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Abstract

The analysis of walking behavior in a physical activity intervention is considered. A Bayesian 

latent structure modeling approach is proposed whereby the ability and willingness of participants 

is modeled via latent effects. The dropout process is jointly modeled via a linked survival model. 

Computational issues are addressed via posterior sampling and a simulated evaluation of the 

longitudinal model’s ability to recover latent structure and predictor effects is considered. We 

evaluate the effect of a variety of socio-psychological and spatial neighborhood predictors on the 

propensity to walk and the estimation of latent ability and willingness in the full study.
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1 Introduction

US national guidelines indicate substantial health benefits for adults who participate in at 

least 150 min of moderate physical activity (PA) each week.1 Despite the well-documented 

benefits of regular PA, data indicate that over half of all adults in the United States are not 

meeting national recommendations and are therefore at increased risk for developing obesity 

and chronic diseases.2 Perhaps even more troubling are the drastic disparities found in PA 

among minority groups. Recent statistics show that physical inactivity is more prevalent 

among African-American men and women2 and that PA declines with increasing age.3 

Given that African-American adults experience higher rates of obesity and chronic 

diseases,4 identifying determinants of PA among older, underserved (low-income, ethnic 

minority) populations is a high priority.
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A social ecological framework5–7 was used to develop a community-based intervention and 

walking program to promote walking in low income, high crime communities. The Positive 

Action for Today’s Health (PATH) intervention targeted three communities in South 

Carolina with the aim of conducting an efficacy trial to increase access and safety for 

walking on neighborhood walking trails.6–8 This intervention is a result of an NIH-funded 

community intervention study. One important endpoint of the study was defined as days of 

walking activity in the full intervention walking program, which received police support and 

social marketing grassroots efforts to support the neighborhood walking trail program. A 

secondary aim of the study was to assess individual- and community-level factors involved 

with initiation and maintenance of walking activity over 2 years.

Three communities were identified and matched on crime rates, poverty rates, PA levels, and 

percent minorities.7,8 Each community was randomized using a computer-generated 

randomized allocation sequence to receive one of three interventions: an intervention that 

combined a police-patrolled walking program with a social marketing intervention (full 

intervention), a police-patrolled walking program only, or no walking-related intervention 

(general health education only). The randomization was done by an independent statistician 

who was not connected to the trial. The trial design, power and sample size calculations are 

detailed elsewhere.7 The study was powered for detecting an average difference in change in 

moderate to vigorous physical activity from baseline to post-test of 8 min per day using 

accelerometer estimates. Eighty percent power was estimated with a sample size of 100 

participants per community. Inclusion criteria included: (1) African-American, (2) age 18 

years or older, (3) no medical condition that would limit participation in moderate intensity 

exercise, (4) residing in the defined census areas, (5) availability to participate in the 

evaluations and intervention over the study period, and (6) blood pressure (systolic <180mm 

Hg/diastolic <110mmHg) and blood sugar levels (<300 non-fasting mg/dL, ≤250 fasting mg/

dL). The focus of this analysis is on the 133 participants who participated in the full 

intervention community.

A previous analysis considered individual-level motivator’s contributions to whether 

individuals walked at least once during the first year of the intervention and controlled for 

unmeasured community level variables through correlated and uncorrelated random spatial 

heterogeneity effects.9 This cross-sectional analysis was limited in that it could not consider 

the dynamic process that underlies an individual’s decision to begin and continue walking. 

We report here secondary data analysis that examines methods for incorporating different 

data sources for dynamically modeling walking behavior over time.

Comprehensive longitudinal data were recorded for individuals at up to four measurement 

periods over a 2-year interval. Additionally, daily logs were used to document information 

on attendance and walking behavior in the program, but reasons for failure to attend the 

walks were ambiguous (for example, individuals who moved out of the area were not able to 

participate in the program but may have participated had they not moved). The method 

proposed in the present study combines information at different orders of resolution—data-

rich, information-poor daily walking records and data-poor, information-rich subject level 

data collected at four discrete time points—to retain the unique strengths of both data 

sources. Further, the use of a latent interaction construct enables investigators to assess the 
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treatment effect in individuals with potentially insurmountable barriers to participation 

separately from those without barriers.

