
Species tree inference from gene splits by Unrooted STAR 
methods

Elizabeth S. Allman,
Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, AK 99775

James H. Degnan, and
Department of Mathematics and Statistics, The University of New Mexico, Albuquerque, NM 
87131

John A. Rhodes
Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, AK 99775

Abstract

The NJst method was proposed by Liu and Yu to infer a species tree topology from unrooted 

topological gene trees. While its statistical consistency under the multispecies coalescent model 

was established only for a 4-taxon tree, simulations demonstrated its good performance on gene 

trees inferred from sequences for many taxa. Here we prove the statistical consistency of the 

method for an arbitrarily large species tree. Our approach connects NJst to a generalization of the 

STAR method of Liu, Pearl and Edwards, and a previous theoretical analysis of it. We further 

show NJst utilizes only the distribution of splits in the gene trees, and not their individual 

topologies. Finally, we discuss how multiple samples per taxon per gene should be handled for 

statistical consistency.

Index Terms

coalescent model; STAR algorithm; NJst; species tree

1 INTRODUCTION

With the growing feasibility of building large multilocus data sets of genetic sequences, 

questions of how to best infer ancestral relationships between taxa have increasingly been 

viewed in the light of the multispecies coalescent model. This model describes the formation 

of gene trees (or genealogies) relating orthologous loci within a species tree composed of 

populations. It thus brings into phylogenetics an important model of population genetics, in 

order to capture the phenomenon of incomplete lineage sorting and allow incongruence 

across gene trees to be used to more accurately infer species trees.

In principle it is straightforward to combine standard models of sequence evolution with the 

multispecies coalescent for inference of species trees under either a maximum likelihood or 

Bayesian framework. In practice, though, this is both computationally intensive and requires 

some additional assumptions — most importantly, a means of relating the coalescent and 

mutation time scales — that may or may not be reasonable. Such assumptions are not always 
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highlighted in data analysis, even though they may include 1) a molecular clock operating 

for each gene tree, 2) constant population sizes over each branch of the species tree, and 3) a 

common mutation rate across gene trees, or variants of these. It is also not clear to what 

extent existing software implementations have been applied to simulated data violating such 

assumptions, in order to understand their robustness. Finally, even accepting these 

assumptions, analyzing a many-gene many-taxon data set can be computationally infeasible 

using a standard approach.

Some inference approaches simplify the problem by first inferring individual gene trees by 

established phylogenetic methods, and then using these to infer a species tree. Of course this 

introduces a new source of error, as the inferred gene trees may differ from the unknown true 

ones, with implications we will discuss later. Nonetheless, by breaking the inference 

problem into pieces in this way, one can gain significant computational advantages.

From the inferred gene trees, one might use metric information, or only topologies, with or 

without a root. If one views the gene tree topologies as more robustly inferable than metric 

edge lengths, then two methods, STAR [1] and NJst [2], are especially attractive. By not 

using any metric information from the gene trees, they elegantly circumvent issues of how 

one should relate the coalescent and mutational time scales. They both encode gene tree 

topologies through special distance matrices, in what one might call a remetrization step, 

with STAR requiring rooted trees, and NJst unrooted ones. The average of these matrices is 

then used as input to a standard metric tree-building algorithm to recover the species tree 

topology. (Though the tree-building process may return edge lengths as part of the species 

tree estimate, whether and how they might be used to recover the true lengths on the species 

tree is not currently known.) All computations are both simple and fast, and accuracy on 

large datasets is competitive with the best current methods, as shown by the recent 

implementation and extension of NJst in the software ASTRID [3].

In [1] and [2] arguments were given establishing the statistical consistency of STAR and NJst 

for certain 4-taxon species trees only, and not for larger trees. (Consistency here refers to 

applying the method to true gene trees, and does not account for any gene tree inference 

error.) In [4] a rigorous proof of consistency was given for STAR and variants of it on 

arbitrarily large trees, along with a theoretical exploration of how the algorithm actually only 

required the distribution of clades on the gene trees. This recasts STAR as a clade consensus 

method attuned specifically to the multispecies coalescent model.

