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Abstract

Most hypotheses of cerebellar function emphasize a role in real-time control of movements. However, the cerebellum’s
use of current information to adjust future movements and its involvement in sequencing, working memory, and
attention argues for predicting and maintaining information over extended time windows. The present study examines
the time course of Purkinje cell discharge modulation in the monkey (Macaca mulatta) during manual, pseudo-random
tracking. Analysis of the simple spike firing from 183 Purkinje cells during tracking reveals modulation up to 2 s before
and after kinematics and position error. Modulation significance was assessed against trial shuffled firing, which
decoupled simple spike activity from behavior and abolished long-range encoding while preserving data statistics.
Position, velocity, and position errors have the most frequent and strongest long-range feedforward and feedback
modulations, with less common, weaker long-term correlations for speed and radial error. Position, velocity, and
position errors can be decoded from the population simple spike firing with considerable accuracy for even the longest
predictive (-2000 to -1500 ms) and feedback (1500 to 2000 ms) epochs. Separate analysis of the simple spike firing
in the initial hold period preceding tracking shows similar long-range feedforward encoding of the upcoming
movement and in the final hold period feedback encoding of the just completed movement, respectively. Complex
spike analysis reveals little long-term modulation with behavior. We conclude that Purkinje cell simple spike discharge
includes short- and long-range representations of both upcoming and preceding behavior that could underlie
cerebellar involvement in error correction, working memory, and sequencing.
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Most hypotheses of cerebellar function emphasize a role in real-time control of movements. However,
contributions to adjustment of future movements, sequencing, working memory, and attention argue for the
cerebellum’s ability to predict and maintain information over an extended time frame. This is the first single
unit recording study showing that the simple spike discharge of Purkinje cells contains long-range
representations of motor parameters. These signals may provide the neural substrate underlying the
cerebellar contributions to movement control over an extended temporal horizon and a potential mecha-
\nism unifying aspects of cerebellar function in motor and nonmotor domains. j

ignificance Statement

Introduction

The cerebellum plays a major role in the control of
precise and skillful motor behaviors. The time frame for
expression of cerebellar function in motor control is gen-
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erally assumed to be relatively brief, centered around
current movement (Braitenberg, 1967; Eccles et al., 1967;
Brooks and Thach, 1981; Welsh et al., 1995; Ivry and
Spencer, 2004; Llinas, 2013). However, several observa-
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tions suggest that the cerebellum contributes to behavior
over longer time periods. The CNS uses information about
a current movement, including errors, to adjust subse-
quent behavior and the cerebellum has a central role in
this process for arm and eye movements (Miall and Wol-
pert, 1996; Diedrichsen et al., 2005; Tseng et al., 2007;
Shadmehr et al., 2010; Taylor et al., 2010; Popa et al.,
2012; Schlerf et al., 2012). The use of past performance
information involves multiple time scales, including a rel-
atively short time course process that responds well to
error but has poor retention and a longer process that
responds weakly to error but retains the information well
(Smith et al., 2006; Yang and Lisberger, 2010). In the
faster process, errors are represented as a time decaying
“trace” with a time constant of ~4 s for reaching move-
ments (Huang and Shadmehr, 2007), ~4-10 s for smooth
pursuit (Yang and Lisberger, 2010), and ~15 s for sac-
cades (Chen-Harris et al., 2008). During reaching move-
ments, the feedback response to an error appears to
serve as a template to adapt the subsequent motor com-
mand (Albert and Shadmehr, 2016). Therefore, motor er-
ror and/or performance information must be retained over
many seconds.

The cerebellum is a candidate for this short-term mem-
ory of motor performance (Smith and Shadmehr, 2005;
Huang and Shadmehr, 2007; Yang and Lisberger, 2010).
One possibility is that the memory utilizes one of the many
forms of synaptic plasticity found in cerebellar circuits (for
reviews, see Hansel et al., 2001; Ito, 2001; Boyden et al.,
2004; Gao et al., 2012). In addition to synaptic plasticity,
another possibility is that persistent activity in cerebellar
neurons provides a type of working memory, as com-
monly observed in the cerebral cortex (for review, see
Mongillo et al., 2008; Gazzaley and Nobre, 2012; Nyberg
and Eriksson, 2015; D’Esposito and Postle, 2015), which
conveys information about past performance to inform
upcoming movements.

Imaging and lesion studies implicate the cerebellum in
sequencing and working memory tasks in both the motor
and cognitive domains (Doyon et al., 1997; Molinari and
Petrosini, 1997; Molinari et al., 1997; Lu et al., 1998; Nixon
and Passingham, 2000; Leggio et al., 2008; Molinari et al.,
2008). Sequencing requires planning actions in advance
as well as monitoring and storing past actions over sev-
eral seconds (Haggard, 1998; Desrochers et al., 2015).
Cerebellar activation occurs in working memory tasks that
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require maintaining and recalling motoric and/or nonmo-
toric information over long-range time scales (Chen and
Desmond, 2005; Hautzel et al., 2009; Marvel and Des-
mond, 2010; Kiper et al., 2016). Also, cerebellar activa-
tion precedes movement, sensory stimuli, and cognitive
tasks by several seconds (Tesche and Karhu, 2000; Hul-
smann et al., 2003; Ghajar and Ivry, 2009). Therefore, we
hypothesize that cerebellar neurons may convey feedfor-
ward and feedback signals of behavior over a time span of
seconds.

Historically, studies of the motor information conveyed
by cerebellar neurons during arm and eye movements
have focused on short time frames (Marple-Horvat and
Stein, 1987; Fortier et al., 1989; Stone and Lisberger,
1990; Shidara et al., 1993; Fu et al., 1997; Gomi et al.,
1998; Coltz et al., 1999; Roitman et al., 2005; Medina and
Lisberger, 2009; Dash et al., 2012). Only a few single
neuron studies have examined longer periods linked to
planning, working memory, or error processing. Dentate
neurons show significant premovement activity over sev-
eral hundred milliseconds during instructed saccade and
reach sequencing tasks (Mushiake and Strick, 1993;
Middleton and Strick, 1998; Ashmore and Sommer, 2013;
Kunimatsu et al., 2016); however, these investigations did
not evaluate longer time epochs. Beyond the observed
differences in pro- versus antisaccades before movement
(Kunimatsu et al., 2016), it is not clear to what degree this
premovement activity encodes upcoming kinematics.

Most experimental paradigms used to examine the time
course of cerebellar neuronal modulation have relied on
brief, discrete, and stereotypical movements that likely do
not require extended planning or monitoring of past ac-
tions. In contrast, here, we use a pseudo-random tracking
task that involves continuous movements and requires
constant error processing and corrections, allowing in-
vestigation over several seconds of the motor represen-
tations previously described in Purkinje cell simple spike
discharge (Hewitt et al., 2011; Popa et al., 2012).

Materials and Methods

All animal experimentation was approved by the Insti-
tutional Animal Care and Use Committee at the University
of Minnesota and conducted in accordance with the
guidelines of the National Institutes of Health. Data were
collected using the same pseudo-random tracking para-
digm, animal preparation, and recording procedures de-
scribed in two previous papers (Hewitt et al., 2011; Popa
et al., 2012). Two head-fixed Rhesus monkeys (one male:
monkey |, one female: monkey N) used a robotic manipu-
landum (InMotion?) to control a cross-shaped cursor to
track a circular target (2.5 cm in diameter) on a computer
screen mounted at eye level 50 cm in front of the animal.
A set of 100 pseudo-random target paths were generated
from a smoothed sum of sine waves, under the constraint
that the target’s random speed followed the two-thirds
power law (Viviani and Terzuolo, 1982; Lacquaniti et al.,
1983). The duration of the track period ranged from 6 to
10 s. In addition, each trajectory had a different start and
end position, with a required hold time at the start (initial
hold) and end positions (final hold) that ranged from 1000-
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3000 ms. The paradigm required that the animal maintain
the cursor within the target and allowed for only brief excur-
sions outside the target (<500 ms). During each recording
session, the presentation order of the trajectories was ran-
domized. The animal’s view of their arm was blocked and
performing the task depended on visually monitoring the
target and cursor movements on the screen.