The PATH full intervention integrated principles from ecological and social marketing 

perspectives to development of a social marketing campaign that targeted improving 

perceptions of safety, access, psychosocial and social environmental barriers related to 

walking among residents living in low-income, high crime communities.7 Off-duty police 

were hired to patrol the trail during regularly scheduled walks (once daily, 6 days per week) 

for both trail communities. Guided by the community steering committee, a grassroots 

approach to social marketing was developed to motivate residents to use the identified 

walking path as part of the intervention program and to walk regularly with others in their 

communities, to increase PA and improve health.

Our approach to addressing these aims for the PATH intervention assumes a Bayesian 

longitudinal model for individual walking participation with linked dropout process.10–12 In 

addition, we also consider a linked joint model for total walkers at each observation point. 

Further, within our longitudinal model we account for latent structures that address the 

ability and willingness of participants to take part in the PA intervention. While longitudinal 

analysis of walking behavior is common in PA research,13 there are few examples of latent 

and joint modeling of the kind proposed in this paper. The structure of this paper is as 

follows: first, we introduce the intervention and its form. Second, we consider the latent 

structures that possibly exist in this study, followed by the predictor variables of interest. 

Third, we consider individual level models in detail and with time dependent predictors. 

Fourth, a simulation study is presented to evaluate the effects of latent variable assumptions. 

Finally, we examine the modeling scenarios with the real PATH data and present potential 

implications for PA and health disparities experienced by African American adults.

2 Introduction to the intervention

The PATH trial, conducted from 2008 to 2010, was designed to examine a 24-month 

environmental intervention for increasing PA and walking trail use in underserved 

communities. Assessments were conducted within each of the three communities at baseline, 

12-, 18-, and 24-months. To aid in participant retention, investigators also “checked-in” with 

participants at 6 months when dropout was assessed. The focus of this paper is on the 

longitudinal walking process in the full intervention community who received a social 

marketing plus police supported neighborhood-walking program.

Two recruitment strategies were employed. First, participants were actively recruited from a 

random list of households in the census tracts that were targeted in this trial. Recruitment 

letters were mailed to each participant and each household received a follow-up phone call 

and/or personal visit from a community steering committee member. Approximately 54% of 

the sample was actively recruited from the random phone lists. Second, participants were 

recruited through volunteer advertisements. In all three communities, flyers were distributed, 

ads were placed in the local newspaper, and posters and banners were put up in churches, 

schools, and at local businesses in each community. A total of 434 participants were 

recruited for the project, including 133 participants in the full intervention community. 
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Inclusion criteria included: (1) African-American (three of four grandparents of African 

heritage), (2) age 18 years or older, (3) no plans to move in the next 2 years, (4) no medical 

condition that would limit moderate intensity exercise including life-threatening illness, (5) 

residing in a targeted census tract, (6) available to participate in the evaluations over the 

study period, and (7) controlled blood pressure and blood sugar levels. Enrolled participants 

completed informed consent and attended biannual health screenings during which they 

completed anthropometric and psychosocial measures.

3 Latent population structure

Due to the mechanisms of recruiting individuals, our population potentially represents a 

range of participant investment in the study. For example an individual recruited through 

phone contact may agree to participate due to convenience, whereas a participant recruited 

by the fliers may have shown an active interest. Conversely, failure to observe an individual 

participating in the PATH walking program may have been because the conditions were such 

that the intervention was unsuccessful, that the individual would not participate regardless of 

the situation, or that the individual was lost to follow-up. As such we are characterizing the 

population using a hidden Markov model, which postulates that there is some underlying 

structure in the data that cannot be observed. Moreover, we can structure it such that 

individuals can move in and out of these defined states over time.

For the purposes of this study we will describe participants using two latent constructs, 

where an individual is grouped into one of four quadrants defined by two axes as described 

in Figure 1. First, an individual is either able or unable to participate (first latent construct), 

where we consider an individual able if they are not lost to follow up and unable if we 

presume that moving, health, or other circumstances have prevented the individual from 

responding in the study. Second, an individual is either willing or unwilling (second latent 

construct), where we assume that a willing individual will utilize the walking path and an 

unwilling individual will not utilize the walking path. In this way we can characterize factors 

important for intervention as those that yield a high probability for the hidden willing state 

of the individual to engage.

3.1 Variables

Due to the diversity of information available as part of the study, variables can be defined as 

available at the individual level, available at the block group level, or available at the 

walking level. For the purposes of this modeling exercise we will only consider the 

individual level variables; however, in section 4 we discuss how other types of variables can 

be integrated into the analysis.