In this work we obtain similar theoretical results for NJst. We first prove its statistical 

consistency under the multispecies coalescent model on arbitrary trees in Theorem 4.1. Our 

proof is built on relating NJst to a generalized STAR method as introduced in [4], and 

deducing our results from those on STAR. (An unpublished work by Kreidl [5] offered the 

first full proof of the consistency of NJst, arguing directly from the behavior of the 

coalsecent model.) In Theorem 5.1 we show the method uses only information in the 

distribution of splits on gene trees, and not the more detailed information of the gene trees 

themselves. Thus we view it as a split consensus method designed specifically for inference 

of species trees under the multispecies coalescent model. In Section 6 we then discuss how 

one might apply the method to data that involves multiple samples from each taxon. We 
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show the approach suggested by [2] for such data can be problematic even in a simple case, 

but then give an alternative which is statistically consistent under certain sampling schemes.

Finally, we suggest a rechristening of NJst as USTAR/NJ, for “Unrooted STAR with 

Neighbor Joining.” This emphasizes both the close relationship of the two methods, and that 

one might perform the method with tree selection approaches other than Neighbor Joining. 

Any statistically consistent method for selecting a metric tree from possibly non-ultrametric 

distance tables could be used in its place. For instance, USTAR/BIONJ [6] uses a different 

purely algorithmic tree building method, while USTAR/FastME [7] performs a hueristic 

search to optimize the balanced minimum evolution criterion to select a tree. Indeed, the 

ASTRID software already allows one to apply such methods and [3] compares their 

performance.

We reiterate that the consistency of USTAR methods established in this paper assumes that 

gene trees are accurately known, rather than estimated with some error. Indeed, this is 

typical of current theoretical results on two-stage inference methods, where gene trees are 

first inferred by standard phylogenetic methods, and these are then used as ‘data’ to infer a 

species tree. While investigating consistency in the absence of gene tree error as we do here 

is an important step, understanding the combined two-stage procedure is a desirable goal. 

However we currently have little formalized understanding of gene tree inference error, 

much less its effect on a procedure such as USTAR.

One attempt at dealing with gene tree error in species tree inference [8] showed that the 

GLASS method is consistent for estimating the species tree assuming that all estimated 

coalescence times in gene trees are within m/2 of the true times, where m is the shortest 

branch in the species tree. However, [9] argued this condition is actually quite stringent, 

requiring unrealistically accurate gene trees for typical applications, and the condition is less 

likely to be met as the number of loci increases. Another approach [10] proves consistency 

of a rooted triple method for inferring species trees from estimated gene trees, assuming the 

gene tree error has a certain feature: For each gene and triple of taxa, the most likely inferred 

rooted triple gene tree matches the true rooted triple gene tree in topology. A similar 

assumption is used to establish consistency of quartet methods. We believe that developing a 

more elaborate descriptive model of gene tree inference error will provide a promising route 

to greater theoretical understanding of other two-stage procedures.

Of course empiricists work with data of finite length sequences from a finite number of loci, 

where any consistency result can only offer hope of good performance. With both 

understanding of gene tree error and results on convergence as the number of loci increases 

lacking, simulation studies are the main source of insight here, and have shown USTAR to 

be competitive with other methods [2], [3], [11]. Nonetheless, as pointed out in [10], there 

are parameter regimes in which an inconsistent method, such as concatenation with 

maximum likelihood [12], [13] appears to have better performance on finite data than some 

consistent methods. Practical performance can depend on many factors, such as alignment 

lengths of the genes, the number of genes, the length of branches in the species tree, and the 

extent to which model assumptions are violated. Much work remains to understand these 

many aspects of species tree inference.
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2 NOTATION AND TERMINOLOGY

Let  be a finite set of n taxa, which we denote by lower case letters a, b, c, …. For any 

specific gene, we denote a single sample from each taxon by the corresponding upper case 

letter A, B, C, …, with g the full set of such gene samples. If  ⊆  is a subset of taxa, 

the corresponding subset of genes is g ⊆ g. For example {a, b, c}g = {A, B, C}.