Cursor/hand and target center positions were sampled
and recorded at 200 Hz. Error and kinematic parameters
(see below) were derived from the hand position (down
sampled to 50 Hz and filtered using a second order Butter-
worth filter with a 3-Hz cutoff). Full head MRI and CT images
in Monkey Cicerone were used to model recording chamber
locations and electrode penetrations (Miocinovic et al.,
2007). Models for both monkeys showed electrode record-
ing positions mostly in lobules IV-V of the intermediate zone
and neighboring lateral zones, anterior to the primary fissure.
Arm and hand movement-related activity has been well
established in the recorded region (Thach, 1968; Mano and
Yamamoto, 1980; Fortier et al., 1989; Fu et al., 1997; Roit-
man et al., 2005; Pasalar et al., 2006; Yamamoto et al., 2007;
Hewitt et al., 2011).

After full recovery from chamber implantation surgery,
extracellular recordings were obtained using Pt-Ir elec-
trodes with parylene C insulation (0.8-1.5 M(Q) impedance,
Alpha Omega Engineering) that were inserted just deep
enough to penetrate the parietal dura using a 22-Gauge
guide tube. Electrodes were advanced to the cerebellum
using a hydraulic microdrive (Narishige Group). Purkinje
cells were identified by the presence of both simple spike
and complex spike discharge, with the characteristic brief
simple spike inactivation following a complex spike. Elec-
trophysiological data were sampled at 32 kHz. Simple
spikes were discriminated online using the Multiple Spike
Detector System (Alpha Omega Engineering) after con-
ventional amplification and filtering (30-Hz to 3-kHz band
pass, 60-Hz notch). Discriminated simple spike trains
were transformed into instantaneous firing rate at 50-Hz
sampling rate, and low-passed filtered also using a sec-
ond order Butterworth filter with a 3-Hz cutoff. Finally, the
mean simple spike firing rate was subtracted.

As in previous studies (Hewitt et al., 2015; Streng et al.,
2017), complex spikes were manually identified and dis-
criminated off-line from the raw electrophysiological re-
cordings by the presence of the characteristic wave form
including an initial large amplitude spike followed by
spikelets (see Figure 1A). Complex spike identification
also required the characteristic pause in simple spike
firing (Thach, 1967; Bloedel and Roberts, 1971). A custom
MATLAB graphical user interface recorded the time
stamp of the initial spike (1-ms resolution). For quantita-
tive analysis of the complex spike modulation with behav-
ior, a subset of 40 Purkinje cells was selected based on
consistent isolation and discrimination of the complex
spike discharge throughout the entire recording session.

Kinematics and performance errors during
pseudo-random tracking

Arm movements were described by five kinematic param-
eters: position (X, Y), velocity (VX, VY), and speed (S) based
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Figure 1. Example of a Purkinje cell recording during pseudo-
random tracking. A, One-second Purkinje cell recording showing
both simple spikes and complex spikes (marked by red dots). B,
Occurrence times of simple spikes (open circles) and complex
spikes (red dots) superimposed on the hand position for one trial.
Black open circles correspond to the simple spikes from the 1-s
data segment shown in A. Initial target position marked by the
black circle (target diameter, 2.5 cm). Area covered by target
movement during the trial shown in gray.

on the trajectory of a cursor mapping the arm movement in
the horizontal plane on a vertical screen. The velocity vector
[VX(t), VY(t)] components were computed by numerical dif-
ferentiation of the corresponding position data. Speed [S(t)]
was computed as the magnitude of the velocity vector.
Position errors [XE(t), YE(t)] were defined as the difference
between the cursor and center of the target, and radial error
[RE(t)] defined as the magnitude of the position error vector.
As shown previously, the animals use these measures to
perform the task as they strive to minimize these errors
(Popa et al., 2012). We did not include either velocity or
speed errors as these parameters were highly correlated
with velocity and speed as discussed previously for this
tracking task (Popa et al., 2012).

Linear modeling of simple spike firing based on
firing residuals during tracking

The aim of this study was to determine whether the
simple spike discharge encodes kinematic or error pa-
rameters over extended time periods. Linear modeling
was used to relate the simple spike firing with the kine-
matic and error parameters, as previously used in the
same task (Popa et al., 2012) and during reaching move-
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ments (Hewitt et al., 2015). For the first analysis, linear
regressions were performed using only the firing during
the actual tracking and did not include the firing in the
hold periods. To evaluate the individual parameters in
isolation, firing residuals were obtained from a multilinear
model that included all kinematic or error terms not being
evaluated. The purpose of this regression is to remove the
variability in the firing related to the kinematic and error
parameters other than the parameter of interest. For ex-
ample, to evaluate VX, we regressed the firing to a multi-
linear model that included all other parameters (X, Y, VY,
S, XE, YE, and RE) as independent variables. The resul-
tant firing residuals from this regression are independent
of the model parameters. Therefore, regressing the firing
residuals with VX is not confounded by the covariance
between VX and the rest of the parameters. All regres-
sions used to obtain firing residuals were computed using
the instantaneous firing and movement data from individ-
ual trials (i.e., nonaveraged data). Firing residuals were
determined at each of the 20-ms time shifts (7) between
the simple spike firing and the model predictors in a -2000
to 2000-ms window. This process was repeated for each
kinematic and error parameter, first computing the firing
residuals of interest followed by fitting the firing residuals
to the chosen motor parameter.

For this regression analysis, we used an averaging
method similar to the previous characterization of the
simple spike modulation with kinematics and errors. The
partitions of the kinematic and error workspaces were
chosen to result in approximately a similar number of bins
to minimize the variability in the regression analyses, as
the coefficient of variation (R?) is highly dependent on the
number of bins (Freund, 1971; Zar, 1999). The kinematic
space (X, Y, VX, VY, S) was partitioned in five equal bins
along each dimension (2.4-cm bins from -6 to 6 cm for X
and Y, 4.8-cm/s bins from -12 to 12 cm/s for VX and VY,
and 2.4-cm bins from 0 to 12 cm/s for S) resulting in 3125
five-dimensional bins. Error parameters were partitioned
into 16 equal bins along each dimension (0.375-cm bins
from -3 to 3 cm for XE, YE, and 0.2-cm bins from 0 to 3.2
cm for RE) resulting in 4096 three-dimensional bins. The
neural data were sorted and averaged into these kine-
matic and error partitions. To be included in further anal-
yses, a bin had to contain >20 observations.

All linear model analyses used repeated fittings in which
the dependent data series (firing residuals or actual firing)
were shifted relative to the model’s independent vari-
able(s) data series (Ashe and Georgopoulos, 1994; Gomi
et al., 1998; Paninski et al., 2004; Medina and Lisberger,
2009; Roitman et al., 2009; Popa et al., 2013). The tem-
poral shifts were used to assess the lead/lag (1) between
the neural modulation (i.e., neural signals) and behavioral
parameters (i.e., errors or kinematics). We used a much
longer time window (-2000-2000 ms) than has typically
been used in these temporal analyses. Note that the
longer window requires reducing the length of the data
series, which depends on ftrial duration. The regression
analyses resulted in R? and B profiles in time for each
kinematic and error parameter. The B values provide a
measure of the firing sensitivity with the parameters. Mod-

March/April 2017, 4(2) e0036-17.2017

New Research 4 of 22
ulation with a motor parameter was defined by the pres-
ence of a significant local maxima in the R? profile. At
each maxima, the R? value quantifies the strength of
encoding, the corresponding B value quantifies the signal
sensitivity and the 7 value determines the signal timing
relative to behavior. Negative t values indicate that the
neural modulation led the model regressors.

We used a bootstrap approach to define significance of
the regression results. For each Purkinje cell recording,
the trial order was shuffled so that the simple spike firing
was uncoupled from the behavior. The shuffling followed
by the entire regression analysis was repeated 100 times
for each recording session, and the mean and SD of the
R? profile from the shuffled regressions determined for
each 7 value. To be considered statistically significant, the
R? local maxima from the unshuffled firing had to exceed
the mean + 4 SD of the shuffled trials.