Individual level variables include demographics (e.g. sex, age, height, weight, education, 

marital status, income, employment, and distance to trail) and psychosocial variables (e.g. 

family social support, friend social support, neighbor social support, perceptions of access 

for walking, perceptions of crime, neighborhood social life, self-efficacy for PA). All 

variables were collected at baseline, 12-, 18- and 24-months. Any values that are missing are 

assumed to be missing completely at random (MCAR) and imputed using the mean of all 

continuous responses or the response with the highest frequency for categorical. Previous 
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studies support the fact that using full imputation versus other methods does not change 

interpretation,9 and Figure 2 illustrates the missing present per variable. However, it should 

be noted that if the individual is missing data because they have been lost to follow-up 

(Latent Group: Unable) it is possible that the data is missing not-completely at random 

(NCAR), and further that it is possible that an individual has been lost to follow-up but still 

participates in the walking intervention (i.e. not within the scope of a zero-inflated Poisson 

model). It is beyond the scope of this study to consider how to handle missing data, but the 

authors recommend that sensitivity analysis be performed and future work will consider 

appropriate methods for handling NCAR data associated with the latent construct.

3.2 Individual level models

The observed behavior, participation in walks, is a function both of an individual’s 

willingness to walk and availability to participate in the program. An interaction model 

allows investigators to identify modifiable risk factors of an individual’s willingness to walk, 

compare the probability of walking in individuals who are available but unwilling to walk 

versus individuals who are available and willing to walk, and identify whether it is of greater 

intervention interest to focus efforts on increasing willingness to walk or ability to walk 

(defined as the relative difference in walking probability between the four strata).

Assume that there are N participants of which Nw are walkers. We have data on walking 

history for the Nw walkers. The sequence of walks an individual takes is a point process in 

time. However,

(1)

The probability of walking is modulated at the latent level by the combined factors of 

whether an individual is willing and able. These in turn are affected by individual level 

effects. As such we characterize our individual level model as follows

(2)

In this model, the first level of the hierarchy (1) models the probability pij of the ith 

individual walking on the jth walk. Next in equation (2), we assume that this probability has 

an underlying hidden Markov state model,14 which accounts for an individual’s willingness 

ω1ij and ability ω2ij to participate. Note that for this we believe there is an interaction 

between these terms, such that the effect of someone willing and able to walk is not additive.

(3)
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(4)

(5)

The first component ω1ij has two states and as such we model the probability that an 

individual is in the willing state. For this, we specify the probability that someone is willing 

at the first walk, π1 (3), after which we model the probability that someone is willing to 

walk, conditioned on their willingness state in the previous walk, θ1ij (4). Note that this 

probability changes for each person and each walk. Moreover, this probability (5) depends 

on the willingness at the previous walk ω1i(j−1), as well as individual-specific covariates zij 

(e.g. age, gender, height) that are allowed to vary over time. To model the covariate over 

time, the covariate at each visit is weighted, αti(see section 4 for details), and a single 

coefficient ηi is estimated. These effects are modeled through a logit link and thus, odds 

ratios can be reported.

For the second component, ability (ω2ij), we cannot observe the exact time at which an 

individual chooses to no longer participate in the walking program. Instead, we assume that 

this is predicted by failing to participate in a follow-up visit. To model the exact time of 

dropout, we assume that the latent component is a function of the individual’s dropout time 

( tĩ), where an individual’s baseline ability to walk is modified by whether the ith individual 

has dropped out of the study by the jth given walk (6). However, since we only observe 

dropout at 12-, 18-, or 24- month assessments, we must impute the censoring time, t̃i using 

an interval censored Weibull model l (7) where t̃i,U is the follow-up visit where dropout 

occurred and tĩ,L is the penultimate visit. In the following equation (6), a+b represents the 

coefficient for ability before a subject has been censored, and a represents the coefficient for 

ability after a subject has been censored.

(6)

(7)

4 Time-dependent covariates

For this study, an additional complexity is the fact that predictors are only measured at 

discrete time points with many walks occurring during the intervening time period; thus for 

each covariate measured at baseline, 12-, 18-, and 24-month assessments, there is a need to 

define an individual’s state at unobserved intermediate time points. We expect that the 

behavior in these windows will be largely defined by the observed measurements recorded 
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before and after. However, we also expect there to be some error both in terms of recall and 

measurement.

Consider for instance that a subject is employed at baseline but unemployed at the 12-month 

assessment. The question arises of how to associate the employment variable with a walk 

occurring at 6 months. For this study we make the assumption that an individual’s state for 

the current walk most closely resembles the state of the temporally most proximal visit. 