By a species tree σ = (ψ, λ) on  we mean a rooted topological tree with leaves bijectively 

labelled by , together with an assignment of edge weights λ to its internal edges. These 

edge weights are specified in coalescent units, so that the multispecies coalescent model on 

σ leads to a probability distribution on gene trees with leaves labelled by g. (For a more 

precise definition of the multispecies coalescent as we use it, we direct the reader to [14].) 

The gene trees here are metric rooted trees, though this probability distribution, by 

marginalization, also leads to ones on metric or topological, rooted or unrooted, gene trees. 

We denote rooted topological gene trees by Tr and unrooted topological gene trees by T. The 

probability of an unrooted topological gene tree T under the multipspecies coalescent on σ is 

denoted ℙσ(T).

A metric tree is called binary if the underlying topological tree is binary and all internal edge 

lengths are positive.

A split of a set of taxa  is a bipartition |ℬ of  in which neither  nor ℬ is empty. Note 

|ℬ is the same split as ℬ| . If σ = (ψ, λ) is a species tree on  then a split on σ is a split 

of  formed by deleting a single edge of ψ and grouping taxa according to the connected 

components of the resulting graph. We similarly define splits of g, and splits of g on a 

specific gene tree.

3 USTAR METHODS

Given an unrooted topological gene tree T on g, we may metrize it by giving all edges 

length 1. The distance DT (A, B) between any two gene samples A, B on T is then the 

number of edges in the path connecting them, i.e., the graph-theoretic distance. Fixing an 

ordering of the taxa, it is convenient to think of DT as an n × n matrix. In essence, we have 

simply encoded the topology of T by the numerical matrix DT.

In [2], the internodal distance, i.e., the number of nodes on the path in the tree between two 

taxa, is used to define a similar distance table. The graph-theoretic distance between taxa is 

always one more than the internodal distance, and it is straightforward to check that this 

difference between them has no essential impact on anything we do in this paper. We use the 

graph-theoretic distance here for its simple interpretation in terms of assigning edge lengths 

of 1, and its more direct connection to the notion of splits on the tree.

For a probability distribution μ on unrooted gene trees on g, the expected value
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defines a dissimilarity function on g. Identifying  with g, we call this the USTAR 
dissimilarity on  with respect to μ. For an empirically-obtained collection of gene trees, 

this dissimilarity is just the mean of the matrices DT for trees in the sample.

In this paper, we focus on the particular choice μ = ℙσ, i.e., we use the probability of 

unrooted gene trees arising from the multispecies coalescent on a specific species tree σ, or 

an empirical distribution describing a sample from this theoretical one.

From the USTAR dissimilarity D obtained from a gene tree distribution, one can construct or 

choose a tree on , using any of a variety of well-known methods — e.g., UPGMA, 

Neighbor Joining, BIONJ, Balanced Minimum Evolution, etc. Discarding any edge lengths 

that might have been produced in the course of applying the tree selection method, yields a 

topological tree on . Thus we have a family of methods whose input is a theoretical or 

empirical distribution of unrooted topological gene trees, and output is a single unrooted 

topological tree on the taxa. In particular, USTAR/NJ is the method obtained when Neighbor 

Joining is used, and coincides with NJst. The output of such a method can be viewed as an 

estimate of the species tree.

USTAR methods can be helpfully viewed as related to generalized STAR methods 

developed in [4], building on [1]. STAR methods of inferring a species tree from rooted gene 

trees similarly involve metrizing the gene trees and averaging the resulting pairwise distance 

matrices over a gene tree distribution. However the metrization is done as follows: For n 
taxa, first choose a non-increasing sequence of node numbers a0 ≥ a1 ≥ a2 ≥ ··· ≥ an−2 ≥ 0, 

with at least one of these inequalities strict. Assign a0 to the root, a1 to its non-leaf children, 

a2 to their non-leaf children, etc. Then interpret the assigned numbers as distances from the 

leaves in an ultrametric tree.