The bootstrapped R? distribution is not normal, as de-
termined using a Kolmogorov-Smirnov test. Therefore,
we determined the probability that the bootstrapped R?
distribution exceeds the significance threshold of 4 SD,
which was equivalent to an estimated p value of 0.02. This
approach minimizes the problem of spurious correlation
due to autocorrelation in the firing and behavioral param-
eters (Granger and Newbold, 1974; Tagaris et al., 1997;
Leuthold et al., 2005; Christova et al., 2011; Lewis et al.,
2012). The -2000- to 2000-ms window was divided into
eight 500-ms epochs including four predictive epochs:
-2000 to -1500 (P1), -1500 to -1000 (P2), -1000 to -500
(P3) and -500-0 ms (P4) and four feedback epochs: 0-500
(F1), 500-1000 (F2), 1000-1500 (F3), and 1500-2000 ms
(F4). Within each epoch, the occurrence and magnitude of
significant simple spike modulation with the behavioral
parameters were determined.

Linear modeling of simple spike firing based during
the hold periods

We also investigated the behavioral representations in
the simple spike activity during the initial and final hold
periods that preceded and followed the track period of
each ftrial, respectively.

The analyses followed the overall approach used for the
track period to linearly model the simple spike firing with
kinematics and errors. The goals were to determine
whether the simple spike firing during the initial hold
encoded predictive information about the upcoming track
period and whether the simple spike firing during the final
hold encoded feedback information about the end of the
track period. Firing during the initial hold period was
regressed to the kinematic and error parameters defined
above (X, Y, VX, VY, S, XE, YE, RE) in a sliding window of
the same duration as the initial hold period. This behav-
ioral window was moved in 20-ms steps (r value) from 0
ms (i.e., window overlaps entirely with the initial hold
period) to 2000 ms in the upcoming tracking period. Using
the same trial shuffled bootstrap approach and signifi-
cance criteria as in the track period, significance was
defined as the R? exceeding the mean + 4 SD of the
shuffled trials. Note that for consistency with the track
period analysis, we used the same temporal notation in
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Figure 2. Purkinje cell simple spike modulation in relation to hand position during the track period. A, Sequence of firing maps in
200-ms steps showing simple spike modulation with hand position. Map colors denote simple spike rate relative to mean firing rate,
according to color bar. B, D, R? temporal profiles show the strength of X and Y encoding as function of 7 value. Chance level of simple
spike encoding determined by trial shuffling, mean (red continuous line) + 4 SD (red dotted line). C, E, 3 temporal profiles show the
simple spike sensitivity to X and Y as a function of 7 value. In all figures, negative 7 values represent firing leading behavior.

which negative 7 values denote predictive encoding. For
summary and the decoding analyses, the results of re-
gressions results from the simple spike firing in the initial
hold period were divided into four predictive epochs:
-2000 to -1500 (P1), -1500 to -1000 (P2), -1000 to -500
(P3), and -500-0 ms (P4). Similarly, we regressed the
simple spike firing during the final hold period against
each parameter using a sliding window of the same du-
ration as the final hold period. The behavioral window was
moved in 20-ms steps from 0 ms (i.e., overlapping entirely
with the holding period) to 2000 ms into the preceding
track period (Fig. 10C). Positive 7 values were used to
denote feedback encoding. For summary and the decod-
ing analyses, the regressions results from the simple spike
firing in the final hold period were divided into four feed-
back epochs: 0-500 (F1), 500-1000 (F2), 1000-1500 (F3),
and 1500-2000 ms (F4).

Display of simple spike firing

To display simple spike firing during the track period in
relation to the parameters (see Figures 2-4), we generated
two-dimensional maps at the different 7 values. These
track period firing maps divided the parameter work-
spaces into 20 equal bins along both dimensions (0.6-cm
bins from -6 to 6 cm for position, 1.2 cm/s bins from -12
to 12 cm/s for velocity, and 0.3 cm from -3 to 3 cm for
position errors). Similarly, to display simple spike firing
during the hold periods two dimensional maps were gen-
erated at different 7 values. Because the hold periods are
considerably shorter in duration than the track periods,
they contain substantially fewer data points. Therefore,
the firing maps were divided into only 10 equal bins along

March/April 2017, 4(2) e0036-17.2017

both dimensions: 1.2-cm bins from -6 to 6 cm for position,
2.4-cm/s bins from -12 to 12 cm/s for velocity, and 0.5 cm
from -2 to 2 cm for position errors. Note that the binning
used for display of the simple spike firing for both track
and hold periods is at a different resolution than that used
for the linear regression modeling described above. This
difference in partitioning reflects the challenges posed in
analyzing a high dimensional behavior in which the five
kinematic parameters and three error parameters were
analyzed as two groups. Therefore, the regression analy-
ses had to use higher dimensional partitions that some-
what limited resolution. Conversely, the firing plots are
based on two-dimensional maps (e.g., X and Y, VX and
VY, and XE and YE) that allowed higher resolution parti-
tioning.

Control analyses

An important issue is whether the behavior or simple
spike firing have an inherent temporal structure that can
account for any significant correlations. Although the use
of residuals ensures that other parameters are not influ-
encing the firing at each 7 value, there remains the pos-
sibility that the individual time series have inherent
intertemporal correlations. To address this potential con-
found, several analyses were performed. First, the autocor-
relation of each behavioral parameter and the simple spike
firing was determined with the =2000-ms window for each
trial and then averaged across all recording sessions to
evaluate the presence of local minima or maxima. Second,
cross-correlations between all pairs of behavioral parame-
ters were calculated within the =2000-ms window to assess
for lagged relationships.
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Figure 3. Purkinje cell simple spike modulation in relationship to hand velocity during track period. A, Sequence of firing maps
showing simple spike modulation with velocity in 200-ms steps. B, D, R2 temporal profile shows the strength of VX and VY encoding
as function of time, respectively. C, E, B temporal profiles show the firing sensitivity to VX and VY as a function of 7, respectively. Color
scheme of firing maps, 7 values, and denotation of chance encoding as in Figure 2.

Third, we reasoned that if the behavioral interactions
between a pair of parameters determine the simple spike
encoding then the B profiles for the parameters will be
similar to the behavioral interaction and the degree of
similarity will vary with the strength of the behavioral
correlation. Therefore, for pairs of behavior with positive
or negative cross-correlation values exceeding a thresh-
old (p < -0.1 or p > 0.1), we determined the degree to
which the simple spike encoding depended on the behav-
ioral correlation. We quantified the “encoding similarity” of
the B profiles by computing their cross-correlation within
the =2000-ms interval. The peak of the positive behav-
ioral interaction exceeding the threshold (p > 0.1) was
correlated with the maximum simple spike encoding sim-
ilarity for all 183 Purkinje cells. The minimum of any neg-
ative behavioral interaction exceeding the threshold (p <
-0.1) was correlated with the minimum simple spike en-
coding similarity across the population.

Decoding of motor parameters in different time
windows

To determine the accuracy of the information encoded
in the simple spike firing, we performed a linear decoding
analysis. For the firing during the track periods, the de-
coding determined the ability of the simple spike firing
across the population to reconstruct either the upcoming
or past behavior. For the firing during the initial hold
period, the decoding determined the ability to reconstruct
the upcoming behavior and for the final hold period the
past behavior. To faithfully maintain the normal physiol-
ogy, we decoded the actual firing and not the residuals

March/April 2017, 4(2) e0036-17.2017

used in the linear regression analysis described above.
For each cell, the trials were randomly divided into training
(80%) versus test (20%) trials. The temporal linear regres-
sion analyses were repeated for each individual parame-
ter using only the training trials. Statistical significance
was determined using the bootstrap method described
above. The decoding analysis used only the largest sig-
nificant R? peak in each of the 500-ms predictive and
feedback epochs. For each peak R?, we inverted the
regression equation using the regression coefficient (B) at
the corresponding 7 value to calculate the predicted be-
havior from the simple spike firing. For each behavioral
parameter and time epoch, the decoded behavior was
weighted by the ratio between the peak R? relative to the
mean of all R? peaks in the epoch of interest across all
neurons. For each parameter and epoch, the observed
and decoded values were pooled across the cell popula-
tion and sorted by the observed values into 20 equal bins
spanning the range of the parameter of interest. Bins were
averaged to obtain both the decoded estimate and ob-
served values of the kinematic and performance errors.
For each parameter this process was repeated 25 times
and for each repeat the training and the test trial sets were
randomly selected. Due to the low number of data points
around the boundaries of the parameter workspace, we
restricted the decoding to =5.6 cm for X and Y, =10 cm/s
for VX and VY, =2 cm for XE and YE, 0-2.2 cm for RE, and
0.4-9 cm/s for S.

