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Induced Pluripotent Stem Cells in Pulmonary Arterial Hypertension

Pioneering work by Yamanaka’s group showed that overexpression
of four transcription factors, octamer-binding protein 4 (OCT4),
Krüppel-like factor 4 (KLF4), sex determining region Y-box 2
(SOX2), and c-myc avian myelocytomatosis viral oncogene
homolog (c-MYC), could reprogram somatic cells into induced
pluripotent stem cells (iPSCs), which could then be differentiated
into all cell types (1). Since that finding, it has become clear that
iPSCs hold great promise as models for diseases, drug discovery,
and testing of cell-based therapeutic strategies.

Pulmonary diseases are one leading cause of morbidity and
mortality worldwide. Currently available treatments can only
alleviate symptoms or delay disease progression within a limited time
range for patients with end-stage pulmonary diseases. Pulmonary
arterial hypertension (PAH) is a complex disorder of pulmonary
microvasculature, circulating cells, and right heart, with poor
prognosis (2, 3). Animal models of PAH have existed for some time
and have provided key insights into disease pathogenesis. Attempts
to translate these findings into treatment for patients, however,
have been imperfect at best, because at a molecular level animal lungs
and lung tissues are different from human lungs and tissues, and
thus it has been difficult to recapitulate the disease process in vitro.
Use of human lung cells could address some of the deficiencies.
However, it is technically difficult to isolate and characterize human
cells in enough number to be useful in laboratory studies. iPSCs
provide one potential solution to this problem. iPSCs have been
used to derive respiratory epithelial cells, vascular endothelial cells,
and vascular smooth muscle cells (4–6) and have also been used to
study lung development and vascular modeling (4, 7–9). However,
whether they can serve as tools to investigate the potential for new
therapeutic agents in PAH is unknown.

In this issue of the Journal, Sa and colleagues (pp. 930–941)
present data from proof-of-principle studies that address an
important question: whether iPSCs derived from patients with
PAH have potential as tools for drug discovery and testing (10).
They compared the pulmonary artery endothelial cells isolated
from patients with idiopathic or heritable PAH to endothelial cells
(ECs) derived from fibroblast-derived iPSCs from the same
patients. The authors show that there are many similarities between
the iPSC-ECs and native pulmonary artery endothelial cells,
including morphology, functional deficits, reduction of bone
morphogenetic protein receptor (BMPR)-II signaling, and,
importantly, response to bone morphogenetic protein 9 stimulation

and drug treatment, as well as some differences. Using RNA-seq
analyses, they further identified molecular signatures responsible
for the observed functional and drug response differences between
native ECs and iPSC-ECs. In summary, their data show that iPSC-
derived ECs can serve as surrogates for native ECs in both
functional and drug discovery studies.

Their work suggests that the iPSC-ECs model has the potential
to serve as a precision/personalized medicine tool—to determine
which one of the many drugs would be effective in a particular
patient—because the cells are derived from the same patient who
would, in the end, receive the drug. Although this concept maybe
exciting, their data also show that the use of these cells is not
straightforward, and additional data are needed before broadly
generalizable conclusions can be made. For example, they found
that only one of two IPSC-ECs derived from patients with heritable
PAH (with the same BMPR2 mutation) and only two of six
iPSC-ECs derived from patients with idiopathic PAH showed a
functional response to Elafin or FK506. Why the treatments did
not have a universal effect is currently unknown. One potential
mechanism could be preserved fibroblast-specific epigenetic
signatures; it is well known that iPSCs can retain some of the
epigenetic signatures of the parent cell. Another could be that
patient-specific molecular modifiers, such as BMPR2 expression
and alternative splicing and estrogen metabolism (11–13), retain
their effect regardless of programming. One way to address this
question would be to compare iPSC-ECs derived from different
originating tissues from the same patient and with each and
with other types of endothelial cells, such as circulating ECs,
also from the same patient. Another possibility could be that
because both Elafin and FK506 specifically affect BMPR-II
signaling (14, 15), they might not be effective if BMPR-II
signaling is not the primary disease driver in a particular cell line.
It may thus be useful to determine if iPSC-ECs and native ECs
show similar responses to a wider variety of potential therapeutic
agents.

It is important to note that this work involved a small number
of cell lines derived from a limited number of patients from a
particular pulmonary hypertension (PH) category (Group 1). A
larger number of iPSCs from a larger cohort of patients with PH,
including patients from the other PH groups and subgroups
(Groups 2–5), will need to be analyzed to more conclusively
determine the usefulness of this approach to the PH field as a
whole.

Given the paucity of treatment options in PAH, there is
an urgent need for improved understanding of the molecularSupported by NHLBI grant HL102020-01 (R.H.).
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mechanisms of PAH in human tissues—a vital prerequisite
for developing disease models and eventually therapies for PAH.
Directed differentiation of iPSCs and generation of pulmonary
vascular cell lines and tissues could be an important tool for such
studies. This promising work from Sa and colleagues addresses
many of these needs and has the potential to provide
unparalleled insight into PAH development and pathogenesis
and, importantly, significantly speed up new drug discovery. n
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