For the particular case of node numbers n − 3/2, n − 2, n − 3, n − 4, …, the generalized 

STAR metrization has the effect of giving length 1 to all internal edges of the rooted gene 

tree, except those incident to the root. However, if suppressing the root leads to a new 

internal edge in the unrooted version, the total length of that edge is 1. Thus after 

suppressing the root, all internal edges of the gene tree are given the same length as they 

would be by USTAR. However, lengths of pendant edges are different, as they are all 1 

under USTAR and they vary to achieve ultrametricity under STAR.

Example 3.1

Consider the 5-taxon gene tree Tr = ((A, B), ((C, D), E)) shown in Figure 1. Viewing T as an 

unrooted tree, with taxa ordered alphabetically, USTAR leads to the distance matrix
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Separating the contributions from internal and pendant edges, we can write

Here ‘ui’ and ‘up’ refer to the ‘unrooted internal’ end ‘unrooted pendant’ edge contributions.

Viewing T as a rooted tree, Tr, STAR with the node numbering given above, leads to the 

distance matrix

Again separating the contributions from internal and pendant edges of the unrooted tree, we 

have

where ‘rp’ refers to the ‘rooted pendant’ edge contributions. For a general tree, the rooted 

pendant edge contributions may include some that arise from an internal edge incident to the 

root that becomes part of a pendant edge when the root is suppressed (such as when there is 

a single outgroup on the tree).

Note that the same contributions appears from the internal edges of the unrooted tree in both 

the USTAR and STAR distance matrices. Our analysis of USTAR in the proof of Theorem 

4.2 below will be based in the fact that, for the particular STAR numbering scheme where 

branches incident to the root have length 1/2 and all other internal branches have length 1, 

the distance matrices differ only in contributions from pendant edges.

4 STATISTICAL CONSISTENCY

Our goal in this section is to prove the following:
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Theorem 4.1

Let M denote any method of obtaining an unrooted topological tree from a dissimilarity 

function satisfying

1. M applied to a tree metric returns the unique tree fitting it, and

2. M is continuous at tree metrics arising from binary trees.

Let σ = (ψ, λ) be a binary species tree on . Then USTAR/M is a statistically consistent 
method of inference of the unrooted topology of ψ from gene trees under the multispecies 
coalescent model on σ.

Informally, the continuity required of the method M in condition (2) means that when M is 

applied to a sufficiently small perturbation of a binary tree metric, it returns the correct tree 

topology, and edge lengths close to those underlying the tree metric. As NJ is known [15] to 

satisfy conditions (1) and (2), we see that in particular USTAR/NJ is consistent. Since 

UPGMA does not, in general, satisfy condition (1) for non-ultrametric trees, the theorem 

does not apply to USTAR/UPGMA.

Theorem 4.1 is a consequence of the following.

Theorem 4.2

The USTAR dissimilarity on  with respect to the probability distribution on unrooted 
topological gene trees arising from multispecies coalescent model on σ = (ψ, λ), D = 

σ(DT), exactly fits the unrooted species tree topology of ψ.

Proof—Let Tr denote a rooted gene tree topology. Consider the generalized STAR number 

scheme for rooted gene trees with node numbering sequence n−3/2, n−2, n−3, n−4, …. As 

discussed previously, when the root is suppressed on the STAR remetrized rooted gene tree 

Tr, all internal edges on the resulting unrooted tree have length 1. Using this node numbering 

scheme, let  denote the STAR distance matrix for a remetrized rooted tree Tr, and 

 its expected value under the distribution on rooted topological gene trees arising 

from the coalescent.

We now relate the STAR dissimilarities  to those of USTAR, D = σ(DT). 

