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Abstract

This study assesses two alternative approaches for investigating linear and non-linear lagged 

associations in environmental time series data, comparing through simulations simple methods 

based on moving average summaries with more flexible distributed lag linear and non-linear 

models. Results indicate that the latter provide estimates with no or low bias and close-to-nominal 

confidence intervals, even for long-lagged associations and in the presence of strong seasonal 

trends. Moving average models represent a viable alternative only in the presence of relatively 

short lag periods, and when the lag interval is correctly specified. In contrast, the use of moving 

averages to roughly approximate long and complex lag patterns, or the specification of an interval 

different than the actual lag period, can result in substantial biases. More flexible approaches 

based on distributed lag linear or non-linear models provide noteworthy advantages, in particular 

when complex lagged associations are assumed.
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Introduction

Relationships between environmental factors and various health outcomes are sometimes 

characterized by lag patterns,1–4 and epidemiologists have proposed a number of modelling 

approaches to account for this additional complexity in defining exposure–response 

associations.5–8 In particular, these methods are required in the presence of long lag 

periods, which have been previously reported in associations with cold temperatures,3,9,10 

and, to a lesser extent, air pollutants.11–14 However, there is little evidence on the 

comparative performance of alternative models, or on their sensitivity to assumptions about 

the shape of the lag structure or the length of the lag interval. In addition, recent published 

articles, specifically evaluating the health burden of cold temperature, have contended that 

part of the estimated associations can be due to the confounding effect of season, if long lags 
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are assumed.15,16 On the other hand, no empirical or well-grounded theoretical evidence is 

provided in support of these statements.

Clearly, the problem of modelling such phenomena has important implications in 

environmental epidemiology, and more generally in biomedical research. This contribution 

aims to address the issue through a simulation study on the comparative performance of two 

alternative methods for investigating lagged associations.

Modelling lagged associations

In environmental time series studies, the outcome, commonly daily mortality or morbidity 

counts, is usually compared with levels of environmental exposures in a Poisson regression 

allowing for overdispersion.17 This model represents the counts of outcome events yt at day 

t as:

(1)

The function g(t), usually a spline whose flexibility is defined by the number of degrees of 

freedom per year, controls for seasonal and long-term trends. Additional potential 

confounders zp showing day-to-day variability are controlled for through functions vp. The 

function s describes the association with the exposure of interest x measured over the lag 

interval ℓ = 0, … , L, with L as maximum lag.

Two main methods have been proposed to define s(xt,…, xt−L).

Moving average models

A simple approach relies on averaging the exposure over the lag interval. For linear 

exposure-response relationships, the parameterization reduces to the moving average of 

lagged exposures. Adopting some liberty in the algebraic notation, here and in equations 

below, with the exclusion of the model coefficients, the moving average can be computed as:

(2)

However, the definition is not straightforward when non-linear dependencies are assumed, 

and modelled through an exposure-response function f(x). In this case, the moving average 

can be defined in two alternative forms:

(3.1)
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(3.2)

The form in Eq. (3.1) applies the function f to the moving average of x, while the form in Eq 

(3.2) is the moving average of the values transformed by f. The latter is defined over the 

whole range of the observed data. The former, although being defined in a narrower range of 

x, as the extreme values are averaged out, is simpler to compute and frequently applied in 

environmental studies.9,15,18,19

Distributed lag linear and non-linear models

In an alternative and more advanced approach, the lag structure can be explicitly modelled 

through a lag-response function w(ℓ) expressed in the lag dimension ℓ, with the function s 
defined as:

(4)

