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A defining feature of mechanical metamaterials is that their prop-
erties are determined by the organization of internal structure
instead of the raw fabrication materials. This shift of atten-
tion to engineering internal degrees of freedom has coaxed
relatively simple materials into exhibiting a wide range of remark-
able mechanical properties. For practical applications to be real-
ized, however, this nascent understanding of metamaterial design
must be translated into a capacity for engineering large-scale
structures with prescribed mechanical functionality. Thus, the
challenge is to systematically map desired functionality of large-
scale structures backward into a design scheme while using finite
parameter domains. Such “inverse design” is often complicated
by the deep coupling between large-scale structure and local
mechanical function, which limits the available design space.
Here, we introduce a design strategy for constructing 1D, 2D,
and 3D mechanical metamaterials inspired by modular origami
and kirigami. Our approach is to assemble a number of modules
into a voxelized large-scale structure, where the module’s design
has a greater number of mechanical design parameters than the
number of constraints imposed by bulk assembly. This inequality
allows each voxel in the bulk structure to be uniquely assigned
mechanical properties independent from its ability to connect
and deform with its neighbors. In studying specific examples of
large-scale metamaterial structures we show that a decoupling of
global structure from local mechanical function allows for a vari-
ety of mechanically and topologically complex designs.
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Recent experiments with mechanical metamaterials (1–3)
have demonstrated constitutive relations including penta-

mode behavior (4), negative effective bulk modulus (5), and
negative Poisson ratio (6). As a design motif, origami, the art
of paper folding, offers interesting possibilities to realize these
properties in a wide range of contexts. Because origami is
grounded in a centuries-old art form, this approach to creating
complex 3D structures benefits from a large body of established
techniques. Indeed, from simple flat sheets, studies have doc-
umented structures with negative Poisson ratio (7–10), repro-
grammable stiffness (11), multistability (12–14), curved meta-
surfaces (15–17), topologically protected modes (18), tunable
low-energy deformations (19), and multiple degrees of freedom
(DOF) (20). These examples generally involve relatively sim-
ple repeated folding patterns where creasing DOF compete with
local and global geometric constraints. As such, collective inter-
actions lead to the observed macroscopic constitutive relations.
However, to apply origami design motifs to next-generation
devices we must address the challenge of creating folding dia-
grams for an arbitrarily prescribed large-scale structure, indepen-
dently from the structure’s desired metamaterial properties.

In most quantitative studies of tessellated origami metama-
terials the folding pattern is deeply coupled to the structure’s
mechanics. Consequently, the design space for large-scale bulk
structure is tightly constrained by the selection of metamate-
rial properties. Here, we overcome this difficulty with inspiration

from two distinct branches of origami. One of these branches
specifically explores structures constructed with two or more
pieces of folded paper. These modular origami structures can
incorporate hundreds of folded sheets connected together by
inserting flaps from one module, which are created during the
folding process, into pockets of adjacent modules. The bulk
structure is then held together through a tensegrity-like pat-
tern of stresses and friction (21). Our second source of inspi-
ration is the branch of origami that intersects with paper cut-
ting known as kirigami. In this art form, elaborate structures
are designed by combining folding and cutting. Mechanically
speaking, the removal of material by cutting provides opportuni-
ties to introduce additional design parameters and DOF. Com-
bining modular origami with kirigami leads to a metamaterial
design strategy that takes mechanically distinct kirigami mod-
ules and treats them as voxels in a larger structure. When the
kirigami module has more design parameters Np than constraints
imposed by bulk assembly of multiple units Nc , each voxel
can have its mechanical properties independently prescribed
from their adjacent neighbors. In essence, this approach where
Np −Nc > 0 solves the inverse-design problem (22) and enables
a decoupling of large-scale structure from local mechanical
function.

Results and Discussion
It is possible to conceive innumerable structures for metamate-
rial assembly that illustrate the general Np −Nc > 0 design strat-
egy. To focus our efforts on a specific example, we designed a
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kirigami-inspired lantern-like pattern formed by cutting a thin
sheet (Fig. 1A, black outline), folding along the prescribed lines
to form hinge-like creases (Fig. 1A, pink dashed and solid lines),
and bonding adjacent edges to form crease-like hinges (Fig.
1A, e.g., BCD bonds BC ′D ′; 3D rendering shows the module’s
assembled form, SI Appendix, Fig. S1). The cutting and fold-
ing geometry is determined by angles α, γ, and lengths m,n,
and q so that Np =5. Each assembled module has only a sin-
gle kinematic DOF represented here by the dihedral angle θ
measured between planes BCFG and BCF ′G ′. Although this
choice for the DOF is not unique, θ conveniently varies from
0◦ to 360◦ when the module is designed with parameters that
avoid self-intersection during folding (Fig. 1B and Materials and
Methods).