Since both the rooted and unrooted schemes give each internal edge length 1 in the unrooted 

gene tree topology we can write

(1)

where  contains the contributions to distances from internal edges of the unrooted tree, 

 contains contributions from pendant edges of the unrooted scheme, and  contains 

contributions from (unrooted tree) pendant edges in the rooted scheme. Equations (1) thus 

imply
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(2)

Now the matrix  is independent of T and has a simple structure; all diagonal entries are 

0, and all off-diagonal entries are 1+1 = 2. The matrix , however, does depend on Tr. 

While it also has 0 in every diagonal entry, the off-diagonal entry in row x, column y is wx + 

wy, where wx, wy are the lengths assigned to the pendant edges to taxa x, y after the root is 

suppressed on the remetrized ultrametric Tr.

Passing to expected values, we have from equation (2) that

(3)

By Theorem 3.2 of [4], Dr exactly fits the topology of the rooted species tree 

(ultrametrically), and hence for each choice of 4 taxa, with some permutation of their labels 

the 4-point condition

(4)

holds. Now in the case that a, b, c, d are all distinct, this implies

(5)

since by equation (3), we have only added 4 − (wa +wb + wc + wd) to the three sums in (4) 

to obtain (5).

If at most 3 of the taxa in the 4-point condition are distinct this last argument is not valid. 

However, if, say, c = d, the 4-point condition we need to establish degenerates to

That this holds follows from the fact the corresponding inequality holds for every tree 

metric, and in particular for each USTAR remetrization DT, and hence for the expected value 

as well.

Thus the four point condition holds for D for every set of 4 taxa, and it yields the same 

unrooted quartet topology as does Dr. Thus by standard results in [16] D exactly fits the 

same unrooted tree topology as Dr, which is that of the species tree.
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Proof of Theorem 4.1—As the size of a sample of gene trees from the multispecies 

coalescent model on σ increases, the empirical distribution of unrooted gene tree topologies 

approaches the exact one with probability 1, and thus the empirical USTAR dissimilarity 

approaches the theoretical one, D. Since Theorem 4.2 and condition (2) ensures the method 

M returns the correct tree when applied to D, condition (1) then implies with probability 1 

USTAR/M returns the correct unrooted species tree topology as the sample size (i.e., number 

of loci) increases to infinity.

5 USTAR AND SPLITS

Here we establish a relationship between the USTAR expected distance matrix and split 

probabilities, analogous to that given in [4] for STAR expected distances and clade 

probabilities.

As a consequence of this relationship, it is natural to view USTAR methods as a type of split 
consenus method. Specifically, USTAR methods use only information on probabilities of 

splits on gene trees, and not the finer information of the gene tree topologies themselves.

The fact that USTAR uses only split frequencies, yet can produce statistically consistent 

inference for the coalescent model is notable, as other split methods lack this feature. For 

instance greedy consensus [17] accepts splits in order of decreasing frequency, if they are 

compatible with previously accepted splits. Greedy consensus on clades has been proven 

inconsistent [18], though STAR can be viewed as a consistent clade consensus method [4]. 

The arguments in [18] can be modified to give a similar result for greedy consensus on 

splits, with signs of inconsistent behavior also observed in simulations [11]. For consistency, 

a consensus method must be attuned to the model of tree variation, with USTAR and STAR 

being appropriate for the coalescent.

Given any two leaves A, B of a gene tree T, let  denote the set of splits of T in which A 

and B are separated (i.e., in different bipartition sets). Elements of  correspond to the 

edges of T lying on the path from the A to B, so

(6)

This means on an individual gene tree the distances used in USTAR are simply counts of 

‘separating’ splits, with gene samples being judged further apart when there are more splits 

on T which separate them. Thus graph-theoretic distance might also be called ‘split 

separation distance.’

Now for any distribution μ of gene trees, if |ℬ is a split of , and ℙμ( |ℬ) denotes the 

probability of the event that an observed gene tree displays split g|ℬg, then
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Theorem 5.1

For any distribution μ of gene trees, the collection of split probabilities {ℙμ( |ℬ)} 

determines μ(DT ).

Proof—Define indicator functions

and

Then using equation (6),

(7)

so the USTAR dissimilarity is computable from split probabilities.