Thus, for continuous variables an individual’s state at a given walk was determined by a 

weighted average (8) of the observed state for the previous (T0) and subsequent (T1) future 

visit/assessment (e.g. if a participant scored 0% on the self-efficacy scale at baseline and 

100% on the self-efficacy scale at the 12-month assessment, then self-efficacy at walks 

occurring at 90, 180, 270 days after baseline would be associated with self-efficacy scores of 

25%, 50%, and 75% respectively):

(8)

For nominal variables, the value for a given walk was defined based on the closest 

assessment period (e.g. 3 months would use the baseline measure, 9 months would use the 

12-month assessment measure). It should be noted that because the four time point measures 

are not evenly spaced, for both continuous and nominal variables, this weighting scheme 

implies that the four measurements will be used for different amounts in the analysis with 

baseline affecting 25% of the walks, Month 12 affecting 37.5% of the walks, Month 18 

affecting 25% of the walks and Month 24 affecting 12.6% of the walks. This also has 

implications in terms of missing data since the amount of missing data may differ between 

follow-up visits. In addition, at each follow up, it is recorded whether the participant was 

available, and if the participant was lost to follow up the reason participation was terminated, 

when available. Since the model is generating estimates as though there were j 
measurements for an individual variable rather than a maximum of 5 measurements, where j 
is much larger than 5 (j≫>5), further simulations are necessary to assess whether the latent 

model appropriately measures the variance or whether the high correlation in measurements 

leads to an underestimate of the variances.

5 Computational considerations

In both the following simulation and the application to real PATH data we have considered 

the full joint posterior distribution of the individual level logistic longitudinal model jointly 

with the Weibull dropout model. We considered approaches to posterior sampling of this 

joint model. The full conditional distributions for the parameter set θ: {s, r, a, b, α, β, ω, γ 
…} are not all available and so Metropolis updates were performed for the relevant 

parameters. We used a log concave adaptive rejection sampler without fixed effect blocking. 

An adaptive phase of 4000 iterations was used. Convergence was assessed using multiple 

chain diagnostics (Brooks–Gelman–Rubin statistic: R̂). Convergence was achieved among 

the simulations with a burnin of 10,000 iterations. Subsequent samples were of varying size 

based on the number of effective parameters. For application to the real PATH data, 
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convergence was achieved with a burnin of 8000 iterations, and the subsequent samples were 

of size 2000. We used a similar strategy when we introduced the joint total walkers model as 

described in section 7.1.

6 Simulated evaluation

Through simulation, we aim to assess the model’s ability to correctly recover an estimate of 

the coefficient for three key types of covariates: a constant dichotomous variable, a constant 

continuous variable, and a time-varying continuous variable. Note, we do not consider a 

time-varying categorical variable.

6.1 Variables

For the simulations, we use the model as specified in section 3.2 with the following 

assumptions and modifications. Due to computational time constraints and ease of model 

performance assessments, we consider two simple cases: a primary case with 40 

participants, 10 walks, and 2 assessment visits occurring at walks 5 and 10, and a secondary 

case with 20 participants, 40 walks, and 4 assessment visits occurring at walks 10, 20, 30, 

and 40. Further we believe that the inclusion of additional data, as is the case in our observed 

PATH results, will only enhance the model’s ability to recover accurate estimates of the 

latent constructs.

For the latent willingness component of the model, we set the probability that someone is 

willing at the first walk, π1=0.70 (see equation (3)). Setting this probability simply means 

that we have fixed the probability an individual is willing to walk on the first walk; 

sensitivity analysis has shown that this does not have a large impact on the resulting 

parameter estimates. For each subsequent walk we model the probability as a function of the 

previous walk, and covariates (5). For the covariates, we consider three models of increasing 

complexity: model one that includes dichotomous variable only, model two that includes a 

dichotomous variable and a continuous variable, and model three that includes a 

dichotomous variable, a continuous variable, and a time-dependent continuous variable. 

Model three is the only model present in the secondary case since it is the most complex and 

presents the best estimates overall in the primary case; the secondary case used for the 

purpose of verification. The distribution of the constant dichotomous variable is modeled 

after the observed distribution of sex, and assumed to be distributed such that there is 1 male 

for every 4 females. The distribution of the constant continuous variable is modeled after the 

observed distribution of age, and assumed to be fixed as the first 15 participants being aged 

55, the next 10 being aged 60, and the last 15 being aged 65. The distribution of the time-

varying continuous variable is modeled after the observed distribution for social life, and the 

baseline measure is assumed to be normally distributed with mean 15 and standard deviation 

5. The assumed distribution for the follow up social life values, after walk 5 and 10, is 

normal with the previous measure as the mean and a standard deviation of 2. Next, a 

weighted average of the three measurements was calculated for each participant on each 

walk as follows
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(9)

The secondary case’s social life variable was calculated similarly weighted over the 4 

assessment times rather than only two seen in the primary case. These three types of 

variables cover the range that we wish to explore through the simulation phase of analysis. 