This parameterization, applicable to describe linear lagged associations, is known as a 

distributed lag model (DLM), and simplifies to the moving average in Eq. 2 when w(ℓ) is a 

constant function. In its original development for econometric time series,20 and the 

following application in environmental epidemiology,5 a polynomial function was used to 

specify w(ℓ). A simpler alternative is represented by an unconstrained distributed lag model, 

where lag-specific effects are modelled by indicators for each lag. Further developments of 

the framework are detailed in recent publications. Specifically, these illustrate the use of 

alternative functions for modelling the lag response,21,22 the extension to non-linear 

exposure-response relationship,21,22 and the generalization beyond time series data.23 In 

particular, the non-linear extension to distributed lag non-linear models (DLNMs) is 

obtained by expressing the association through the combination of the exposure-response 

and lag-response functions. This combination produces a bi-dimensional exposure-lag-
response function f ∙ w(x,ℓ). In this case s, termed cross-basis function, is represented as:

(5)

Distributed lag non-linear models simplifies to the linear counterpart in Eq. 4 when f(x) is 

assumed linear, and to the second moving average form defined in Eq. (3.2) when the lag-

response function w(ℓ) is a constant term. In this contribution, I will refer generally to 

distributed lag models, pointing out if linear or non-linear when required. These models have 

been recently applied to study health effects of environmental factors.12–14,24,25
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Simulation settings

These alternative methods were comparatively assessed by simulating associations between 

air pollution and temperature with all-cause mortality, using real daily time series data from 

Chicago in the period 1987-2000.26 The data represent aggregated series and are publicly 

available, and therefore no ethical review was required. The simulated exposures were 

derived as the ozone series, standardized over the range 0 to 50 part per billion (ppb), and 

the temperature series, standardized over the range -20°C to 35°C. The baseline mortality 

was obtained as the predicted curve from the regression model fitting a natural cubic spline 

of time with 10 df/year to the real mortality series, thus simulating the complex seasonal 

trend represented in Figure 1.

The excess risk associated with the exposures was defined by scenarios of linear ozone-

mortality and non-linear temperature-mortality dependencies, assuming either short or long-

lagged associations. Specifically, the following scenarios were generated:

1. Linear short-lag scenario (Scenario 1): ozone is associated linearly with 

mortality over a short lag period, limited to 0-3 days.

2. Linear long-lag scenario (Scenario 2): ozone is associated linearly with mortality 

at longer lags, with the excess risk smoothly decreasing over the following 20 

days.

3. Non-linear short-lag scenario (Scenario 3): both hot and cold temperatures are 

associated non-linearly with mortality over a short lag period, limited to 0-3 

days.

4. Non-linear long-lag scenario (Scenario 4): temperature shows a non-linear 

relationship, with hot temperatures associated only with short lags as in Scenario 

3, and cold temperatures associated at longer lags, extended for up to 20 days 

with a peak at lag 4.

The four simulated exposure–lag–response surfaces, compatible with estimates previously 

reported in the literature,12,14,24,25,27 are illustrated in Figure 2. The mortality series in 

each replicate was simulated assuming a Poisson distribution with expectation equal to the 

baseline counts multiplied by the excess due to the risk of the exposure cumulated over the 

lag period. Technical details are provided in eAppendix 1 (Supplemental Digital Content).

Performance and inferential properties of the two approaches were compared by fitting 

regressions with the same splines of time used when simulating the data, and the following 

models for the associations with the exposures:

• Three moving average models, computed using the forms in Eq. 2 (in Scenarios 

1 and 2) and in Eq. (3.2) (in Scenarios 3 and 4), with lag periods of 0-3, 0-7, and 

0-20, respectively.

• A distributed lag linear (in Scenarios 1 and 2) and non-linear (in Scenarios 3 and 

4) model with the lag-response function w(ℓ) specified by a natural cubic spline 

with 3 knots equally spaced in the log scale, plus intercept, over lag 0-20.
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The non-linear exposure-response function f(x) for both the moving average models and the 

distributed lag non-linear model in Scenarios 3 and 4 was specified by a quadratic B-spline 

with 3 knots at the 10th, 75th and 90th percentiles of temperature distribution. These choices 

follow models applied in previous work.24

A set of sensitivity analyses was carried out to test the impact of alternative specifications of 

the function w(ℓ) in distributed lag models (with details provided below), and differences 

between moving average models adopting the two forms of moving average in Eq. (3). In 

addition, the impact of overdispersion was assessed by simulating data from a negative 

binomial distribution with overdispersion parameter 𝜙 = 1.3.