Of course the distribution μ we have in mind here is either the one arising from the 

multispecies coalsecent model, or an empirical one from a sample of gene trees from that 

model.

From Theorems 5.1 and 4.2 we immediately obtain the following:
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Corollary 5.2

The unrooted species tree topology is identifiable from split probabilities under the 

multispecies coalescent.

It is known [14] that the rooted species tree topology is identifiable from the distribution of 

unrooted gene tree topologies. It is also known that the rooted species tree topology is 

identifiable from clade probabilities. Thus a natural question is whether the split 

probabilities, the unrooted analogues of clade probabilities, can further identify the root on 

the species tree. Though our investigation here does not seem to shed light on this, we plan 

to address it in another work.

6 USTAR WITH MULTIPLE SAMPLES PER TAXON

When NJst was introduced in [2], a suggestion was given for how one might deal with gene 

trees relating multiple lineages sampled from each taxon. For a collection  of gene trees, if 

T ∈  relates ma(T) lineages sampled from taxon a and mb(T) lineages from taxon b, then 

intertaxon distances were defined (up to an additive constant) as an average

(8)

where DT (Ai, Bj) denotes the graph theoretic distance on tree T between the ith sample of 

gene A and the jth of gene B. Unfortunately, this approach is not statistically consistent. In 

fact, as the size of the sample of gene trees is increased, the probability of inferring the 

correct species tree can approach 0. After demonstrating this, we propose a different method 

of handling multiple samples per taxon, one that is statistically consistent.

To investigate the behavior of formula (8), consider the species tree

with all branch lengths long enough that incomplete lineage sorting between different taxa is 

vanishingly rare. Sample lineages for a large number of genes as follows: For 50% of the 

genes, sample 3 lineages in each of taxa a, b and 1 lineage in each of taxa c, d. In the other 

50% of genes, sample 1 lineage in taxa a, b and 3 lineages in taxa c, d. For sufficiently long 

branch lengths on the species tree, the coalescent model gives that the sampled genes trees 

will be approximately equally of topologies
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and

with an arbitrarily small fraction of gene trees of other topologies. For the first of these gene 

tree topologies, after unrooting and assigning all edges the length 1, the different 

interlineage USTAR distances are

For the second tree, the same distances arise, but with the roles of A, B interchanged with C, 
D. Then formula (8) gives intertaxon distances arbitrarily close to

These intertaxon distances do not fit any unrooted topological tree, as they do not satisfy the 

four-point condition [16]. In fact, selection of a tree topology by applying (part of) the four-

point condition requires computing

and choosing the smallest to determine the cherries of the tree. Here the smallest is a tie, 

yielding the two incorrect topologies, ((a, c), (b, d)) and ((a, d), (b, c)). Neighbor Joining, 

which is built upon this selection criterion, would choose either of the incorrect topologies 

with equal probability, and then go onto compute positive lengths for the edges, obtaining 

either of the unrooted metric trees ((a:2.333, c:2.333):0.167, b:2.333, d:2.333) or ((a:2.333, 

d:2.333):0.167, b:2.333, c:2.333).

Finite length edges on the species tree will only produce intertaxon distances arbitrarily 

close to those in the calculations above, with probability approaching 1 as the number of 

gene trees increases. However, continuity of the Neighbor Joining algorithm at these 

distances implies that the output of Neighbor Joining will be the wrong topology with 

probability approaching 1.

A different approach to averaging than the one used in formula (8) can however lead to 

statistically consistent inference of the species tree.
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First, suppose multiple samples are drawn from taxa in exactly the same number for each 

gene. That is, there are integers mx ≥ 1 so that each gene tree has mx leaves X1, X2, …, Xmx 
for each x ∈ , for a total of Σx∈  mx leaves. We will refer to a specific choice of the 

numbers (mx)x∈  as a multisample scheme.