When constructed from rigid sheets that neither bend nor
stretch the kirigami module’s kinematics are fully determined
by geometry. As θ varies the structure simultaneously under-
goes longitudinal and transverse deformations in its dimensions
X (θ),Y (θ), and Z (θ) (Fig. 1 A and B). From these quantities we
can calculate the Poisson ratios νZX and νZY , which are essen-
tially the ratios of strain (Materials and Methods). In addition to
taking values well beyond the 0 to 0.5 range found in most com-
mon materials, we found wide regions of parameter space for α
and γ as well as wide regions in configuration space θ that sup-
ports two simultaneously negative Poisson ratios (Fig. 1 C–F and
SI Appendix, Figs. S2 and S3). Combining the kinematic equa-
tions with a linear elastic energy expression reveals further useful
properties for bulk metamaterial design (Materials and Methods).
Specifically, we find the kirigami module can exhibit monostabil-
ity or bistability depending on the parameter values for α and γ
(Fig. 1 G and H and SI Appendix, Fig. S4), which were exper-
imentally confirmed in hand-folded models (SI Appendix, Figs.
S4–S6). Having shown the basic lantern-like kirigami module has
a wide range of mechanical features, we shift to the more acute
challenge of designing large-scale metamaterials with prescribed
mechanical properties.

Insights from modular origami art suggest large-scale meta-
materials can be assembled by voxelizing the desired large-scale
shape into cuboids and assembling the voxelized geometry from
a collection of kirigami-inspired modules. As mechanical build-
ing blocks, we require each module to be geometrically com-
patible with its neighbors within design tolerances. In the gen-
eral case, this condition means voxels are able to freely deform
without (i) colliding into their neighbors, (ii) separating from
their neighbors, or (iii) experiencing geometric frustration. In
the specific example of the lantern-like kirigami module studied
here, these conditions impose Nc =4 constraints for all θ in the
prescribed folding domain [θa , θb ]: The dimensions X (θ),Y (θ),
Z (θ), and the angle ∠EDE ′ must match for all voxels. The
first three constraints ensure voxels do not intersect during fold-
ing, and the fourth constraint ensures structures can be rigidly
connected along the ẑ -axis. Because the basic module has five
independent design parameters, these four constraints imposed
by bulk assembly leave Np −Nc =5− 4=1 free parameter to
choose mechanical properties of each voxel. As an example, we
picked a set of parameters for a target module (Fig. 2 A–C, gray
module) and constructed two additional geometrically compati-
ble modules with independently prescribedα (Fig. 2 A–C, orange
and red modules). The remaining parameter values for these
additional modules were found by calculating an error function
ε(θ) between the target and candidate geometries (Materials and
Methods) and searching for optimal parameter values that min-
imize the integrated error s =

∫ θb
θa
ε dθ over the design inter-

val, which in this case was chosen to be [300◦, 360◦]. A subspace
projection of the parameter landscape helps visualize the opti-
mization and shows a local minimum representing optimal val-
ues for the dimensionless lengths m/q and n/q (Fig. 2D, red
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Fig. 1. Geometry-driven metamaterial properties of a kirigami lantern-like
module. (A) The design pattern of one module (Left) involves cutting a thin
sheet along the thick black lines, then folding along the mountain (dashed)
and valley (solid) creases. Edges BCD and BC′D′ are bonded to create crease-
like hinges in each of the four symmetric quadrants. Similarly, F′E′ is bonded
to F′′E′′, along with the symmetric edges in the module’s upper half. The
plane angle parameters α and γ and lengths m, n, q determine the 3D
structure shown in the 1/4 (Middle) and full (Right) unit module. The dihe-
dral angle θ is chosen to quantify the module’s configuration. Parame-
ters φ and β are useful for the mathematical description of the geometry
(Materials and Methods). (B) The module takes various forms determined
by the configuration angle θ= 0◦, 90◦,180◦, 270◦, and 360◦. Poisson ratios
(C) νZY and (D) νZX as functions of folding configuration for α= 60◦ and
γ= 20◦, 30◦, 40◦, and 50◦. Poisson ratios (E) νZY and (F) νZX as functions
of folding configuration for γ= 40◦ and α= 50◦, 89◦, 110◦, and 140◦. Cal-
culations in C–F use m/q = n/q = 1.5. (G) The normalized elastic energy Ũ
as a function of γ and θ for parameter values α= 100◦, m/q = n/q = 1,
k2/k1 = 1.5, and θ0 = 10◦. Arrow indicates the module undergoes a bistable
transition between two energetic minima during folding. (H) The module’s
configuration for the two mechanically stable states in G. Reading left to
right in B and H corresponds to compression along ẑ, whereas right to left
corresponds to tension along ẑ.