The simulation results are based on 5000 replicates, and are summarized in terms of bias 

(difference between the true simulated log-relative risk [log-RR] and average of its estimates 

across the replicates), coverage (percentage of times the confidence interval of the estimates 

includes the true log-RR) and root mean square error (RMSE, average across replicates of 

the squared difference between the true simulated and estimated log-RR). The latter can be 

interpreted as the sum of the bias and the imprecision of the estimator. These statistics are 

reported as the average across the curve representing the exposure–response association 

cumulated over the lag period. An algebraic definition is provided in eAppendix 2 

(Supplemental Digital Content).

The R scripts illustrating a simple example of simulation of the data and fit of the models, 

and then fully reproducing the results, are available at www.ag-myresearch.com.

Results

Figure 3 and Figure 4 demonstrate the good performance of the distributed lag models in 

recovering the lag-response curves corresponding to 10 ppb of ozone and -15°C and 30°C of 

temperature, respectively, simulated in the four scenarios and also represented as bold black 

lines in Figure 2. These findings are confirmed by Figure 5, which reports the average 

estimates of the overall cumulative exposure–response relationships. The graphs suggest that 

distributed lag models provide nearly unbiased estimates of the associations.

The panels of Figure 5 report also comparable estimates for moving average models with lag 

periods 0-3 and 0-20. The results suggest that the lag 0-3 model shows little bias in 

compatible short-lag scenarios (left panels), but, as expected, it considerably under estimates 

the excess risk when long lagged associations occur, namely with ozone in the top-right 

panel and with cold temperature in the bottom-right panel of Figure 5. The reverse occurs to 

the lag 0-20 model, with the left panels of Figures 5 indicating a strong downward bias in 

moving average models when the lag interval is extended further than the simulated lag 

period. Interestingly, in the non-linear long-lag scenario, moving average models show 

biases even when the lag period is correctly specified. The moving average model with lag 

0-7 shows an intermediate behaviour, as illustrated in eFigure 1. Results in eFigure 2 

indicate that the two forms of moving average defined in Eq. (2.1)-(2.2) provide almost 

identical estimates, although the latter is defined over the whole exposure range. The bias 

generated by the strong assumptions of moving average models about the shape of the 
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exposure–lag–response risk surface, compared to the flexibility of distributed lag models, 

are illustrated in eFigure 3.

Table 1 complements the illustration of the findings, comparing the inferential performance 

of the four models. Distributed lag models show the lowest bias and nominal coverage in 

both scenarios. In terms of root mean square error, the higher precision favours the moving 

average model with lag 0-3 in the short-lag scenario, but this is counterbalanced in the long-

lag scenario by the bias previously discussed. The extension of the lag interval of the moving 

average to 0-20 shows no improvement, as this model provides less precise estimates 

without eliminating the bias. All moving average models are also affected to some extent by 

under coverage, which is very pronounced in scenarios with non-linear relationships.

Results of the sensitivity analysis are summarized in Table 2, and can be compared with the 

main results reported in Table 1. The simplification of the function w(ℓ) of distributed lag 

models in short-lag scenarios, either by using an unconstrained parameterization over lag 

0-3 or by reducing the number of knots to 2 over the lag period 0-7, substantially increase 

the precision of the estimates, with root mean square error comparable with the moving 

average lag 0-3 models (Analyses 1-4). The different specification of w(ℓ) in long-lag 

scenarios, using two or four knots, does not seem to affect the estimates (Analyses 5-6). The 

presence of overdispersion, if modelled through a quasi-Poisson family, slightly decrease 

precision but does not introduce biases in distributed lag models (Analysis 7). Results of the 

sensitivity analyses are reported graphically in eFigure 4.