For a single fixed multisample scheme, the results of previous sections apply if we replace 

the species tree by one where mx edges are attached to the leaf formerly labeled x with the 

new leaves labeled x1, x2, …, xmx. (This is called the extended species tree in [19].) While 

this tree is not binary, one can consider binary perturbations of it, and use continuity to 

conclude that the expected USTAR dissimilarity on Σx mx taxa will exactly fit this tree. If 

one then defines D(a, b) as the expectation of DT (A1, B1) for each a, b ∈ , or as the 

expectation of the average of DT (Ai, Bj) over 1 ≤ i ≤ ma and 1 ≤ j ≤ mb, the expected 

dissimilarity on  is the same, as the Ai lineages for various i are exchangeable under the 

coalescent model. Since this expected dissimilarity must exactly fit the unrooted topology 

relating only the X1 for x ∈ , it thus fits the unrooted topology relating the taxa in . Thus 

either retaining only one sample per taxon, or averaging over the lineages sampled from 

each taxon will lead to consistent inference. Since data sets have only a finite number of 

gene trees, by averaging the empirical DT (Ai, Bj) one would hope to improve one’s estimate 

of the expected value, so we choose to do so. Moreover, one could obtain the same 

dissimilarity by averaging over samples for each gene tree T individually, creating a USTAR 

dissimilarity matrix for  from one tree at a time, and then averaging over these.

Now suppose we specify a finite number of multisample schemes, as well as probabilities of 

using each one for any gene. Given a data set of gene trees obtained from such an approach, 

as described in the last paragraph one could apply a USTAR method averaged over multiple 

lineage samples to each subcollection of trees with the same multisample scheme. But since 

the dissimilarity for each such subcollection in expectation approaches one fitting the 

species tree as the number of gene trees increases, then any weighted average of them over 

the multisample schemes does as well. This is a consequence of the dissimilarity arising 

from each subcollection satisfying the same four-point condition equality and inequalities, 

so a convex linear combination of them does also. Thus with multisample schemes 

(mx,s)x∈  for 1 ≤ s ≤ S, and any non-negative weighting constants αs, if we define an 

empirical dissimilarity as

(9)

then we will have consistent inference provided the number of gene trees for each scheme in 

the sum all go to infinity. Choosing αs = 1/|  | where  is the collection of gene trees 

yields our suggested formula
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(10)

Note that the formula (9) cannot be specialized to give formula (8). Taking αs = ma,smb.s/

Σsma,smb,s does make them agree for the single comparison of a and b, but will not for other 

pairs of taxa (unless mx,s is independent of x).

The essential difference between the formulas (10) and (8) is how the product ma(T)mb(T) 

appears in them. In formula (8) all DT (Ai, Bj) are treated on an equal basis, whether they 

come from the same locus and are therefore correlated, or from different loci and thus 

independent trials of the coalescent process. Formula (10) can be viewed as first 

constructing an intertaxon distance matrix for each locus by averaging pairwise distances 

over choices of alleles, and then averaging these over loci, to create a final intertaxon 

distance matrix.

We emphasize that using the consistency of formulas (9) and (10) to justify their use in 

applying USTAR to finite data sets hinges on an assumption that every multisample scheme 

that appears in a data set appears many times. Particularly for data sets assembled from 

several earlier studies, there may be little commonality in the sampling scheme from one 

gene to the next. Simulations are needed to explore whether our formulas behave well under 

such circumstances.

Simulations in [3] testing the performance of USTAR methods did not explore multisample 

schemes at all. However, in that work a new variant of a USTAR method that allows for gene 

trees missing some taxa was studied — in the notation above the mx(T) could be 1 or 0. 

Although such USTAR methods were reported to perform well on simulated data under 

these circumstances, theoretical justification for the particular approach taken has yet to be 

developed. Moreover, one should be cautious that if the test simulations involve random 

deletion of taxa from gene trees, they may not be relevant to empirical data sets in which 

taxa are missing in more patterned ways.
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Fig. 1. 
A gene tree ((A, B),((C, D), E)) (left) and its metrizations for the generalized STAR method 

discussed in the text (center), and USTAR (right).
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