Two measures were used to quantify the accuracy of
decoding. The first, goodness of fit (GoF), was determined
over the 25 decoding repeats:
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Figure 4. Purkinje cell simple spike modulation in relationship to position error during track period. A, Sequence of
firing maps showing simple spike modulation with position errors in 200-ms steps. B, D, F, R temporal profile shows the
strength of XE, YE, and RE encoding as function of 1, respectively. C, E, G, B temporal profiles show the firing sensitivity to XE,
YE, and RE as a function of 7, respectively. Color scheme of firing maps, 7 values, and denotation of chance encoding as in

Figure 2.

D Ko — Xows?

GoF = 1 — -
2 (XObs - XObS)2

in which X, and X, are the decoded and the observed
values, respectively, and X, is the mean of the ob-
served values (Best et al., 2016). Similar to the R2, GoF
quantifies the variability common to both the observed
and decoded values. A GoF of 1 denotes perfect de-
coding, while negative values denote inconsistent de-
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coding, in which the variability of the decoded
distribution greatly exceeds the variability of the ob-
served. The second measure was the slope of the
decoded values with the observed values across the 25
repeats as determined by a linear regression. A slope of 1
denotes perfect decoding. As an additional control, we as-
sessed decoding performance against random decoding.
For random decoding, instead of using the regression model
determined by the training trials from a given cell, we used a
model from a random cell and then followed the same
procedures to estimate the decoding quality.

eNeuro.org
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Table 1: Statistical table

Line Data structure Test Power

a Non-normal (bootstrapped R?) Statistical threshold (mean + 4 SD) p = 0.02

b Normal (encoding similarity, behavioral interaction) Pearson correlation p = 0.002
c Normal (encoding similarity, behavioral interaction) Pearson correlation p = 0.003
d Normal (encoding similarity, behavioral interaction) Pearson correlation p = 0.01

e Normal (bootstrapped behavioral noise) Statistical threshold (mean = 4 SD) p < 0.0001

Relationship between complex spike discharge and
behavior

The low frequency of complex spike discharge is not
compatible with the temporal linear regression analyses
used for the simple spike firing in this report. Therefore,
investigation of the relationship between complex spike
discharge and each parameter was based on the complex
spike triggered averaging strategy used recently (Streng
et al., 2017). For each behavioral parameter, the average
behavior was determined from 2000 ms before to 2000
ms after each complex spike, the same time window used
for the simple spike analyses.

To test for a statistically significant relationship between
the complex spike discharge and a parameter, a boot-
strapping approach was used in which a noise distribution
of the behavior was generated by randomly shuffling the
interspike intervals of the complex spikes in each ftrial
(ISl-shuffled, 50 repeats). Next, we computed the mean
and standard deviation of the ISI-shuffled complex spike-
triggered behavior. If the local minima or maxima of the
complex spike-triggered averaged behavior exceeded a
threshold of mean = 4 SD of the noise distribution, the
complex spike modulation with that parameter was de-
fined as statistically significant. Note that, to be consistent
with the threshold used for simple spike long-term corre-
lations, the threshold (mean = 4 SD) for complex spike
modulation employed here is higher than that used in
the previous study (Streng et al., 2017). Both the occur-
rence of a significant complex spike-coupled behavioral
change and timing of the change were determined, with
negative times indicating a behavioral change before and
positive times indicating behavioral change after complex
spike discharge.

Results

Long-term simple spike modulation with kinematics
and performance errors during tracking

We recorded and analyzed the simple spike activity
from 183 Purkinje cells in two monkeys (65 neurons in
monkey N and 118 in monkey I) during the pseudo-
random tracking task. This dataset includes a reanalysis
of 120 neurons used to describe the kinematic and error
signals in Purkinje cells (Hewitt et al., 2011; Popa et al.,
2012). The neurons were recorded in lobules IV-VI of the
paravermal and neighboring lateral cerebellar zones. An
example Purkinje cell recording of simple spikes and
complex spikes (red dots) during tracking is illustrated in
Figure 1A, in which the 1-s sample period includes two
complex spikes both followed by a simple spike inactiva-
tion period (Thach, 1967; Bloedel and Roberts, 1971). For
the same cell in Figure 1B, the simple spikes and complex
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spikes during an entire trial are superimposed on the hand
position (open circles and dots, respectively) with the area
covered by movement of the target also shown (gray
region). The initial analysis was restricted to the simple
spike firing and behavioral parameters during the track
period. The analysis not only confirmed the previously
detailed short-term correlations in the simple spike firing
at leads and lags within =500 ms (Hewitt et al., 2011;
Popa et al., 2012), but also revealed correlations at much
longer times for both kinematics and errors. As illustrated
for an example Purkinje cell (Fig. 2A), the plots of mean
subtracted simple spike firing show modulation with po-
sition (X and Y) throughout the £2000-ms window. As
early as -2000 ms, the simple spike firing leads position,
with the strongest modulation in the upper left quadrant
that peaks about -1500 ms. The firing pattern evolves
from feedforward to feedback lags, with the predominant
modulation in the lower half of the position space from
0-1000 ms. The R? and B temporal profiles for X (Fig.
2B,C) and Y (Fig. 2D,E), respectively, match the firing
plots and confirm the long-range modulation with position
at both predictive and feedback r values (bootstrap sta-
tistical threshold, p = 0.022 for all p-values see Table 1 for
statistical details).

Similar long-range modulation in the simple spike dis-
charge occurs with velocity (VX and VY). As shown for
another Purkinje cell, simple spike firing increases in the
upper right quadrant of the velocity space from -2000 to
-1000 ms with a maximum at approximately -1700 ms.
Similarly, there is long-term modulation with velocity at
feedback lags characterized by increased firing in the
lower right quadrant of the workspace that peaks at ap-
proximately -800 ms. Both the R? and 8 temporal profiles
reveal significant and strong correlations and modulation
in the simple spike firing, respectively, from -2000 to
-1000 ms in VY and from -200 to +2000 ms in both VX
and VY (bootstrap statistical threshold, p = 0.02%, Fig.
3B-E). There is also short-range modulation of the simple
spike firing with VX and VY with peaks at -200 and 300
ms, respectively (bootstrap statistical threshold, p =
0.029).

Finally, correlations at extended lead and lag times also
occur with performance errors. As shown in Figure 4,
plots of the simple spike firing in relation to position errors
(XE and YE) and the results of the regression analyses
reveal strong predictive modulation beginning at -1600
ms as well as modulation at lags from 800 to 1800 ms. For
this Purkinje cell, the strongest modulation is with YE. As
these examples illustrate, simple spike firing can both
lead and lag motor behavior over a =2000-ms window.
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Figure 5. Temporal distribution of simple spike peak and averaged R? values during the track period. A, Distributions of significant
R? peaks for position (left panel) and averaged R? (right panel) for each of the predictive and feedback epochs (X, blue; Y, red). B,
Similar distributions of significant R? peaks (left panel) and averaged R? (right panel) for velocity (VX, blue; VY, red) and speed (S,
green). C, Distributions of significant R? peaks (left panel) and averaged R? (right panel) for position error (XE, blue; YE, red) and radial
errors (RE, green). Epochs are P1: -2000 to -1500 ms, P2: -1500 to -1000 ms, P3: -1000 to -500 ms, P4: -500-0 ms, F1: 0-500 ms,
F2: 500-1000 ms, F3: 1000-1500 ms, F4: 1500-2000 ms. Same epochs are used in subsequent figures.

