac.uk.
ORCID

Elena Chekmeneva: 0000-0003-1807-2398
Gonca̧lo dos Santos Correia: 0000-0001-8271-9294
Anisha Wijeyesekera: 0000-0001-6151-5065
Elaine Holmes: 0000-0002-0556-8389
Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The research was supported by grant R01 HL084228 from the
National Heart, Lung, and Blood Institute, National Institutes
of Health, by the National Institute for Health Research
(NIHR) Biomedical Research Centre based at Imperial College
Healthcare NHS Trust and Imperial College London. We
thank the MRC-NIHR National Phenome Centre, which is
supported by the U.K. Medical Research Council (MRC) (in
association with National Institute for Health Research (NIHR)
England) Grant MC_PC_12025. The views expressed are
those of the author(s) and not necessarily those of the NHS,
the NIHR, or the Department of Health.

■ REFERENCES
(1) Tzoulaki, I.; Ebbels, T. M. D.; Valdes, A.; Elliott, P.; Ioannidis, J.
P. A. Design and Analysis of Metabolomics Studies in Epidemiologic
Research: A Primer on -Omic Technologies. Am. J. Epidemiol. 2014,
180 (2), 129−139.
(2) Bictash, M.; Ebbels, T. M.; Chan, Q.; Loo, R. L.; Yap, I. K. S.;
Brown, I. J.; de Iorio, M.; Daviglus, M. L.; Holmes, E.; Stamler, J.;
Nicholson, J. K.; Elliott, P. Opening up the ″Black Box″: Metabolic
phenotyping and metabolome-wide association studies in epidemiol-
ogy. Journal of Clinical Epidemiology 2010, 63 (9), 970−979.
(3) Holmes, E.; Loo, R. L.; Stamler, J.; Bictash, M.; Yap, I. K. S.;
Chan, Q.; Ebbels, T.; De Iorio, M.; Brown, I. J.; Veselkov, K. A.;
Daviglus, M. L.; Kesteloot, H.; Ueshima, H.; Zhao, L. C.; Nicholson, J.
K.; Elliott, P. Human metabolic phenotype diversity and its association
with diet and blood pressure. Nature 2008, 453 (7193), 396−U50.
(4) Fuhrer, T.; Zamboni, N. High-throughput discovery metab-
olomics. Curr. Opin. Biotechnol. 2015, 31, 73−78.
(5) Gonzalez-Dominguez, R.; Castilla-Quintero, R.; Garcia-Barrera,
T.; Gomez-Ariza, J. L. Development of a metabolomic approach based
on urine samples and direct infusion mass spectrometry. Anal.
Biochem. 2014, 465, 20−27.
(6) Draper, J.; Lloyd, A. J.; Goodacre, R.; Beckmann, M. Flow
infusion electrospray ionisation mass spectrometry for high
throughput, non-targeted metabolite fingerprinting: a review. Metab-
olomics 2013, 9 (1), 4−29.
(7) Smedsgaard, J.; Frisvad, J. C. Using direct electrospray mass
spectrometry in taxonomy and secondary metabolite profiling of crude
fungal extracts. J. Microbiol. Methods 1996, 25 (1), 5−17.
(8) Kirwan, J. A.; Broadhurst, D. I.; Davidson, R. L.; Viant, M. R.
Characterising and correcting batch variation in an automated direct
infusion mass spectrometry (DIMS) metabolomics workflow. Anal.
Bioanal. Chem. 2013, 405 (15), 5147−5157.