Using these data together with the censoring information, we are able to derive ω1, ω2, and 

the probability of an individual walking on a specific walk. Finally, for each simulation, we 

model the probability of an individual walking on a specific walk as a Bernoulli random 

variable with probability derived from the lower levels of the hierarchy.

For the latent ability component of the model, we assume that for the first walk all 

individuals are enrolled in the study. For each subsequent walk, t̃i the dropout time is defined 

such that if the participant has not yet dropped out, the probability of dropping out at this 

time is dependent on their willingness and ability. This dropout time is determined 

ultimately by the specification of the lower censoring variable. We set this variable such that 

there is a 10% (n=4) chance of dropping out between both times 1 and 5 as well as times 5 

and 10. Based on the value of the lower censoring variable, we define the upper censoring as 

the subsequent follow-up visit (e.g. if the lower censoring value is 1, the upper censoring 

value is set to 5). We set the observed censoring time as the final follow-up visit (e.g. 10) for 

those individuals who complete the study, and missing for those that have been censored to 

allow the model to impute an exact date within the censoring boundaries (i.e. dropout = 

It̃i=tj|tj−1 ~ Bernoulli(0.818) where I is an indicator function).

The simulation consists of 30 samples each run for 100,000 total MCMC iterations 

including a burn in of 20,000 iterations for a total sample size of 80,000 observed iterations. 

To assess whether this model can be used to accurately recover parameters for use in 

analyses of real data, the results consider the following performance metrics.

6.2 Assessing the effect of the time weighting scheme and coefficient recovery

To assess the model’s ability to recover the true mean value we report posterior mean 

estimates from the 30 simulations per each model. To recover the correct mean estimate, we 

ran the simulation until r̂ reached a converging value of 1. Overall, we have been able to 

recover the correct mean estimate since the true values do exist in 53% of the confidence 

intervals between the three models in the primary case and 50% for only model three in the 

secondary case. As far as recovering the variance is concerned, we assume that 

underestimation is likely due to the structure of the simulation. Further, as we have fixed the 

latent intercept (γ1 = −1.5), it is important to note that any time a value is fixed in place of 

one that truly varies, the variance will be lowered.

Table 1 displays the results from the simulation. Overall, the 95% credible intervals of the 

estimates contain the true value 53% (n=8) of the time for the primary case and 50% (n=3) 

in only model three for the secondary case. When comparing the models in the primary case, 

recovering the latent parameters proves to be the most difficult, with model three showing 
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the best performance since 67% (n=2) of the parameters confidence intervals contain the 

true value compared to 0% (n=0) in each of the other models. Although, model three returns 

a confidence interval containing the true value most often, a second metric—the difference 

in the predicted mean value compared to the true mean value, would suggest that model one 

performs best for constant dichotomous predictors. Model three in the secondary case seems 

to perform better for the predictors rather than the latent parameters. Note that the mean 

deviances are not comparable from case to case because different data is used. Figure 3 

shows a comparison of the variance and bias for model three in the primary verses secondary 

cases. This illustrates that the two cases behave similarly to this respect though the variance 

appears slightly better for the secondary case while the bias is slightly better in the primary 

case.

These results suggest that the inclusion of covariates and especially time-varying covariates 

lead to better recovery of true estimates when modeling real data; however, care must be 

taken as models for real data are likely to be more complex than the examples considered 

here. In particular, the model suggest that the recovery of each of the three types of 

predictors do not present an issue, though the variance is most likely underestimated as 

mentioned previously. The latent parameters, on the other hand, are difficult to properly 

estimate. These results demonstrate that the latent variables are best estimated when all three 

types of predictors are included in the model. Throughout all of the models, though, we see 

that observed predictors are consistently and accurately recovered. Each of the models 

produces confidence intervals that include the true predictor value, but we show the most 

difficulty producing a narrow interval for the parameter estimate associated with the constant 

dichotomous predictor especially as we add more predictors.

