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Abstract

Cells contain powerful RNA decay machinery to eliminate unneeded RNA from the cell, and this 

process is an important and regulated part of controlling gene expression. However, certain 

structured RNAs have been found that can robustly resist degradation and extend the lifetime of an 

RNA. In this review, we present three RNA structures that use a specific three-dimensional fold to 

provide protection from RNA degradation, and discuss how the recently-solved structures of these 

RNAs explain their function. Specifically, we describe the Xrn1-resistant RNAs from arthropod-

borne flaviviruses, exosome-resistant long non-coding RNAs associated with lung cancer 

metastasis and found in Kaposi’s Sarcoma-associated herpesvirus, and tRNA-like sequences 

occurring in certain plant viruses. These three structures reveal three different mechanisms to 

protect RNAs from decay and suggest RNA structure-based nuclease resistance may be a 

widespread mechanism of regulation.
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INTRODUCTION

Cells have many ways to precisely control the pathways of RNA decay as part of their 

overall strategy to regulate RNA levels. The pathway used to eliminate most messenger 

RNAs (mRNAs) in eukaryotes initiates by shortening of the mRNA’s 3′ poly-A tail, 

followed by either degradation by the 3′→5′ exonuclease complex (exosome) or enzymatic 

decapping of the mRNA’s 5′ end and degradation by the 5′→3′ exonuclease Xrn1 [1,2]

(Figure 1). Related RNA degradation pathways regulate mRNA levels and provide mRNA 

quality control, including deadenylation-independent, endonuclease-mediated, nonsense 
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mediated, no-go, and non-stop decay pathways [3–9]. The rate of decay of specific mRNAs 

can be controlled by several processes [10–13], including ones that use RNA structure. In 

the simplest case, a thermostable RNA secondary structure at the 5′ or 3′ end of an RNA 

might slow the degradation machinery, but in more specific cases it is now clear that some 

RNAs form folded three-dimensional conformations that use more refined mechanisms to 

confound or evade the decay machinery. Here we discuss three recently-solved viral RNA 

structures that use different strategies to actively evade the powerful decay machinery. In one 

case, an analogous RNA structure has been found in cells, suggesting that continued 

characterization of degradation machine-evading viral RNAs may lead to the discovery of 

cellular versions, perhaps with broad biological significance.

Blocking degradation from the 5′ direction: Flaviviral Xrn1-resistant 

structures

The first RNA structure discussed here is found in arthropod-borne flaviviruses (FVs), a 

world-wide health threat [14,15]. These FVs have genomes comprising (+)sense single-

stranded RNA that contain conserved 5′ and 3′ untranslated regions (UTRs) [16]. FV 

infection results in accumulation of both the genomic RNA and subgenomic flaviviral RNAs 

(sfRNAs); the latter are associated with infection-induced cytopathicity and pathogenicity 

[17]. sfRNAs interact with many cellular proteins, provide interferon resistance, alter mRNA 

degradation rates, and effect miRNA-dependent pathways [18–31]. The mechanism of 

sfRNA production depends on partial degradation of the FV genomic RNA by Xrn1. The 

enzyme loads and progresses in a 5′→3′ direction until it halts at defined locations in the 

genome’s 3′ UTR; the protected RNAs are sfRNAs [17]. Thus, this is an example of a virus 

not only confounding the decay machinery, but exploiting it to the viruses’ advantage 

(Figure 2a). This ability to resist Xrn1 is surprising as Xrn1 can degrade highly structured 

RNAs [32,33]. Initial characterization of the 3′ UTRs of diverse FVs suggested that Xrn1 

resistance occurs at conserved RNA “stem-loop” (SL) secondary structures in the 3′ UTR 

[17,34–36]. Subsequent biophysical and biochemical characterization of isolated SL 

structures (dubbed Xrn1-resistant RNAs or xrRNAs) showed them to be compactly folded 

RNAs whose structure and function depends on conserved nucleotides [37].

Insight into this mechanism of Xrn1 resistance was provided by the structure of an xrRNA 

from Murray Valley encephalitis (MVE) virus solved by x-ray crystallography [38](Figure 