(9) Southam, A. D.; Weber, R. J.; Engel, J.; Jones, M. R.; Viant, M. R.
A complete workflow for high-resolution spectral-stitching nano-
electrospray direct-infusion mass-spectrometry-based metabolomics
and lipidomics. Nat. Protoc. 2017, 12 (2), 255−273.
(10) Kirwan, J. A.; Weber, R. J.; Broadhurst, D. I.; Viant, M. R. Direct
infusion mass spectrometry metabolomics dataset: a benchmark for
data processing and quality control. Sci. Data 2014, 1, 140012.
(11) Boernsen, K. O.; Gatzek, S.; Imbert, G. Controlled protein
precipitation in combination with chip-based nanospray infusion mass
spectrometry. An approach for metabolomics profiling of plasma. Anal.
Chem. 2005, 77 (22), 7255−7264.
(12) Moriarty, M.; Lehane, M.; O’Connell, B.; Keeley, H.; Furey, A.
Development of a nano-electrospray MSn method for the analysis of
serotonin and related compounds in urine using a LTQ-orbitrap mass
spectrometer. Talanta 2012, 90, 1−11.
(13) Zhang, Y. P.; Qiu, L.; Wang, Y. M.; Qin, X. Z.; Li, Z. L. High-
throughput and high-sensitivity quantitative analysis of serum
unsaturated fatty acids by chip-based nanoelectrospray ionization-
Fourier transform ion cyclotron resonance mass spectrometry: Early
stage diagnostic biomarkers of pancreatic cancer. Analyst 2014, 139
(7), 1697−1706.
(14) Lin, L.; Yu, Q. A.; Yan, X. M.; Hang, W.; Zheng, J. X.; Xing, J.
C.; Huang, B. L. Direct infusion mass spectrometry or liquid
chromatography mass spectrometry for human metabonomics? A
serum metabonomic study of kidney cancer. Analyst 2010, 135 (11),
2970−2978.
(15) Xiang, Y.; Koomen, J. M. Evaluation of Direct Infusion-Multiple
Reaction Monitoring Mass Spectrometry for Quantification of Heat
Shock Proteins. Anal. Chem. 2012, 84 (4), 1981−1986.
(16) Tang, K. Q.; Page, J. S.; Smith, R. D. Charge competition and
the linear dynamic range of detection in electrospray ionization mass
spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15 (10), 1416−1423.
(17) Cloarec, O.; Dumas, M. E.; Craig, A.; Barton, R. H.; Trygg, J.;
Hudson, J.; Blancher, C.; Gauguier, D.; Lindon, J. C.; Holmes, E.;
Nicholson, J. Statistical total correlation spectroscopy: An exploratory
approach for latent biomarker identification from metabolic H-1 NMR
data sets. Anal. Chem. 2005, 77 (5), 1282−1289.
(18) Posma, J. M.; Garcia-Perez, I.; De Iorio, M.; Lindon, J. C.;
Elliott, P.; Holmes, E.; Ebbels, T. M. D.; Nicholson, J. K. Subset
Optimization by Reference Matching (STORM): An Optimized
Statistical Approach for Recovery of Metabolic Biomarker Structural
Information from 1H NMR Spectra of Biofluids. Anal. Chem. 2012, 84
(24), 10694−10701.
(19) Sarafian, M. H.; Lewis, M. R.; Pechlivanis, A.; Ralphs, S.;
McPhail, M. J. W.; Patel, V. C.; Dumas, M. E.; Holmes, E.; Nicholson,
J. K. Bile Acid Profiling and Quantification in Biofluids Using Ultra-
Performance Liquid Chromatography Tandem Mass Spectrometry.
Anal. Chem. 2015, 87 (19), 9662−9670.
(20) Wolfer, A. M.; Gaudin, M.; Taylor-Robinson, S. D.; Holmes, E.;
Nicholson, J. K. Development and Validation of a High-Throughput
Ultrahigh-Performance Liquid Chromatography-Mass Spectrometry
Approach for Screening of Oxylipins and Their Precursors. Anal.
Chem. 2015, 87 (23), 11721−11731.
(21) Chekmeneva, E.; Correia, G.; Denes, J.; Gomez-Romero, M.;
Wijeyesekera, A.; Perenyi, D. R.; Koot, Y.; Boomsma, C.; Want, E. J.;
Dixon, P. H.; Macklon, N. S.; Chan, Q.; Takats, Z.; Nicholson, J. K.;
Holmes, E. Development of nanoelectrospray high resolution isotope
dilution mass spectrometry for targeted quantitative analysis of urinary
metabolites: application to population profiling and clinical studies.
Anal. Methods 2015, 7 (12), 5122−5133.
(22) Gray, N.; Lewis, M. R.; Plumb, R. S.; Wilson, I. D.; Nicholson, J.
K. High-Throughput Microbore UPLC-MS Metabolic Phenotyping of
Urine for Large-Scale Epidemiology Studies. J. Proteome Res. 2015, 14
(6), 2714−2721.
(23) Stamler, J.; Elliott, P.; Dennis, B.; Dyer, A. R.; Kesteloot, H.; Liu,
K.; Ueshima, H.; Zhou, B. F. INTERMAP: background, aims, design,
methods, and descriptive statistics (nondietary). J. Hum. Hypertens.
2003, 17 (9), 591−608.