star). Varying α to other prescribed values shifts this local min-
imum within the subspace, leading to different values for the
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Fig. 2. Geometric compatibility of modular kirigami voxels. (A) Design pat-
terns and (B) structure for three geometrically compatible voxels where the
first structure (gray: α= 100◦, γ= 62.4◦ and m/q = n/q = 2) is the target,
and the second (orange: α= 110◦, γ= 57.7◦, m/q = 1.55, and n/q = 1.77)
and third (red: α= 120◦, γ= 51.2◦, m/q = 1.33, and n/q = 1.64) are deter-
mined by parameter optimization over a prescribed folding domain.
(C) Overlapping the three voxels shows how different design patterns can
simultaneously satisfy the Nc = 4 conditions for geometric compatibility in
X, Y , Z, and ∠EDE′ (e.g., Xgray = Xorange = Xred and Ygray = Yorange = Yred, etc.).
This mutual consistency allows geometrically compatible voxels to be inter-
changeable within a large-scale structure assembled from a mechanically
heterogeneous collection of modules. (D) Identifying geometric compatibil-
ity requires minimizing the integrated error s over the design parameters.
This projection of parameter space shows the local minimum of s (red star) as
a function of dimensionless lengths n/q and m/q. (E) Varying folding angle
α changes the optimal values of n/q and m/q that minimize error between
the target structure and the structure being optimized for geometric com-
patibility. (Inset) The error function from which we calculate and minimize
the integrated error s.

optimized parameters (Fig. 2E, points). Generally, we found
our method reliably produced geometric compatibility satisfy-
ing tight error tolerances within the prescribed folding domain
(Fig. 2E, Inset, ε for 300≤ θ≤ 360◦) but that these same designs
become incompatible outside the prescribed bounds (Fig. 2E,
Inset, ε for θ < 300◦). With this approach for designing geomet-
rically compatible and mechanically distinct building blocks we
now focus on voxelizing and assembling 1D, 2D, and 3D large-
scale metamaterials.

A simple metamaterial for experimentally validating geomet-
ric and mechanical predictions is a 1D chain of voxels aligned on
the ẑ -axis (SI Appendix, Figs. S5 and S6). We fabricated these
structures with one, two, and three voxels from thin sheets and
measured their force–displacement relation. These data com-
pared favorably with the simple energetic model predictions
(Materials and Methods), and we generally found the results to be
reproducible up to material-specific plastic deformations arising
from multiple cycles of testing. A notable exception between the
model and data was observed when one voxel with large m , which
was predicted to undergo a bistable transition, instead underwent
two bistable transitions (SI Appendix, Figs. S5 and S6). In these
data, we found the lower portion of the voxel hopped between
bistable states as the strain increased, while the upper portion
hopped between bistable states as further strain was applied.

Because the energetic model is symmetric with respect to inver-
sion along ẑ , the transitions of a voxel’s upper and lower sections
between states 1 and 2 are predicted to occur simultaneously
(Fig. 1 G and H). Real materials and practical fabrication meth-
ods, however, introduce heterogeneities that break this symme-
try. As a whole, these experiments generally show mechanical
properties in voxelized 1D metamaterials can be predicted, pre-
scribed, and designed, but nevertheless, experimental validation
is still important.