Population results during tracking

As detailed in the Materials and Methods and illustrated
in Figures 2-4, we employed a very conservative criterion
to define a significant correlation between the simple
spike firing and a parameter based on shuffled trials,
requiring that the R? exceed the mean + 4 SDs of the
results from shuffled trials. Using this definition of signif-
icance, we determined for each parameter the magnitude
and timing of the largest significant peak R2s in each of
the predictive and feedback 500-ms epochs (bootstrap
statistical threshold, p = 0.02%; Fig. 5).

While for most parameters, the largest R? values are in
the -500- to 500-ms epochs, significant simple spike
modulation occurs frequently for the longer epochs (Fig.
5, left column). In the longest feedforward epoch (P1,
-1500 to -2000 ms), 152 Purkinje cells (83%) have at least
one R? profile with a significant peak among all parame-
ters and an average of 2.3 = 1.3 significant peaks. For the
longest feedback epoch (F4), 159 cells (87 %) have at least
one significant peak and an average of 2.3 = 1.2 signifi-
cant peaks. Similar numbers of Purkinje cells (168 = 7
cells) have at least one significant peak in any of the four
intermediate epochs spanning -1500 to -500 (P2 and P3)
and 500-1500 ms (F2 and F3) with an average of 2.5 = 1.2
significant peaks per cell. For each of the two short-range
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epochs covering -500-500 ms (P4 and F1), 173 Purkinje
cells have at least one significant peak, with an average
3.8 = 1.6 significant peaks per cell. With the exception of
the shortest-range epochs (P4 and F1), the individual
components of position (X, Y), velocity (VX, VY), and
position error (XE, YE) have more frequent representations
(59 = 20 Purkinje cells on average) than S and RE (19 =
7 Purkinje cells on average).

Averaging the R? values for each parameter across the
500-ms epochs (Fig. 5, right column) confirms that the
weakest representations are with S and RE. The strength
of position encoding (X, Y) is relatively constant. For the
remaining parameters (VX, VY, S, XE, YE, RE), the average
R? values show that while encoding strength is greatest
for the shortest-range epochs (P4 and F1), there is a
strong encoding in all epochs.

Control analyses

Because the finding of simple spike modulation that
leads and/or lags the kinematics and performance errors
over these extended times is novel and potentially con-
troversial, it is imperative to demonstrate that the results
are neither spurious nor the result of inherent confounds,
such as inter- or intratemporal correlations in either the
spike trains or individual behavioral parameters. There-
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Figure 6. Behavioral parameters temporal structure and interactions. A, Autocorrelograms of the simple spike firing and behavioral
parameters. B, Cross-correlograms for all pairs of kinematic and error parameters. An * marks the time of a positive or negative

correlation between parameters that exceeds a threshold of p < -0.1 or p > 0.1, respectively. Mean (solid line) *

SD (gray area) of

autocorrelograms and cross-correlations computed over entire data set from the 183 Purkinje cells.

fore, in addition to using the strict criterion for signifi-
cance, we performed several control analyses. To
address the question of temporal correlations within a
parameter, the autocorrelations (mean * SD) were deter-
mined for each kinematic and error parameter as well as
the simple spike firing of the 183 Purkinje cells (Fig. 6A).
Most of the autocorrelations have a relatively narrow time
span with half-height durations of 440 ms for velocity, 280
ms for speed, 580 ms for position error, 400 ms for radial
error, and 280 ms for simple spike firing. Both VX and VY
have secondary peaks at =800 and =680 ms, respec-
tively. However, the amplitude (p value) of these peaks is
low (~0.2), and could account for no more than 4% of the
variability. All other local maxima in the autocorrelation
profiles are <0.1 and could account for <1% of the
variability. In addition, the autocorrelation profiles are
highly stereotypic with very small variance across the
population of neurons, unlike the widely distributed peak
R? times for the regressions of the firing with kinematics or
errors (see Figure 5). Furthermore, the autocorrelation of
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many of the parameters decreases smoothly from the
peak at 0 ms, which is quite different from the complex R?
temporal profiles of the simple spike firing (Figs. 2-4).
Therefore, the temporal structure of the autocorrelations
for the behavioral parameters and the simple spike dis-
charge cannot easily explain the firing regression results.

The above arguments are not as straight-forward for
position. As expected, the autocorrelations for X and Y
extend over longer time courses with a half-width of 2240
ms as position changes slowly. However, there are no
secondary peaks in the autocorrelations of X and Y that
can explain the multiple peaks and complex temporal
structure found in the simple spike regressions (Fig. 5).
The regression analysis for a parameter based on using
the residuals in the simple spike firing after removing the
variability associated with the other parameters was de-
signed to remove correlations among parameters at each
7 value. However, this does not necessarily eliminate the
correlations among parameters at different 7 values.
Therefore, we determined the cross-correlations between
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Figure 7. Relation between encoding similarity and behavioral interaction for pairs of parameters with significant correlation. A,
Scatter plots of encoding similarity minima versus peak negative behavioral interaction for X and VX, VX and XE, and Y and YE,
respectively. B, Scatter plots of encoding similarity maximum versus peak positive behavioral interaction for the same parameters in
A. Each scatter plot shows data from all 183 Purkinje cells. The times of the peak negative and positive behavioral interactions for each
parameter are shown in Figure 6B (). The Pearson correlation coefficient (p) and p value are included in each scatter plot.

all possible combinations of parameters (Fig. 68). Al-
though many of the cross-correlations are essentially flat,
particularly beyond the £500-ms epochs, several pairs of
parameters have peak correlations (p < -0.1 or p > 0.1).
However, two observations suggest that these interac-
tions cannot explain the long-range encoding observed in
the simple spike firing.

First, the timing of the correlations for all behavioral
pairs is very stereotypic, with the minima and maxima at
specific leads and lags. In contrast, the times of the R?
peaks in the simple spike regression are distributed
widely throughout the =2000-ms window (Fig. 5). Sec-
ond, we developed a more quantitative assessment of
whether the observed short- or long-range correlations
between some pairs of behavioral parameters (Fig. 68)
contributed to the simple spike encoding of these param-
eters. As described in the Materials and Methods, for
pairs of parameters with a correlation that exceeded a
threshold (p < -0.1 or p > 0.1), the encoding similarity
between the B profiles was determined and then com-
pared with the behavioral interactions across all Purkinje
cells. Strong correlations between the encoding similari-
ties and behavioral interactions would demonstrate that
the behavioral relationships determine the simple spike
encoding. Conversely, weak or nonsignificant correlations
would suggest that the simple spike representations of
the two parameters, although influenced by the behavioral
interactions, also encode independent information.

Figure 7 shows examples of this analysis of the relation
between encoding similarity and behavioral interaction for
three pairs of parameters with the largest correlations.
The six scatter plots (three for the maxima and three for
the minima of the behavioral interaction) illustrate that
encoding similarity is mostly uncorrelated to the behav-
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ioral interaction, with the only significant correlation for
the minimum of VX with XE (Pearson correlation, p = 0.23,
p = 0.002°; Fig. 7A). For all other pairs, the only additional
significant correlations between encoding similarity and
behavioral interaction are for the minimum of Y with VY
(Pearson correlation, p = 0.22, p = 0.003° and the max-
imum of S with RE (Pearson correlation, p = 0.20, p =
0.019). Although significant, the magnitudes of these cor-
relations are small. These control analyses show that the
temporal correlations among the behavioral parameters
do not reliably predict the degree of simple spike encod-
ing throughout the =2000-ms window and therefore, the
simple spike firing provides independent information
about behavior at different moments.