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.6b01003
J. Proteome Res. 2017, 16, 1646−1658

1657

http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.6b01003/suppl_file/pr6b01003_si_001.pdf
mailto:e.chekmeneva@imperial.ac.uk
mailto:elaine.holmes@imperial.ac.uk
http://orcid.org/0000-0003-1807-2398
http://orcid.org/0000-0001-8271-9294
http://orcid.org/0000-0001-6151-5065
http://orcid.org/0000-0002-0556-8389
http://dx.doi.org/10.1021/acs.jproteome.6b01003


(24) Williams, O. D. The Atherosclerosis Risk in Communities
(Aric) Study - Design and Objectives. Am. J. Epidemiol. 1989, 129 (4),
687−702.
(25) Yap, I. K. S.; Brown, I. J.; Chan, Q.; Wijeyesekera, A.; Garcia-
Perez, I.; Bictash, M.; Loo, R. L.; Chadeau-Hyam, M.; Ebbels, T.; De
Iorio, M.; Maibaum, E.; Zhao, L. C.; Kesteloot, H.; Daviglus, M. L.;
Stamler, J.; Nicholson, J. K.; Elliott, P.; Holmes, E. Metabolome-Wide
Association Study Identifies Multiple Biomarkers that Discriminate
North and South Chinese Populations at Differing Risks of
Cardiovascular Disease INTERMAP Study. J. Proteome Res. 2010, 9
(12), 6647−6654.
(26) Wijeyesekera, A.; Clarke, P. A.; Bictash, M.; Brown, I. J.; Fidock,
M.; Ryckmans, T.; Yap, I. K. S.; Chan, Q.; Stamler, J.; Elliott, P.;
Holmes, E.; Nicholson, J. K. Quantitative UPLC-MS/MS analysis of
the gut microbial co-metabolites phenylacetylglutamine, 4-cresyl
sulphate and hippurate in human urine: INTERMAP Study. Anal.
Methods 2012, 4 (1), 65−72.
(27) FDA Guidance for Industry, Bioanalytical Method Validation.
h t t p : / / w w w . f d a . g o v / d o w n l o a d s / d r u g s /
guidancecomplianceregulatoryinformation/guidances/ucm368107.pdf.
(28) Dunn, W. B.; Wilson, I. D.; Nicholls, A. W.; Broadhurst, D. The
importance of experimental design and QC samples in large-scale and
MS-driven untargeted metabolomic studies of humans. Bioanalysis
2012, 4 (18), 2249−2264.
(29) Kessner, D.; Chambers, M.; Burke, R.; Agus, D.; Mallick, P.
ProteoWizard: open source software for rapid proteomics tools
development. Bioinformatics 2008, 24 (21), 2534−2536.
(30) Savitzky, A.; Golay, M. J. E. Smoothing and Differentiation of
Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36
(8), 1627−1639.
(31) R Development Core Team. R: A Language and Environment for
Statistical Computing; R Foundation for Statistical Computing: Vienna,
Austria, 2011.
(32) Bylesjo, M.; Rantalainen, M.; Cloarec, O.; Nicholson, J. K.;
Holmes, E.; Trygg, J. OPLS discriminant analysis: combining the
strengths of PLS-DA and SIMCA classification. J. Chemom. 2006, 20
(8−10), 341−351.
(33) Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A. C.; Wilson, M. R.;
Knox, C.; Bjorndahl, T. C.; Krishnamurthy, R.; Saleem, F.; Liu, P.;
Dame, Z. T.; Poelzer, J.; Huynh, J.; Yallou, F. S.; Psychogios, N.;
Dong, E.; Bogumil, R.; Roehring, C.; Wishart, D. S. The human urine
metabolome. PLoS One 2013, 8 (9), e73076.
(34) Smith, C. A.; O’Maille, G.; Want, E. J.; Qin, C.; Trauger, S. A.;
Brandon, T. R.; Custodio, D. E.; Abagyan, R.; Siuzdak, G. METLIN -
A metabolite mass spectral database. Ther. Drug Monit. 2005, 27 (6),
747−751.
(35) Buick, A. R.; Doig, M. V.; Jeal, S. C.; Land, G. S.; Mcdowall, R.
D. Method Validation in the Bioanalytical Laboratory. J. Pharm.
Biomed. Anal. 1990, 8 (8−12), 629−637.
(36) Viswanathan, C. T.; Bansal, S.; Booth, B.; DeStefano, A. J.; Rose,
M. J.; Sailstad, J.; Shah, V. P.; Skelly, J. P.; Swann, P. G.; Weiner, R.
Quantitative bioanalytical methods validation and implementation:
Best practices for chromatographic and ligand binding assays. Pharm.
Res. 2007, 24 (10), 1962−1973.
(37) Lee, J. W.; Devanarayan, V.; Barrett, Y. C.; Weiner, R.; Allinson,
J.; Fountain, S.; Keller, S.; Weinryb, I.; Green, M.; Duan, L.; Rogers, J.
A.; Millham, R.; O’Brien, P. J.; Sailstad, J.; Khan, M.; Ray, C.; Wagner,
J. A. Fit-for-purpose method development and validation for successful
biomarker measurement. Pharm. Res. 2006, 23 (2), 312−328.
(38) Jones, B. R.; Schultz, G. A.; Eckstein, J. A.; Ackermann, B. L.
Surrogate matrix and surrogate analyte approaches for definitive
quantitation of endogenous biomolecules. Bioanalysis 2012, 4 (19),
2343−2356.
(39) Smith, L. M.; Maher, A. D.; Want, E. J.; Elliott, P.; Stamler, J.;
Hawkes, G. E.; Holmes, E.; Lindon, J. C.; Nicholson, J. K. Large-scale
human metabolic phenotyping and molecular epidemiological studies
via 1H NMR spectroscopy of urine: investigation of borate
preservation. Anal. Chem. 2009, 81 (12), 4847−56.