Next, we use the Np −Nc > 0 design strategy to construct 2D
bulk metamaterials, which by scaling up in dimension allows for
greater mechanical and topological complexity. The two exam-
ples we study mask bulk deformations of a large-scale struc-
ture using a target module with prescribed properties (Fig. 3A)
and geometrically compatible modules optimized to (i) neutral-
ize bulk strain in the x̂ direction (Fig. 3B) and (ii) “cloak” a
structural hole (Fig. 3C). In our first example, the 2D structure
is voxelized into a series of 1D stripes alternating target and
geometrically compatible modules (Fig. 3D). When compressed
along the ẑ -axis, the target module’s θ-dependent Poisson ratio
νZX is compensated for by the compatible module, whose Pois-
son ratio is optimized to be equal and opposite (Fig. 3E, pink
and gray lines). The collective effect is to allow for deformations
along the ẑ -axis while neutralizing bulk strain along the x̂ -axis
(Fig. 3E, Inset). Interestingly, the zero bulk Poisson ratio engi-
neered into this structure is what makes cork useful as a bot-
tle stopper; cork stoppers provide a tight transverse seal while
still allowing for longitudinal motion in or out of the bottle’s
opening (23). In our second example, a homogeneous 2D struc-
ture composed from the target module (Fig. 3F) is structurally
weakened with a hole (Fig. 3G) and then reinforced with geo-
metrically compatible modules (Fig. 3H). In terms of the bulk
properties, the original and reinforced structures have Young’s
moduli of 8.1 kPa, whereas the weakened structure has a Young’s
modulus ≈ 53% lower at 3.8 kPa. In this example, we optimized
the free parameter of the reinforcing module to restore the ini-
tially prescribed bulk force–displacement relation to its origi-
nal form (Fig. 3I and Materials and Methods). When probed
with external loads, this new heterogeneous structure can func-
tion as a mechanical cloak by obscuring any contents placed in
the hole.

Topological complexity can be greatly increased in large-scale
3D metamaterials. To construct such structures, we voxelize the
x̂ ŷ-plane (Fig. 4A) and stack along the ẑ -axis to create a cuboidal
structure with all modules in the same orientation (Fig. 4B). As
with the 1D and 2D structures, this 3D voxelization of space is
independent from the prescribed mechanical properties of the
modules as long as geometric compatibility and Np −Nc > 0 are
satisfied. For a demonstrative example of what can be achieved
with the same 4× 7× 4 cuboidal volume (Fig. 4B), we chose
three sets of parameters and calculated the respective Poisson
ratios (Fig. 4 C and D). These data illustrate how the same large-
scale structure can have distinct mechanical properties. For prac-
tical purposes, it is important to note the accuracy between a tar-
get 3D structure and a structure fabricated from finite-size voxels
will be tunable. These differences, quantified by an error met-
ric such as ε3D (Methods and Materials), can be reduced by scal-
ing down the voxel size relative to the target structure (Fig. 4D,
Inset), which produces a practical trade-off between structural
accuracy and the total number of voxels needed for an appli-
cation. To fully demonstrate the potential of the Np −Nc > 0
design strategy, we chose five large-scale 3D target structures
including a sphere, three triply periodic minimal surfaces, and
a micro-CT volumetric scan of mouse femur bone (Fig. 4E, first
row). We voxelized these structures, arbitrarily prescribed one
set of mechanical properties on all modules involved, and cal-
culated the various configurations as a function of θ (Fig. 4E,
second and third rows). Although all of these 3D structures
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Fig. 3. Assembly of kirigami modules into voxelized 2D mechanical meta-
materials. Starting with the (A) target voxel (gray; α= 100◦, γ= 62.4◦

and m/q = n/q = 1), we generate a (B) geometrically compatible strain-
neutralizing voxel (pink; α= 80◦, γ= 62.4◦, m/q = 1, and n/q = 1.77) and
a (C) geometrically compatible mechanically reinforcing voxel (orange;
α= 96.9◦, γ= 63.3◦, m/q = 0.24, and n/q = 0.71). (D) Forming a striped
pattern of the target (gray) and strain-neutralizing (pink) voxels leads to
a structure where the (E) θ-dependent Poisson ratio of the two voxel types
cancels out to create a large-scale metamaterial with zero strain along the
x̂-axis during compression. (F) Forming a homogeneous 2D bulk metama-
terial from target voxels leads to a structure with prescribed mechanical
properties. (G) By removing target voxels, we create a cavity that intro-
duces topological complexity, but the structure as a whole deviates from
the prescribed mechanical properties. (H) By replacing a subset of target
voxels (gray) with reinforcing voxels (orange) that were optimized to match
the mechanical response over the prescribed folding domain, we are able
to restore the original structure’s target properties. (I) Calculations for the
normalized force response F̃(θ) demonstrates the ability to have indepen-
dent structural and mechanical properties. Deviations between the origi-
nal and hole-cloaking structure are constrained by the optimization error
tolerance.

have identical kinematics, we see the decoupling of large-scale
structure from local mechanical properties trivializes the design
challenge of simultaneously achieving prescribed mechanical and
topological complexity.