Decoding of kinematics and errors during tracking

A population decoding analysis assessed the quality
and accuracy of behavioral information conveyed by the
simple spike firing. Figure 8 illustrates several examples of
the decoding for VX and YE for the shortest (-500-0 and
0-500 ms, middle panels) and longest (-2000 to -1500 ms,
and 1500-2000 ms, top and bottom panels, respectively)
epochs. Decoding of VX in the short-range epochs (Fig. 8,
middle panels) is excellent with a GoF = 0.97 for the
short-range predictive epoch and 0.95 for the short-range
feedback epoch. The strong linear correlations between
the observed and decoded values with slopes close to 1
(1.08 for predictive and 0.8 for feedback) confirm the
excellent decoding and show that the decoded values
map most of the velocity working space. For the longest-
range epochs (Fig. 8, top and bottom panels), the de-
coded values increase in variability, particularly near the
boundaries of the velocity workspace. At the workspace
boundaries, there is also a gradual reduction in the span
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to perfect decoding. In each row, the population decoding is performed using signals from a specific epoch (indicated on the right
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of decoded to observed values. These two factors de-
crease the GoF and decoding slope, respectively. For the
longest predictive and feedback epochs, the GoFs de-
crease to 0.69 and 0.66 and decoding slopes to 0.47 and
0.46. The decoding of YE has similar features to VX, with
excellent short-range decoding and lower decoding qual-
ity at the longest-range epochs.

Decoding performance for each behavioral parameter
across all epochs is shown in Figure 9. All parameters,
without exception, show nearly perfect decoding at the
short-range epochs (P4 and F1), which cover the imme-
diate prediction and feedback related to executing current
motor commands. The decoding quality measures show
that the simple spike firing contains significant information
about position, velocity, and position errors over the entire
+2000-ms window.

To better understand the quality of the simple spike
decoding, we compared it to random decoding (see Ma-
terials and Methods). Random decoding provides little
information about the behavior, with GoFs either close to
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zero or strongly negative and slopes near zero. Although
the decoding quality of speed and radial error in the
short-range epochs is similar to the other parameters,
decoding quality in the long-range epochs is much lower.
However, significant information above random is still
present in several epochs (-1000 to -500 ms and 500-
1000 ms for S and -1500 to -1000 ms and 500-1000 ms
for RE). We conclude that the cerebellum encodes rich
and simultaneous representations of motor behavior up to
2 s before and after current movement.

Long-term simple spike modulation with behavior
during the hold periods

A second set of analyses evaluated whether the simple
spike firing in the initial or final hold periods encodes
predictive or feedback behavioral information, respec-
tively. For the initial hold, we tested whether the firing
modulates with kinematics or performance errors during
the upcoming tracking. The regression analysis compared
the simple spike firing during the initial hold to the upcom-
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Figure 9. Decoding performance across all epochs during track period. A, GoF for all parameters as identified on column B. B, Decoding
slope for all parameters. For both columns, red illustrates population based decoding and blue illustrates chance decoding.

ing position at 20-ms intervals (r values). The analysis is
illustrated in Figure 10A showing the actual simple spike
firing during the initial hold for a single trial and four
example segments of X-position at 500-ms 7 values.
Note to maintain the same convention as the analyses
during the track period, negative 7 values denote firing
leading the behavior and positive 7 values lagging the
behavior. Therefore, the 1500-ms initial hold firing
(black inset) was regressed to X-position of equal du-
ration, starting at a = of 0 ms (black segment) to -2000 ms
(red segment) in 20-ms steps. As Tincreases, the position
extends further into the track period. The trial illustrated in
Figure 10A shows qualitatively that simple spike firing
during the initial hold is correlated best with X-position at
a 7 value of -1500 ms (green X-position trace), which is
entirely during the track period. The R? temporal profile
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across all trials for this example confirms the single trial
observation, as the simple spike firing during the initial hold
has the largest correlations with upcoming X-position with
from -2000 to -1000 ms (bootstrap statistical threshold, p =
0.02%; Fig. 10B).

We also tested whether the firing in the final hold period
modulated with kinematics or performance errors during
the preceding track period. For the example shown in
Figure 10C, the simple spike firing during the final hold is
regressed to YE at progressive lags, again showing YE at
four feedback 7 values from 0 to 2000 ms. During this trial,
the pattern of simple spike firing during the hold period
has the highest correlation with YE at a feedback 7 of
1000 ms (blue trace). For this Purkinje cell, the R? plot of
the simple spike firing during the final hold period shows
significant feedback correlation with YE that peaked at
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Figure 10. Analyses used to correlate simple spike activity during the hold periods with the behavior parameters. A, Simple spike firing
(upper left inset) from a single trial during the initial hold period (gray shadow) is correlated with X-position at different 7 values from
0 to -2000 ms using a sliding window of the same width as the initial hold period. Colored traces illustrate X-position at + = 0 ms
(black), 7 = -500 ms (pink), * = -1000 ms (blue), T = -1500 ms (green), T = -2000 ms (red). B, For the same cell in A, the R? temporal
profile from the regression with X across all trials as a function of 7. C, Simple spike firing (lower right inset) from a single trial during
the final hold period (gray shadow) is correlated with position error (YE) recorded in both track (gray segment) and final hold (black
segment) periods using a sliding window with the same width as the final hold period moving from 0-2000 ms. Colored segments
illustrate the sliding window at 7 = 0 ms (black), 7 = 500 ms (pink), 7 = 1000 ms (blue), 7 = 1500 ms (green), 7 = 2000 ms (red). D,
For the same cell as in C, the R2 temporal profile from the regression with YE encoding across all trials as a function of 7. Arrows at
the bottom of A and C indicate direction of recording time. B, D, Colored dots coded the same as in A and C, respectively.

Conventions for 7 values, and denotation of chance encoding are as in Figure 2.

~1100 ms (bootstrap statistical threshold, p = 0.02%; Fig.
10D).

An example of simple spike modulation during the initial
hold period in relation to the upcoming position errors is
shown in Figure 11A-E. The firing plots at several 7 values
demonstrate strong simple spike modulation that leads
XE from -1400 to -500 ms (Fig. 11A). The R? and B
temporal profiles confirm the presence of significant pre-
dictive firing with both XE and YE (bootstrap statistical
threshold, p = 0.02%; Fig. 11B-E, respectively), although
the stronger and longer modulation occurs with XE. An
example of long-range feedback encoding of position
during the final hold is shown in Figure 11F-J, in which the
firing plots exhibit simple spike modulation in the upper
right quadrant of the position space at lags of 1200-2000
ms (Fig. 11F). The R? and B temporal profiles show the
significance, timing and magnitude of the feedback mod-
ulation with X and Y (bootstrap statistical threshold, p =
0.02%; Fig. 11G-J, respectively). These examples demon-
strate that during the hold periods when the animal is not
tracking and relatively stationary, the simple spike activity
contains predictive information about the upcoming
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movement as well as feedback information about the just
completed tracking.

As done for the analysis of the track period (see Figure
5), the magnitude and timing of the largest significant
peak R? was determined for each parameter for the pre-
dictive epochs for the initial hold (bootstrap statistical
threshold, p = 0.02%; Fig. 12A-C) and for the feedback
epochs for the final hold (bootstrap statistical threshold, p
= 0.02% Fig. 12D-F). In the longest feedforward epoch for
the initial hold period (-1500 to -2000 ms), 90 Purkinje
cells (49%) have a least one R? profile with a significant
peak across all parameters and an average of 1.67 = 1.06
significant peaks. For the longest feedback epoch for the
final hold, 108 cells (59%) have a least one significant
peak and an average of 1.63 * 0.86 significant peaks.
Similar numbers of Purkinje cells (99 = 19 cells) have at
least one significant peak in any of the four intermediate
epochs (P2, P3, F2, F3) with an average of 1.67 = 0.86
significant peaks per cell. In the shortest-range predictive
epoch (P4), the firing in the initial hold period of 95 Pur-
kinje cells has at least one significant peak with an aver-
age of 1.5 = 0.77 peaks. In the shortest-range feedback

eNeuro.org



eMeuro
A 1700

YE (cm)
[
£
B
© 5
s/soyIds

New Research 15 of 22

2
-10
2 0 2
XE (cm)
B C= =
[&] (&}
0.3 - XE Qo0 D 4
i * 1 "
& 02 . Eo £ 2
0.4 e = - < ., =0
(2] N
00 Ll L L) 1 g '4 1 L ) ) g -2 ) ) ) ) 1
-2000 -1000 0 2 -2000 -1000 -2000 -1000 0 2 -2000 -1000 0
T (msec) @ T (Msec) T (Msec) @ T (mMsec)
1400 1600 1800 2000
C - 19 .
. .
=
= 09
u »
N -10
H= | Jo
g 3
915 w15
10 10
L O
% 05 %0-5
P 0.0 4 T T T 1 %00 ' ! ' ' !
0 1000 2000 L% 0 1000 2000 0 1000 2000 \8/' 0 1000 2000
T (msec) @ T (msec) T (Mmsec) @ 1 (msec)