2b). The xrRNA’s three-dimensional fold is centered on a three-helix junction that forms an 

unusual ring-like architecture in which the 5′ end of the RNA passes from one side of the 

structure to the other. This fold depends on a second, unpredicted pseudoknot formed by 

base-pairing between the 5′ end of the resistant RNA and nucleotides in the three-way 

junction. Interestingly, the crystal structure captured the xrRNA in a state where the 

predicted pseudoknot was not formed, suggesting this element may be conformationally 

dynamic. Modeling of the xrRNA structure onto the structure of D. melanogaster Xrn1 [39] 

suggested that the ring-like structure of the xrRNA contacts the enzyme surface around the 

entrance to the active site, perhaps acting like a molecular brace (Figure 2c). This may 

shelter the next base-pair to be unwound from the domains of Xrn1 that provide helicase-

like activity. Thus, the structure suggests Xrn1 resistance is conferred in part by a 
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mechanical unfolding problem the enzyme cannot resolve. The structure also suggests how 

the viral RNA-dependent RNA polymerase (RdRP) traveling in the 3′→5′ direction can 

readily traverse this structure: the molecular brace will only be encountered by processive 

molecules (such as Xrn1) seeking to unwind the structure from the 5′ side (Figure 2d).

sfRNAs affect several pathways in infected cells [18,21,24,25,27–31], one of these appears 

to be directly related to the Xrn1 resistance that forms sfRNA. Data suggest that after 

halting, Xrn1 remains bound to the resistant structure and this Xrn1 sequestration 

dysregulates cellular mRNA decay [21,40]. Evidence for this includes cell-based 

examination of the alteration of mRNA levels as a result of sfRNA production and 

demonstration of the ability of xrRNAs to protect other RNAs from Xrn1 in trans [21]. Thus, 

there may be specific contacts formed between the xrRNA and Xrn1 that go beyond the 

“mechanical brace” model proposed above. The molecular details of the sfRNA-Xrn1 

interaction remain unexplored but may provide insight into how a single folded RNA can 

globally alter RNA degradation patterns [41].

Preventing access to the 3′ end: KSHV PAN and MALAT1 RNAs

Unlike the FV xrRNAs that block Xrn1’s 5′→3′ exonuclease activity, other structured 

RNAs inhibit 3′→5′ degradation by the exosome. The two discussed here are the Kaposi’s 

sarcoma–associated herpesvirus (KSHV) polyadenylated expression and nuclear retention 

element (PAN ENE) and a similar cellular RNA element found on the 3′ end of the 

processed metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) RNA (Figure 

3a). Like the FV xrRNAs these are both RNAs with direct importance to human health. The 

PAN ENE RNA is a highly abundant long non-coding RNA expressed in the nucleus during 

the lytic phase of KSHV infection whereas the MALAT1 RNA was identified as a highly 

stable nuclear marker in different lung cancers by subtractive hybridization [42,43]. These 

RNAs have exceptionally long half-lives and significant sequence homology, and functional 

studies suggested both sequester the 3′ A-rich or poly(A) sequence from the exosome 

within in a triple helix structure [44–46]

Structures of both of these RNA elements solved by x-ray crystallography demonstrate how 

they resist 3′→5′ decay by sequestering the 3′ end from the unwinding and endonuclease 

activities of the exosome [45,46] (Figure 3b). In both structures, an A-rich 3′ end engages 

both sides of a U-rich internal loop to form a series of U·A-U base triples. Specifically, the 

A-rich tail forms A-U Watson-Crick base-pairs with one side of the U-rich internal loop, and 

the other side of the U-rich loop forms U·A Hoogsteen interactions with these Watson-Crick 

pairs (Figure 3c). Mutations that disrupt these interactions render the RNA unable to resist 

3′→5′ degradation [45–49]. Hence, by engaging the A-rich 3′ tail in stable RNA structure, 

the PAN ENE and MALAT1 achieve structural sequestration that presumably prevents 

efficient loading and progression of the exosome, which requires ~30 nucleotides of single-

stranded RNA [50,51] (Figure 3d). Despite a very similar structural strategy, differences 

between PAN and MALAT1 show how an RNA structure can be adjusted to achieve 

different behaviors. The PAN RNA allows for sequestration almost anywhere along a long 

3′ poly(A) tail, thus the tail can overhang the structure [45]. As a result, PAN RNA exhibits 

biphasic decay kinetics with rapid degradation of the overhanging tail then slow decay 
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through the RNA triple-helix [46,47,52]. In contrast, MALAT1 has a specific sequence and 

length resulting in the 3′ end forming a blunt ended triple-helix without an overhang and a 

correspondingly slow single decay rate [46]. This poly(A) sequestration strategy may be 

widespread, as potentially similar elements have been found in cellular MEN β and Sno-

lncRNAs [53] and the Plautia stali intestine virus genomic RNA [49].