In assessing the model fit for the individual predictors and latent components, a model is 

considered to be successful if a reasonable size credible interval is produced containing the 

true value. Overall, we considered the simulations a success if 40% of the posterior averages 

produced confidence intervals that included the true value. The simulations demonstrate that 

we have been successful in recovering the true parameter when our Bayesian posterior 

estimation method is employed, though further simulation is needed to assess whether the 

model is successful in recovering a variance not inflated by overestimation from “generating 

multiple visit measures”.

6.3 Assessing the effect of assuming informative censoring

For the model specified by equation (7) we have data for whether a participant was lost at a 

future assessment at each of the time points (12-, 18-, and 24-months). In order to estimate 

the exact date when a participant decided to no longer participate in the study we had to 

either fully specify the functional form of the Weibull dropout distribution or we had to 

specify the hyperprior distributions. For instance, theory and past experience may suggest 

that most individuals commit to quitting the study within days of completing an assessment 

visit. In this scenario, a distribution which is right-skewed may be appropriate. Conversely, if 

most participants only decide to quit when there is an assessment visit imminently scheduled 

a left-skewed distribution may be more representative.
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If data were collected that could help predict the precise dropout time the appropriate model 

would specify uninformative hyperpriors, which in turn would allow the data to specify the 

distribution. In our scenarios, the data was not informative enough and this approach did not 

lead to converged model estimates. Similarly, literature on the functional form of dropout 

times is sparse. As a result, we considered functional forms, that included either specifying 

the shape and scale parameters directly or specifying appropriate hyperpriors and evaluated 

the sensitivity of the model to our assumptions. The final model was fit using a Weibull 

distribution with shape and scale parameters of one and five respectively, implying that 

walkers typically dropout later in the interval (i.e. closer to the observed missing visit). The 

latent intercept, γ1, indicates the probability of an individual walking when he/she is neither 

willing nor able. For the real PATH data models, we have set γ1 ~ Uniform(−1.6, − 1.4). 

This suggests that when a participant is neither willing nor able to walk, the probability of 

them actually walking is logit−1(−1.5)=0.182. The simulation results were handled similarly 

for the latent intercept because we set γ1 = −1.5. For the time of censoring variable, though, 

all participants that complete the study have a value of 10 while the censored subjects 

receive “NA”. The participants that dropout must have values initialized as we are 

attempting to guess when during the time period they actually dropped out.

7 Application to the PATH participation data

We now consider the application of this modeling approach to data collected for the PATH 

trial consisting of 133 participants and 798 scheduled walks. In addition to the latent 

parameters discussed above, we include the following covariates to predict an individual’s 

willingness to walk. Sex and age are included as constant dichotomous and continuous 

predictors respectively. For time-varying predictors we include distance the respondent lived 

from the trail, crime perception, efficacy, and social life, modeled as continuous, and 

education (≤12 years vs. >12 years) and income (>US$10,000/year vs. >US$10,000) 

modeled as dichotomous.

Table 2 presents the converged posterior estimates following a burn-in of 8000 iterations, 

and a final sample of 2000 iterations. We assessed convergence based the R̂ measure using 

the built in BGR plots in WinBUGS with a value close to 1 for the majority of the 

parameters over the converged sample. This model estimates the probability of an individual 

walking using latent variables to associate the walking probability to ability and willingness 

as well as other descriptive covariates. The log odds of a female being willing to walk is 

1.204 less than that of a man being willing to walk. For every one year increase in age, the 

log odds of an individual being willing to walk decreases by 0.096 (95% OR −0.105, 

−0.088). For participants with more than 12 years of education, the log odds of an individual 

being willing to walk increases by 0.289 (95% CI 0.264, 0.365) compared with those who 

had 12 or fewer years. For individuals with an income greater than US$10,000, the log odds 

of an individual being willing to walk increases by 0.108 (95% CI 0.080, 0.140) compared 

with those whose income is less than or equal to US$10,000. For every one mile increase in 

distance, the log odds of an individual being willing to walk increases by 0.316 (95% CI 

0.224, 0.409). For every one unit increase in crime perception, the log odds of an individual 

being willing to walk is not significantly different (95% CI −0.029, 0.133). For every one 

unit increase in efficacy, the log odds of an individual being willing to walk increases by 
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0.207 (95% CI 0.206, 0.209). For every one unit increase in social life, the log odds of an 

individual being willing to walk decreases by 0.537 (95% CI −0.558, −0.518).