Figure 11. Purkinje cell simple spike modulation during the hold periods in relation to errors and kinematics motor. A, Sequence of
firing maps in 300-ms steps of the simple spike modulation in the initial hold with error position. B, D, R? temporal profiles show the
strength of XE and YE encoding as function of  value for this example recording. C, E) 3 temporal profiles show corresponding simple
spike sensitivity during the initial hold to XE and YE as a function of 7 value. F, Sequence of firing maps in 200-ms steps of the simple
spike modulation during the final hold with hand position for another Purkinje cell. G, I, R? temporal profiles show the strength of X
and Y encoding as function of 7 value for this neuron. H, J, B temporal profiles show simple spike sensitivity to X and Y as a function
of 7 value. Color scheme of firing maps, 7 values, and denotation of chance encoding are as in Figure 2.

epoch (F1), the firing in the final hold period of 129 Pur-
kinje cells has at least one significant peak with an aver-
age of 1.96 = 1.16 peaks.

The average R? values for the initial hold period show
that position, velocity, and speed are encoded most
strongly in the long-range predictive epochs (P1, P2). The
error terms have similar R? values for the four predictive
epochs. For the final hold period, the strength of the
correlation with most parameters is similar across feed-
back epochs. Therefore, as for simple spike discharge
during the track period, the firing in the hold periods
exhibits strong correlations with the kinematics and posi-
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tion errors of the upcoming and past tracking over the
+2000-ms time window.

Decoding of the simple spike activity in the initial and
final hold periods shows that the output of the cerebellar
cortex provides surprisingly accurate information about
the upcoming motor behavior and of past behavior, re-
spectively, lasting at least 2 s. Based on both GoF and
slope, decoding of position (X, Y) during the initial hold is
remarkably precise, well above random decoding, and
consistent across all four predictive epochs (Fig. 13A,B,
top two panels). This is similar with position decoding
observed during the track period (Fig. 9). Position error
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Figure 12. Temporal distribution of peak and averaged R? during the hold periods. A-C, Distribution of significant R2 peaks for the
initial hold period for each parameter (left panels) and averaged R? (right panels) for the predictive epochs. D-F, Distribution of
significant R? peaks for the final hold period for each parameter (left panels), and averaged R? (right panels) in the feedback epochs.

Epochs and color-code as in Figure 5.

(XE, YE) and radial error (RE) decoding exceeds random
decoding at all predictive epochs with strong decoding for
a large lumber of epochs. Velocity decoding based on the
simple spike firing in the initial hold is generally less
robust, except at the longest-predictive epoch (P1) and
speed decoding is at chance level. The strength of de-
coding based on the firing during the final hold (Fig.
13C,D) is similar to that observed for the initial hold pe-
riod. Decoding of position, position error and radial error
for the final hold period greatly exceeds random decoding
for almost all feedback epochs. Velocity decoding is less
strong, except at the shortest feedback epoch (F1) and
speed decoding is indistinguishable from chance.

Little evidence for long-term complex spike
modulation with kinematics and performance errors
In a subset of 40 Purkinje cells, the complex spike
discharge was reliably isolated and discriminated
throughout the entire recording session. An analysis of
both short- and long-term complex spike modulation with
each parameter during the track period was undertaken
on this group of neurons using complex spike-triggered
averaging. In these cells, the average pause in simple
spike firing following complex spike discharge was 48.6 *
85.7 ms with a minimum inactivation period of 10 ms
(Streng et al., 2017). With four of the five parameters only
short-term complex spike modulation occurred (Fig.

March/April 2017, 4(2) e0036-17.2017

14B-F). Only five instances of complex spike long-term
modulation with behavior were observed, all with position,
as shown for an example Purkinje cell (Fig. 14A). For these
five long-term complex spike modulations, identified in
four cells, the climbing fiber activity preceded a significant
change in position (o < 0.0001°%; Fig. 14B).

As opposed to this incidental long-range relationship
between complex spike discharge and position, the long-
range relationship between simple spike activity and be-
havior in this subpopulation mirrors that found in the
entire Purkinje cell population. For position, 80 long-range
predictive signals were found in simple spike firing of
32/40 Purkinje cells and 95 long-range feedback signals
in 28 cells. For velocity, 60 long-range predictive signals
and 64 feedback signals were present in 31 Purkinje cells
each. For position error, 29 long-range predictive signals
were observed in 23 cells and 44 feedback signals in 26
cells. As in the population, long-range speed and radial
error encoding, both predictive and feedback, were less
ubiquitous being present in 10 cells each. Therefore, the
long-term modulation in the simple spike firing is not
associated with or due to similar long-term relationships
in the complex spike discharge.

Discussion
The key finding presented here is that Purkinje cell
simple spike firing correlates with kinematics and perfor-

eNeuro.org



eMeuro

Initial Hold
A ] B ] X
}HHHB {0000
I : Y
HEEE oo
I0 VX
I (o
] {d=0o:
...é
E  les=c
ui []_xE
e s
1 — - YE
1=HHA I
05 B R
82|08 £ {00
P1 Eioﬁ P4 P1 Ei oPca‘hm

New Research 17 of 22
Final Hold
C D : 5
(LS v
] ) Y
1HHO 3
" oo
| VX
Uo=g
| {Ho—s
] VY
{U=0g
| e
S
LB —
— | XE
oo 3DHHE
o %
.=}:H -D[D
m&&H © i
] L | 8050
35100 #410ndo
O TR FaFa F1F2 F3F4
Epoch Epoch

Figure 13. Decoding performance during hold periods. A, B, GoF and decoding slope based on the simple spike firing during the initial
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mance errors over a much longer time horizon than pre-
viously reported (Marple-Horvat and Stein, 1987; Fortier
et al.,, 1989; Stone and Lisberger, 1990; Shidara et al.,
1993; Fu et al., 1997; Gomi et al., 1998; Coltz et al., 1999;
Roitman et al., 2005; Medina and Lisberger, 2009; Dash
et al., 2012). Significant modulation commonly occurs at
least 2 s before and following many of the behavioral
parameters evaluated. Although the strongest modulation
occurs between -500 and 500 ms, decoding demon-
strates that the information present in the population of
Purkinje cells can accurately predict a great deal about
the upcoming position, velocity, and position errors and
retain signatures of these parameters over this £2-s pe-
riod. While speed and radial error exhibit weaker long-

March/April 2017, 4(2) e0036-17.2017

range modulation, population decoding during tracking
for these two parameters reveals substantial improvement
above random decoding. Control analyses show that
the long-range encoding is neither spurious nor due to the
temporal structure of either the simple spike firing or the
individual behavioral parameters. Nor can the simple
spike modulation be attributed solely to correlations be-
tween parameters. The finding that the simple spike firing
in the hold periods encodes similar predictive and feed-
back information strengthens the view that the cerebe-
llum’s role is not relegated to immediate movement
processing but instead operates over a much longer
range of time. Finally, analyses of the complex firing in a
subset of Purkinje cells reveals little evidence for long-
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occurrence (t = 0 ms).

term modulation with behavior, showing that long-term
signaling in the simple spike firing is independent of the
complex spike discharge.

The presence of long-range predictive information may
appear to be somewhat paradoxical in a pseudo-random
tracking task. However, to ensure that the task was
not prohibitively difficult, the random trajectories were
smoothed by low-pass filtering of the target path and
implementation of the two-thirds power law for target
speed. While the full spatial and temporal course of the
trajectories are indeed unpredictable, the smooth target
movement allows formation of expectations about up-
coming motor behavior, such as the approximate hand or
target movement, over 1-2 s. In the -500 to 0-ms epoch,
upcoming kinematics and position error can be predicted
quite accurately and then decrease with time. At both
longer predictive and feedback epochs, the information in
the simple spike firing was less able to accurately recon-
struct position errors than kinematics. This likely reflects
that upcoming position errors are less predictable than
kinematics due to increased target movement uncer-
tainty, and that kinematic feedback information benefits
from multimodal support, both visual and proprioceptive
(Krakauer et al., 1999; Pipereit et al., 2006; Bock and
Thomas, 2011), while position error information is visual.