The MALAT1 RNA also reveals a potentially fundamental discovery about RNA triple 

helices. Processed MALAT1 does not have a continuous poly(A) tail, it has the sequence 

AAAAAGCAAAA at its 3′ end. All nine adenosines are in U·A-U triples, there is a C+·G-C 

interaction for the guanine, and a Watson-Crick G-C base-pair for the cytosine. Why the G-

C base-pair in the middle? The structure reveals that the distance between the 2′ OH of the 

Hoogsteen strand and the O2P of the Watson strand decreases with each step along the 3′ 
tail (Figure 3e). Modeling revealed a steric clash between these two atoms if a seventh base 

triple were present, likely limiting the maximum length of such a triple helix [46]. The G-C 

base-pair “resets” the helical register, allowing for the start of another triple-helix segment 

[46]. This understanding of basic RNA structure will be valuable in predicting the behavior 

and structures of other RNAs with potentially long runs of base triples, including those that 

use this as a 3′ end protection strategy.

Mimicry, conformational plasticity, and chemical modification: the TYMV 

TLS RNA

The third structure we discuss is the tRNA-like structure (TLS) found at the extreme 3′ end 

of the turnip yellow mosaic virus (TYMV) (for review: [54]). The TYMV TLS is a substrate 

for tRNA-modifying enzymes including cellular amino-acyl-tRNA synthetases (aaRS) that 

add an amino acid to the viral genome’s 3′ terminus (a valine for TYMV) [55,56], allowing 

binding of eukaryotic elongation factor 1a (eEF1A). TLS RNAs play multiple roles during 

infection including enhancing translation and doubling the half-life of the viral RNA to a 

similar degree as a poly-A tail but less than the PAN or MALAT1 RNAs [57]. The TLS’s 

ability to enhance stability (and its other functions), depends on 3′ aminoacylation [54]. 

Overall, the TYMV TLS is a multifunctional RNA that appears to have structural plasticity 

built in: it must mimic a tRNA, but must also readily unfold to serve as a template for 

replication.

The global conformation of the TYMV TLS matches the classic tRNA L-shaped structure 

[58,59] (Figure 4a,b). One “face” of the structure mimics a tRNA to interact with the aaRS 

and with eIF1a [59,60] (Figure 4c). However, the other face of the TLS and many of the 

interactions between elements analogous to a tRNA’s D loop, T loop, and V loop, are very 

different from a tRNA’s [58,59] (Figure 4b). Whereas a tRNA’s structure is held together by 

a large number of tertiary contacts, the TLS relies on a more limited set; this likely is what 

enables the RNA to readily unfold to allow replication.

There are several possible mechanisms by which the TYMV TLS RNA structure may 

increase the lifetime of the RNA to which it is affixed. The presence of a stable and complex 

RNA structure on the 3′ end of the RNA may inhibit loading of the exosome, 

aminoacylation may create a chemically invalid substrate for the exosome, or eIF1a binding 
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may block access by the decay machinery. The TLS has been shown to bind to the ribosome 

in vitro, if this occurs in cells it could also sequester the 3′ end from exonuclease activity 

[59]. Because it looks like a tRNA, the TLS could also be subject to the rapid tRNA decay 

pathway (RTD), which uses Met22, Rat1, and Xrn1 to degrade hypomodified tRNA, such as 

tRNAVal lacking 7mG and 5mC modifications in V loop and T stem [61]. The TLS could 

avoid this because its 5′ end is in a pseudoknot structure and it has a structurally divergent 

V loop. Overall, the TYMV TLS’s ability to enhance the stability of the viral RNA may be 

due to a combination of these effects; understanding how these are integrated with the TLS’ 

other functions promises to give new insight into how structurally plastic and 

multifunctional RNAs might control mRNA decay.

Conclusions

The three structures discussed here reveal different putative strategies for evading the 5′→3′ 
and 3′→5′ degradation machinery: 1) A mechanical unfolding problem that stymies Xrn1, 

2) Sequestration of the poly(A) tail to hide from the exosome, and 3) A likely combination 

of chemical alteration, structural stability, and protein binding. The diversity of structures 

and strategies underscores the rich repertoire available to alter the decay fate of an mRNA 

and also suggests there are more RNA three-dimensional strategies yet to be discovered. In 

addition, although the MALAT1 RNA is an example of a cellular RNA that is using a 

strategy also found in viruses (PAN RNA), RNAs operating analogously to the TYMV TLS 

and FV xrRNAs have not been found in cellular RNAs. The search for such elements is a 

prime area for ongoing inquiry as is the search for more diverse structured RNAs that 

manipulate and regulate the powerful RNA degradation machinery.
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HIGHLIGHTS

• RNAs can inhibit RNA degrading enzymes using three-dimensional folded 

structures.

• Many of these RNAs are viral, teaching lessons about analogous cellular 

RNAs.