(40) Gika, H. S.; Theodoridis, G. A.; Wingate, J. E.; Wilson, I. D.
Within-Day Reproducibility of an HPLC−MS-Based Method for
Metabonomic Analysis: Application to Human Urine. J. Proteome Res.
2007, 6, 3291−3303.
(41) Dumas, M. E.; Maibaum, E. C.; Teague, C.; Ueshima, H.; Zhou,
B. F.; Lindon, J. C.; Nicholson, J. K.; Stamler, J.; Elliott, P.; Chan, Q.;
Holmes, E. Assessment of analytical reproducibility of 1H NMR
spectroscopy based metabonomics for large-scale epidemiological
research: the INTERMAP study. Anal. Chem. 2006, 78 (7), 2199−
2208.
(42) Barton, R. H.; Nicholson, J. K.; Elliott, P.; Holmes, E. High-
throughput 1H NMR-based metabolic analysis of human serum and
urine for large-scale epidemiological studies: validation study.
International Journal of Epidemiology 2008, 37, 31−40.
(43) Zelena, E.; Dunn, W. B.; Broadhurst, D.; Francis-McIntyre, S.;
Carroll, K. M.; Begley, P.; O’Hagan, S.; Knowles, J. D.; Halsall, A.;
Wilson, I. D.; Kell, D. B. Development of a Robust and Repeatable
UPLC-MS Method for the Long-Term Metabolomic Study of Human
Serum. Anal. Chem. 2009, 81 (4), 1357−1364.
(44) Loo, R. L.; Chan, Q.; Brown, I. J.; Robertson, C. E.; Stamler, J.;
Nicholson, J. K.; Holmes, E.; Elliott, P. A comparison of self-reported
analgesic use and detection of urinary ibuprofen and acetaminophen
metabolites by means of metabonomics: the INTERMAP Study. Am. J.
Epidemiol. 2012, 175 (4), 348−58.
(45) Thevenot, E. A.; Roux, A.; Xu, Y.; Ezan, E.; Junot, C. Analysis of
the Human Adult Urinary Metabolome Variations with Age, Body
Mass Index, and Gender by Implementing a Comprehensive Workflow
for Univariate and OPLS Statistical Analyses. J. Proteome Res. 2015, 14
(8), 3322−3335.
(46) Elliott, P.; Posma, J. M.; Chan, Q.; Garcia-Perez, I.;
Wijeyesekera, A.; Bictash, M.; Ebbels, T. M.; Ueshima, H.; Zhao, L.;
van Horn, L.; Daviglus, M.; Stamler, J.; Holmes, E.; Nicholson, J. K.
Urinary metabolic signatures of human adiposity. Sci. Transl. Med.
2015, 7 (285), 285ra62.

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.6b01003
J. Proteome Res. 2017, 16, 1646−1658

1658

http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm368107.pdf
http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm368107.pdf
http://dx.doi.org/10.1021/acs.jproteome.6b01003