An individual’s walking ability is determined by a and b such that after an individual is 

censored, the log odds of an individual being able to walk increases by 4.829 (95% CI 4.106, 

5.69). Before censoring, the odds of an individual being able to walk are −1.854 (95% CI 

−2.00, −1.56). The components γ1, γ2, γ3, and γ4 directly associate the individual’s ability 

and willingness to the probability of walking. When an individual is neither willing nor able 

to walk, the log odds of walking is −1.592 (95% CI −1.6, −1.572). For those willing, the log 

odds of an individual walking increases by 2.071 compared to those unwilling, when there is 

no change in ability. For each one unit increase in ability, the log odds of an individual 

walking increases by 1.992 when there is no change in willingness.

7.1 Total walker modeling

In our original models, we only considered the longitudinal behavior of the individual 

walkers without reference to the participation rate at walks. The PATH study also has 

recorded the total numbers of walkers at each walking event, including those members of the 

community not enrolled in the longitudinal study. The total count of walkers can also be 

thought to relate to the potential behavior of individual walkers, either as immediate or 

lagged encouragement or as a measure of enthusiasm within the community. Denote the 

walker count at the jth walk as  and we assume that this has a Poisson distribution as 

 and we assume a log link to a linear predictor of the form . 

Here the predictors in  can represent walk-specific effects (such as weather variables, time 

of day, etc.). Table 3 displays the results of fitting such a model jointly with the longitudinal 

and the Weibull dropout model. The same method of analyzing convergence is used here as 

well. Note that there is a common random effect between both the total walking model and 

the individual model to allow for a random intercept. This random effect is applied to the 

total walkers model with the linear predictor such that , and in the 

individual model it is added to the latent effect structure as logit( pij) = f (γ*, ω*ij) + rwj.

The joint model is then:

In the results cited here, we have simply described the total walkers via a random component 

and fixed intercept, as the focus is only on individual walking behavior and we consider the 

individual walking behavior to be conditioned on the total walker behavior. Hence, we do 

not seek to explain total walking via predictors.

8 Discussion and conclusions

Community intervention trials present several unique methodological and implementation 

challenges far beyond those commonly identified for controlled clinical trials. These include 
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balancing study goals and community goals, controlling for group dynamics as mediators of 

outcome success, and the involvement of individuals with limited previous experience in this 

area.15,16 Moreover, these studies often involve complex interventions that require 

specialized methods to account for the joint primary endpoints.17 Finally, for interventions 

that involved underserved or African-American communities, study recruitment and 

retention is often problematic and may result in biased results if the underlying cause is not 

considered.18–20 Specifically, for these studies it is often the case that no simple causal 

relationship exists, but rather represents a complex network of competing challenges many 

of which cannot be measured but rather inferred using latent psychological constructs.

There is a dearth of literature that addresses how to model the dynamic relationship between 

a measurable outcome and latent predictors, when both the predictors and outcome are 

confounded by participation in the study. Models exist for hidden Markov models of 

count14,21 or continuous data,22 or for jointly modeling latent effects and missingness,23,24 

but there are no standards on modeling a binary outcome in the presence of informative 

missingness and latent effects that interact to create unique states of participation over time.

In this study, we have shown that variation in walking behavior can be modeled via the use 

of latent structures that reflect the underlying ability and willingness factors. We have also 

shown that the addition of another component to the walking model (that of count of 

walking at each walk) does help to explain some of the social aspects of walking behavior as 

the positive effect of larger participation is associated with masking of social life effects.

In terms of the predictors included in respective models it is clear that efficacy has a 

significant and positive effect on walking behavior, while social life has a significant 

negative effect. This mirrors the results found in Wilson et al.9 On the other hand, in the total 

walker joint model the effect of efficacy is negative (significant) while social life is not 

significant. This may be accounted for by the group effect of increased walker participation 

and thereby the masking of the personal effects of social life. Note that crime perception is 

significant and positive in both models and so walking behavior is positively associated with 

a more positive perception that crime was not a neighborhood safety threat. As for distance 

effects, there also appears to be a positive association between distance/proximity from 

walking trail and walking participation that is sustained across models. While income and 

education level are also positively related for the individual model they appear to be 

negatively (significant) associated with the total walkers model. This could be due to an 

interaction occurring between these variables and social life that was affected by the group 

effect of increased walker participation mentioned earlier.