Discussion

This simulation study compares alternative approaches to model epidemiologic associations 

characterized by lag patterns. Results indicate that standard methods based on moving 

average models can introduce important biases, in particular in the presence of extended lag 

periods. In contrast, more flexible methods based on distributed lag models appropriately 

account for lagged dependencies, with no or minimal bias in point estimates and confidence 

intervals.

The framework of distributed lag models has the advantage of offering a direct 

representation of the lag structure, through lag-response relationships estimated by the data. 

This extra dimension provides additional information on the phenomenon under study. 

Results in Figures 3–5 and Table 1 demonstrate that these models can correctly retrieve the 

underlying association, summarized as overall cumulative (net) risk or as lag-specific 

contributions, even when the lag interval is extended well beyond the true lag period. 

Simpler methods based on moving average models represent a viable alternative only in the 

presence of relatively short lag periods and when the lag interval is correctly specified. 

Conversely, the application of moving average models to roughly approximate long and 

complex lag patterns, or the extension of the moving average beyond the actual lag interval, 

can result in substantial biases, in particular when modelling non-linear relationships.

The inflexible specification of the lag structure is the main reason why moving average 

models are outperformed by distributed lag models. As mentioned above, the former can be 
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interpreted as special cases of the latter in which the lag-response function w(ℓ) is defined as 

a constant. This definition implies the strong assumption that all the exposures experienced 

within the lag interval equally contribute to the overall cumulative excess risk, as 

demonstrated in eFigure 3 (Supplemental Digital Content). In contrast, flexible 

specifications within the distributed lag modelling framework allow more realistic lag 

structures, when for instance more recent exposures are associated with higher lag-specific 

excess risks if compared to more lagged exposures.

In the simple scenario describing a situation in which the lag interval is short and correctly 

specified, moving average models benefit from a higher precision in the estimates, which 

can avoid artifactual interpretation of the results. However, it should be noted that alternative 

and more efficient specifications of the lag-response function w(ℓ), obtained for instance by 

reducing the lag interval and/or by selecting simpler functions, are available within the 

distributed lag modelling framework. These alternative choices for the lag-response 

function, illustrated in the sensitivity analysis, improve the performance of the distributed 

models in simpler scenarios by increasing the precision, without introducing biases in point 

estimates and confidence intervals. It should be acknowledged, however, that the flexibility 

of the distributed framework presents the additional complexity of selecting bi-dimensional 

exposure–lag–response functions, if compared to unidimensional moving average models. 

The choice can be based on evidence from previous studies, as in the examples above, or on 

existing selection methods (such as the Akaike information criterion) proposed in 

methodologic publications.22,23 Furthermore, model selection in distributed lag models is 

an issue of current research, and future developments are likely to provide improved 

selection criteria.

An important result of this simulation study is the provision of empirical evidence that the 

flexible modelling of the lag dimension is not affected by the presence of complex seasonal 

trends. These findings contradict claims, recently suggested in the literature,15,16 that 

increased mortality risks attributed to lagged associations with cold temperature are partly 

due to confounding effects by season. This simulation study demonstrates that complex 

exposure–lag–response associations can be effectively disentangled from strong seasonal 

trends.

In conclusion, this study provides some guidance on the use of alternative methods to model 

lagged associations, identifying limitations of standard approaches and advantages of recent 

and more flexible methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Baseline mortality trend as death counts showing the complex seasonal and long-term 

patterns simulated using real daily time series from London in the period 1993-2006.
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Figure 2. 
Simulated exposure-lag-response surfaces as relative risk (RR) in four scenarios describing 

the linear association between ozone and mortality and the non-linear association between 

temperature and mortality, each characterized by short and long-lag patterns. The bold lines 

represent lag-response relationships at 10 ppb of ozone and at -15°C and 30°C of 

temperature.
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Figure 3. 
Lag-response relationships as relative risk (RR)at 10 ppb of ozone in the linear short-lag 