Conclusion
The design principle for decoupling local mechanics and bulk
structure in 1D, 2D, and 3D metamaterials introduced here
broadly applies to all classes of metamaterials. Nevertheless,
by working with a specific example of the lantern-like kirigami
module we found a number of insights useful for any practi-
cal realization of the Np −Nc > 0 design strategy. For exam-
ple, if the fabrication material is brittle, it may be advantageous
to design structures using a homogeneous set of modules. By
ensuring all voxels in the metamaterial are identical the com-
pressive behavior is always geometrically compatible and the
risk of failure reduced. However, if the fabrication material is
pliable, then heterogeneous structures can activate additional
bending or stretching DOF, offering greater design flexibility
with less restrictive design tolerances. Another consideration is
what manufacturing approaches are practical for the structures
introduced here. Hand-crafted devices have an obviously lim-
ited throughput, but technologies such as 3D-printed self-folding
polymers seem viable in light of recent demonstrations (24). At
much smaller scales, DNA self-assembly has been used to create
folding structures where oligo hybridization is a means to form
both thin sheets and hinge-like crease patterns (25, 26). Thus,
at the nanoscale, there are opportunities to mass-produce self-
assembled biocompatible mechanical metamaterials with these
uniquely addressable building blocks (27).

Throughput aside, the strategy of decoupling large-scale struc-
ture from mechanical function by modular design reduces coop-
erative and collective effects, greatly simplifying the inverse-
design problem. By taking a tolerance-defined approach with
finite parameter domains, we are able to generate geometric
diagrams for bulk metamaterial structures using the lantern-like
module (Materials and Methods and SI Appendix, Fig. S7). These
designs can be optimized to minimize failure, cost, or complex-
ity while still faithfully reproducing the desired function in spe-
cific applications. As such, the future for this design strategy
where the number of parameters for each module is greater
than the number of constraints imposed by bulk assembly seems
well-suited for a variety of applications in next-generation smart
materials, tissue engineering scaffolds, or even deployable archi-
tectural elements (SI Appendix, Fig. S8).

Materials and Methods
Geometry and Mechanics of Kirigami Lantern-Like Module. Given a cutting
and folding pattern (Fig. 1A), where by definition β=π−α− γ > 0, the
kirigami module fits into a cuboidal volume of size X(θ)×Y(θ)× Z(θ),
where X = 2 [q · cos(φ/2) + m · sin(ψ)] , Y = 2q · sin(φ/2) and Z = 2[2n−m ·
cos(ψ) + q · cot(α)]. Here, we express all angles in radians and
have used φ= 2 arcsin[sin(θ/2) · sin(γ)/ sin(α)], which can be inter-
preted as the angle ∠EDE′, and ψ, which can be interpreted as
the angle ∠BCD. To express ψ in terms of the geometry’s defin-
ing parameters, we assume α>γ to arrive at the piecewise expres-
sion ψ=ψ1 +ψ2 for π/2≥α>γ and ψ=π−ψ1 +ψ2 for α>π/2>γ,

where ψ1 = arcsin[sin(α) cos(φ/2)
(

cos (α)2 + (sin(α) cos(φ/2))2
)−1/2

] and

ψ2 = arcsin[sin(γ) cos(θ/2)
(

cos (γ)2 + (sin(γ) cos(θ/2))2
)−1/2

]. Analogous

expressions can be written for α < γ.
To prevent self-intersection, the kirigami module must obey n−m ·

cos(α − γ)> 0 and n−m · cos(α− γ) + q · cot(α) > 0. The first condition
can be interpreted as avoiding collisions between the points F and F′ with
their symmetric points on the upper half of the module, and the second
condition avoids collisions between C and C′ with their symmetric points
on the upper half of the module (Fig. 1 A and B). For parameters α,γ,m,n,
and q, which violate these inequalities, the geometrically permitted values
of θ that avoid self-intersection are bounded by a hypersurface in the five-
dimensional parameter space that can be directly calculated from the struc-
ture’s kinematics.