• Recent structures reveal how these RNAs confound or evade degradation 

machinery.
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Figure 1. 
The primary path of mRNA degradation in eukaryotes. Shortening of the poly-A tail is 

followed by decapping by the Dcp1/Dcp2 complex and then either 5′→3′ decay by Xrn1 or 

3′→5′ decay by the exosome complex.
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Figure 2. 
Structure of Xrn1-resistant RNAs from mosquito-borne FVs. (a) These FV genomes contain 

conserved 5′ and 3′ untranslated regions (UTRs) with a single open reading frame (ORF) 

encoding multiple viral proteins. Xrn1 digestion of the genomic RNA leads to stalling of 

Xrn1 at conserved stem-loop (SL) structures in the 3′ UTR, generating subgenomic 

flaviviral RNAs (sfRNAs). (b) Structure (left) and secondary structure diagram (right) of an 

xrRNA from Murray Valley encephalitis (MVE) virus (PDB: 4PQV). The 5′ end of the 

RNA is inserted through a ring-like element formed by the three-helix junction of this RNA, 

facilitated by conserved long-range base pairs (red) and a base-triple interaction (blue). This 

is further stabilized by a pseudoknot interaction (yellow) that was formed in the crystal as a 

domain-exchanged crystal contact between separate molecules. (c) The three-dimensional 

structure was modeled onto the structure of the Drosophila melanogaster Xrn1 protein 

bound to a DNA substrate analog (PDB: 2Y35). The model suggests that the xrRNA 

provides a molecular brace (cyan) allowing only 5 nts of single-stranded RNA (red) into the 

active site of the enzyme consistent with the previously mapped halt site of Xrn1[37]. (d) 

The molecular brace is positioned to prevent 5′→3′ degradation by Xrn1, however it does 
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not shelter the 3′ end which can be readily denatured by enzymes acting in a 3′→5′ 
manner, such as the viral RdRP which must replicate the viral genome.
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Figure 3. 
MALAT1 and PAN ENE crystal structures. (a) Schematic of the human MALAT1 transcript 

and the product after processing by RNase P (cut site indicated by arrowhead at nucleotide 

8356). The exosome is able to degrade the unprocessed RNA, but the exosome is 

significantly hindered once the MALAT1 structure is at the 3′ end. (b) The crystal structure 

of MALAT1 (PDB: 4PLX) and PAN ENE (PDB: 3P22). The Watson strand with the 3′ end 

is in red, the Crick and Hoogsteen strands are in blue, and the engineered tetraloops are in 

gray. (c) The secondary structure of the conserved sequences and constructs crystallized for 
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MALAT1 and PAN ENE. Leontis and Westhof symbols indicate non-WC base pairs. (d) 
Crystal structure of the 12-subunit exosome; a bound structured RNA with the 3′ end 

extending into the exosome is shown in magenta. Nucleases Rrp6 and Rrp44 are yellow and 

green, and the rest of the exosome is represented as a semi-transparent gray surface. (PDB: 

5C0X). (e) The OP2 and 2′ OH of the Watson and Hoogsteen strands are shown as red or 

blue spheres respectively. The distances between them are given and orange numbering 

corresponds to the secondary structure in panel (b). The grey arrow depicts moving along the 

Watson strand from the 5′ to the 3′ direction and the location of the G-C pair in the middle 

that provides the “reset.” In the middle the same coloring is used to highlight interactions of 

the U14 and A74 (pair (8)) and U15 and A75 (pair (9)).
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Figure 4. 
Structure of the TYMV TLS and tRNA. (a) The crystal structures of the TYMV TLS (PDB: 

4P5J) and tRNAPhe (PDB: 1EHZ) with analogous structural elements labeled. The AC loops 

and stems are green, the D-loops and D-stems are cyan, the T-loop is red, and the V-loop is 

orange. The pseudoknot of the TLS and acceptor stem of the tRNA are blue and the linchpin 

region of the TLS is magenta. (b) Secondary structures, depicted several ways, of the TLS 

and tRNA using the coloring of panel (a). Leontis and Westhof symbols indicate non-WC 

base pairs. The secondary structures on the top compare the TLS to the standard tRNA 
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cloverleaf depiction, those on the bottom emphasize the interactions that stabilize each fold. 

(c) Left: Structure of a valine amino-acyl-tRNA synthetase (ValRS) (light green) bound to 

cognate tRNA (cyan) (PDB: 1GAX). Right The model of the TYMV TLS (orange) bound to 

ValRS (light green) made by aligning the TLS to the tRNA’s T-loop and stem regions. (d) 
Left: Structure of EF-Tu (bacterial homolog of eEF1A) bound to a tRNA with the protein in 

light brown and the tRNA in cyan (PDB: 1TTT). Left: Model of the TYMV TLS bound to 

the protein made by aligning the TLS with the tRNA’s by the T-loop and stem regions.
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