(left column) and linear long-lag (right column) scenarios, estimated by the distributed lag 

model (DLM). The curves represent the real simulated relationship (continuous black lines), 

the average of the estimated relationship across 5000 replicates (dashed red lines), and a 

sample of the estimated relationship in 20 replicates (continuous grey lines), respectively.
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Figure 4. 
Lag-response relationships as relative risk (RR)at 30°C (top row) and -15°C (bottom row) in 

the non-linear short-lag (left column) and non-linear long-lag (right column) scenarios, 

estimated by the distributed lag non-linear model (DLNM). The curves represent the real 

simulated relationship (continuous black lines), the average of the estimated relationship 

across 5000 replicates (dashed red lines), and a sample of the estimated relationship in 20 

replicates (continuous grey lines), respectively.
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Figure 5. 
Overall cumulative exposure-response relationships as relative risk (RR)estimated by the 

distributed lag (DL) models and two moving average models with lag 0-3 and 0-20 (MA0-3 

and MA0-20). The graphs represent the linear association with ozone (top panels) and the 

non-linear association with temperature (bottom panels) in the short-lag (left panels) and 

long-lag (right panels) scenarios. The slopes represent the real simulated relationship 

(continuous black lines) and the average of the estimated relationship across 5000 replicates 

(dashed lines, with different colours and patterns depending on the model).
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Table 1

Bias, coverage of 95% confidence intervals and root mean square error (RMSE), reported for the distributed 

lag linear (DLM) and non-linear (DLNM) model and for moving average (MA) models with different lag 

intervals (0-3, 0-7, and 0-20), in four alternative simulated scenarios. An algebraic definition of bias, coverage 

and RMSE is provided in eAppendix 2 (Supplemental Digital Content).

Model Linear short-lag scenario Linear long-lag scenario

Bias (x100) coverage RMSE (x100) Bias (x100) coverage RMSE (x100)

DLM 0.03 0.95 2.81 0.05 0.95 2.77

MA0-3 0.22 0.94 0.99 4.92 0.00 5.00

MA0-7 0.49 0.94 1.44 1.87 0.70 2.28

MA0-20 1.16 0.94 3.02 0.10 0.95 2.75

Non-linear short-lag scenario Non-linear long-lag scenario

Bias (x100) coverage RMSE (x100) Bias (x100) coverage RMSE (x100)

DLNM 0.43 0.94 3.42 0.62 0.94 3.38

MA0-3 0.76 0.89 1.47 7.33 0.27 7.54

MA0-7 1.68 0.84 2.38 3.34 0.50 3.73

MA0-20 3.06 0.84 4.55 1.95 0.89 3.89
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Table 2

Bias, coverage of 95% confidence intervals and root mean square error (RMSE), reported for distributed lag 

linear (DLM) and non-linear (DLNM) models, in sensitivity analyses using different model specifications in 

various scenarios. Modelling choices are those defined in the main simulation analysis, with reported changes.

Scenario Model Bias (x100) coverage RMSE (x100)

Analysis 1 Linear short-lag Unconstrained DLM, lag 0-3 0.01 0.95 0.98

Analysis 2 Linear short-lag DLM, w(ℓ) with 2 knots over lag 0-7 0.00 0.95 1.37

Analysis 3 Non-linear short-lag Unconstrained DLNM, lag 0-3 0.41 0.92 1.34

Analysis 4 Non-linear short-lag DLNM, w(ℓ) with 2 knots over lag 0-7 0.42 0.94 1.76

Analysis 5 Non-linear long-lag DLNM, w(ℓ) with 2 knots 0.99 0.94 3.44

Analysis 6 Non-linear long-lag DLNM, w(ℓ) with 4 knots 0.59 0.94 3.38

Analysis 7 Non-linear long-lag, with overdispersiona DLNM with quasi-Poisson family 0.62 0.94 3.85

a
Simulated using a negative binomial distribution with overdispersion parameter 𝜙 = 1.3
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