March/April 2017, 4(2) e0036-17.2017

Limitations of the analyses

It is important to discuss the limitations of the analyses.
First, we were not able to determine whether the motor
signals extend beyond *2 s. The pseudo-random track-
ing trajectories are 8-10 s long. Therefore, to have suffi-
ciently long data, the analysis was restricted to 2 s ahead
and following a parameter. However, as shown in the
examples (Figs. 2-4), the simple spike modulation is likely
to extend somewhat beyond the *2-s interval. To exam-
ine longer time courses of these signals, paradigms with
longer trajectories and holding periods would be useful.

Second, while the linear regression analysis based on
residual firing completely isolates a parameter at each 7
value, the approach does not remove intertemporal cor-
relations. The control analyses demonstrate that long-
range correlations among parameters are limited to a few
pairs and are very stereotypic (Fig. 7B). However, the
correlations in the simple spike firing with the parameters
are distributed over a much greater range of prediction
and feedback times compared with the behavioral corre-
lations (Fig. 5) and encoding similarity did not vary with
the behavioral correlation for most pairs of parameters.
Therefore, while intertemporal correlations cannot be
completely controlled for nor eliminated, these cannot
account for prevalence and times of the long-range firing
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modulations. Irrespective of any behavioral correlations,
there is sufficient information in the simple spike firing to
decode simultaneously both upcoming and past behavior
over the =2-s window. Finally, while we did not record
eye movements, several studies of Purkinje cell discharge
in the regions recorded found little evidence for eye move-
ment related activity (Marple-Horvat and Stein, 1990;
Mano et al., 1991; Mano et al., 1996; Coltz et al., 1999).

Functional implications

The long-term simple spike modulation with kinematics
and position errors has important implications for under-
standing the implementation of forward internal models,
specifically how performance from past actions informs
subsequent actions. Forward models predict the conse-
quences of a motor command and those predictions are
compared with the actual sensory feedback to compute
sensory prediction errors that are used to update motor
commands and guide motor learning (Miall and Wolpert,
1996; Wolpert and Ghahramani, 2000; Mazzoni and
Krakauer, 2006; Shadmehr et al., 2010; Wong and Shel-
hamer, 2011; Taylor and Ivry, 2012; Gaveau et al., 2014).
The cerebellum is widely hypothesized to implement for-
ward internal models (Wolpert et al., 1995; Wolpert et al.,
1998; Pasalar et al., 2006; Bell et al., 2008; Shadmehr
et al., 2010; Popa et al., 2013). The long-range feedback
modulation in the simple spike firing provides a mecha-
nism by which the motor system retains information about
past performance to both evaluate the consequences of
previous motor commands as well as update subsequent
commands. Both kinematic and task error information
persists over several seconds which suggests that the
cerebellum has access to multiple classes of information
about past performance in making these computations.

The long-range signals in the simple spike discharge
have implications beyond internal models for motor con-
trol as these signals provide a neural substrate for aspects
of cerebellar function that operate over several seconds.
The presence of long-range signals in the hold periods, in
the absence of motor commands related to tracking be-
havior, suggests that cerebellum not only encodes con-
sequences of current motor command but also encodes
expectations of future behavior and working memories of
past behaviors. As reviewed in the Introduction, lesion
and functional imaging studies document cerebellar in-
volvement with motor and nonmotor sequencing and
working memory (Doyon et al.,, 1997; Lu et al., 1998;
Nixon and Passingham, 2000; Chen and Desmond, 2005;
Molinari et al., 2008; Hautzel et al., 2009; Marvel and
Desmond, 2010; Kuper et al., 2016). The cerebellum is
hypothesized to be part of a network subserving atten-
tional anticipation and working memory that includes the
prefrontal and inferior parietal cortices (Posner et al.,
1984; Kim et al., 1994; Allen et al., 1997; Knight, 1997;
Allen et al., 2005). Event related functional MRI show
activation of the cerebellum 2-3 s before the onset of
movement and cognitive tasks (Hulsmann et al., 2003).
Magnetoencephalography shows that cerebellar activa-
tion anticipates sensory stimuli up to 4 s in advance
(Tesche and Karhu, 2000). The cerebellum has an active
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role in this network, as dentate lesions attenuate the
readiness potential (i.e., the Bereitschaftspotential; Kita-
mura et al., 1999), a major anticipatory marker for self-
initiated movements generated in the motor cortices
(Deecke et al., 1976; Neshige et al., 1988; Ikeda et al,,
1995). Another interesting observation is cerebellar in-
volvement in the 3-4 s integration window present in
motor, sensory and cognitive processes, considered to
represent the “subjective present” (Bechinger et al., 1969;
Fraisse, 1984; Mates et al., 1994). In a synchronous finger
tapping task, patients with spinocerebellar ataxia types 6
and 31, relatively pure types of cerebellar degeneration,
have a shortened temporal integration span compared
with the 3 to 4-s span of healthy subjects (Matsuda et al.,
2015). It has been postulated that the time window of the
subjective present is defined by the cerebellum (Ghajar
and Ivry, 2009). Therefore, the long-range signals de-
scribed here for the motor domain may play a more
general role in cerebellar function.

Source of the long-term simple spike signals

It is unclear whether these long-term signals are syn-
thesized locally or conveyed by afferent input. It has been
suggested that the motor error trace observed during
reaching is due to synaptic plasticity (Huang and Shad-
mehr, 2007; Chen-Harris et al., 2008; Ethier et al., 2008;
Yang and Lisberger, 2010). There are many forms of short
and long-term cerebellar synaptic plasticity that could
contribute (for reviews, see Hansel et al., 2001; Ito, 2001;
Boyden et al., 2004; Gao et al., 2012). It is also possible
that the long-range simple spike modulation is generated
locally, to some degree. For both Purkinje cells and mo-
lecular layer interneurons, synaptic responses to parallel
fiber activation can persist over 20 s (Collin et al., 2009;
Wang et al., 2011), providing a mechanism by which
information can remain within the cerebellar cortical cir-
cuitry.

The present findings suggest another mechanism; sig-
nals are held in temporary storage as described for work-
ing memory in the cerebral cortex. In one model relevant
to these long-range signals in the cerebellum, persistent
activity in the frontal and parietal cortices modulates the
activity of other brain structures, maintaining specific rep-
resentations of relevant behavioral attributes (Gazzaley
and Nobre, 2012; D’Esposito and Postle, 2015; Nyberg
and Eriksson, 2015). The cerebellum has strong closed-
loop connections with the cerebral cortex, including the
motor, prefrontal and parietal cortices (for reviews, see
Schmahmann and Pandya, 1997; Strick et al., 2009;
Bostan et al., 2013) and, as reviewed above, forms the
networks engaged in attentional anticipation and working
memory. Neurons in these cortical regions have feedfor-
ward and/or working memory discharge consistent with
the time courses shown here for Purkinje cells. For exam-
ple, motor sequence signals have been described in the
prefrontal cortex, supplementary motor area and primary
motor cortex (Shima and Tanji, 2000; Lu and Ashe, 2005;
Averbeck and Lee, 2007) and preparatory/instructional
signals in the supplementary motor area and dorsal pre-
motor cortex (Tanji et al., 1980; Kurata and Wise, 1988;
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Thach, 2007). Using a similar pseudo-random tracking
paradigm, the firing of primary motor cortical neurons also
exhibits long-range correlations with kinematics (Paninski
et al., 2004). Together these observations suggest a likely
source of the long-range signaling in the simple spike
firing involves recursive network interactions between
the cerebellum and cerebral cortex. Irrespective of the
specific mechanisms, the presence of long-range repre-
sentations of both upcoming and past behavior in Pur-
kinje cell discharge provides a possible neural substrate
for movement corrections, anticipatory signals, working
memory, and temporal integration across multiple classes
of behaviors.
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