For the data collected, one could consider several possible alternatives to the analysis 

presented above. A static cross-sectional analysis would have the benefit of easy 

interpretation but would most likely miss key temporal trends. Alternatively, a standard 

longitudinal analysis may over or underestimate parameters if latent effects truly modify the 

causal relationship. Our simulation results demonstrated that it is possible to estimate with 

reasonable accuracy the latent effects (ω, η) and further that when latent effects exist failing 

to account for them will result in biased estimates (results not shown). However, the 

simulations are limited in that they have not yet considered whether the translation of 
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individual level covariate data at sparsely measured time points to a much larger set of 

outcome measures (i.e. over assessment time points walks translated to the scale of daily 

walking data) will underestimate the variance. In addition, because of sparse predictive data, 

informative distributional assumptions were made. While the simulations did test the 

sensitivity of these assumptions, the scope of the assessment was by no means exhaustive 

and it is likely the case that additional information would lead to better estimates of latent 

parameters (e.g. the use of weather data in addition to dropout to predict the daily latent 

ability component). In the real data analysis, the magnitude of the latent effects reflect the 

fact that at the population level the PATH participants had significant barriers to participation 

initiation and further that the intervention was not able to successfully motivate the 

community to walk. However, as demonstrated by the measured covariates that are 

significantly related to willingness, there are several factors at an individual level that 

motivated participants to walk. This is reflected by the fact that, within the study 

participants, individuals tended to either never walk or consistently walk (in some cases 

twice a day). Furthermore, these significant factors may be key components to target in 

future interventions. In this analysis we restricted our attention to variables that were mainly 

measured at a fixed time for individuals. An important aspect to consider would be the 

dynamic community level variables such as the interplay of participation in walking and 

distance (both spatially and temporally) from reported crimes. As crime could occur at 

different locations and at different times, if the spatio-temporal dynamic of crime were 

recorded then the walking behavior might be influenced by this variation. In summary, this 

is one of the first studies to evaluate the effect of a variety of socio-psychological and spatial 

neighborhood predictors on the propensity to walk and the estimation of latent ability and 

willingness in the full study. This approach provides a guideline for future longitudinal 

studies that address health disparities.
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Figure 1. 
Latent variable paradigm to illustrate a participant’s probability of walking based on their 

willingness and ability.
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Figure 2. 
Percentages and counts of missingness per variable using in the PATH participant data. given 

that there is a set of walks from which a person chooses then if we denote the walk date as tj, 
j = 1, …, M then we can denote yij as a binary indicator for the ith individual at the jth walk 

time (tj). We can assume that at this data level we have
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Figure 3. 
Comparison of the variance and bias associated with the primary and secondary simulation 

cases for model three.
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Table 2

Converged posterior estimates for the model using PATH participant data.

Application Parameter Mean

Walking ability a −1.854 (−2.00, −1.56)

Walking ability b 4.829 (4.106, 5.69)

Probability of walking γ1 −1.592 (−1.6, −1.572)

Probability of walking γ2 0.093 (0.003, 0.266)

Probability of walking γ3 0.014 (2.53E–04, 0.052)

Probability of walking η4 1.978 (1.923, 1.999)

Sex η1 −1.204 (−1.409, −1.005)

Age η2 −0.096 (−0.105, −0.088)

Education η5 0.289 (0.264, 0.326)

Income η6 0.108 (0.080, 0.140)

Distance η7 0.316 (0.224, 0.409)

Crime perception η11 0.038 (−0.029, 0.133)

Efficacy η12 0.207 (0.206, 0.209)

Social life η13 −0.537 (−0.558, −0.518)

Stat Methods Med Res. Author manuscript; available in PMC 2017 April 11.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lawson et al. Page 21

Table 3

Converged posterior estimates for the model using PATH participant data with a joint model for total walker 

participation.

Application Node Mean

Walking ability a −0.354 (−1.79, 0.694)

Walking ability b 0.299 (0.003, 1.241)

Probability of walking γ1 −1.6 (−1.6, −1.6)

Probability of walking γ2 1.18E–04 (2.23E–06, 4.50E–04)

Probability of walking γ3 1.34E–04 (2.37E–06, 5.75E–04)

Probability of walking γ4 2.90E–04 (4.95E–06, 0.001)

Sex η1 −0.070 (−0.187, 0.030)

Age η2 0.412 (0.406, 0.417)

Education η5 −0.233 (−0.287, −0.195)

Income η6 −0.396 (−0.420, −0.366)

Distance η7 0.940 (0.92, 0.965)

Crime perception η11 0.230 (0.149, 0.331)

Efficacy η12 −0.451 (−0.454, −0.447)

Social life η13 0.008 (−0.004, 0.019)
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