From the definitions of X(θ), Y(θ), and Z(θ) we calculated the Pois-
son ratios νZY =−(Z/Y)(dY/dZ) and νZX =−(Z/X)(dX/dZ). In these cal-
culations, increasing θ corresponds to macroscopic deformations under
compression along ẑ, whereas decreasing θ corresponds to macroscopic
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Fig. 4. Assembly of kirigami modules into voxelized 3D mechanical metamaterials. (A) Tessellating voxels in the x̂ŷ-plane leads to metamaterials that are
(B) stackable along the ẑ-axis. These structures have mechanical properties independent of their ability to tessellate 3D space. Plots of the Poisson ratios (C)
νZX and (D) νZY as a function of deformation angle θ show a wide range of allowable behaviors for the same 4× 7× 4 cuboid bulk structure in B, but with
variable parameters for α and γ. For the plots shown here, we chose γ= arcsin[(9/10) sin(α)] to obtain a wide variety of behavior in νZX . D, Inset shows
the error ε3D between target 3D structure and voxelized 3D structure as a function of the product of scaling factors ξx , ξy , and ξz (Materials and Methods).
Larger values of ξ lead to larger voxels with a coarser approximation of the target structure, whereas lower values of ξ have smaller voxels and a more
fine approximation. (E) The top row shows five target 3D structures representing a sphere, three triply-periodic minimal surfaces, and a digitized micro-CT
scan of a mouse femur bone. The second and third rows are renderings of the different voxelized 3D metamaterials with folding configurations given by
θ= 90◦, 180◦, and 270◦. Increasing θ corresponds to compression along ẑ, whereas decreasing θ corresponds to tension along ẑ. Although all structures
have identical compressive properties (α= 60◦, γ= 51◦, and m/q = n/q = 1), the scaling factor triplets 〈ξx , ξy , ξz〉 are 〈0.37, 0.21, 0.26〉 for the sphere
and triply-periodic minimal surfaces, whereas the micro-CT scan has 〈ξx , ξy , ξz〉= 〈8, 9, 5〉× 10−3. These large-scale metamaterials highlight the complex
topology that can be achieved independent from the prescribed mechanical properties using the Np−Nc > 0 design strategy.

deformations under tension along ẑ. Mechanical properties of the kirigami
module were calculated by modeling creases as torsional springs with spring
constant k1 that rest at a preferred angle θ0. Joined edges, such as BCD and
BC′D′, are similarly treated as torsional springs with the same rest angle but
with a different spring constant k2. Using a common rest angle for creases
and crease-like joined edges while assigning two different spring con-
stants reflects the details of how experimental samples were fabricated (SI
Appendix). These choices can be easily modified according to the context of
how modules are assembled. For the case considered here, the energy func-
tion takes the form U = 1

2 [4k1 ·AB·(φ− θ0)2 + 2k1 ·EF ·(π − φ− θ0)2 + 16k1 ·
BG · (θABGH,CBGF − θ0)2 + 2k2 ·E′F′ · (π − φ− θ0)2 +4k2 ·CD · (φ− θ0)2 +4k2 ·
BC · (θ − θ0)2]. Here, we use overlines to denote length between two points.
Specifically, AB = EF = E′F′ = n + q · cot(α), BG = q/ sin(α), CD = n, and
BC = m. Dividing U by qk1 leads to the normalized energy Ũ = U/qk1

(Fig. 1G), which we find exhibits parameter domains with monostability
and bistability (SI Appendix, Fig. S4). Note that this stability landscape is
not driven by the competition between creasing and bending DOF, as has
been shown with other origami structures (11), nor is it driven by a topo-
logical discontinuity in configuration space. Instead, the stability landscape
found here arises strictly from geometry, which forces some creases to move
away from their rest angle (e.g., BG, BC, and CF) while allowing others to

return to their rest angle (e.g., AB, CD, and EF). In this idealized model, the
transition between bistable states is a symmetric process where the top and
bottom portions of the kirigmi module simultaneously hop between stable
configurations. In real materials, small heterogeneities can lead to sequen-
tial hopping (SI Appendix, Figs. S5 and S6). As a consequence, a 1D structure
with N voxels is capable of supporting up to 4N distinct stable configurations
(SI Appendix, Fig. S4).

Optimizing Voxels for Geometric Compatibility. As described in the text, geo-
metrically compatible metamaterials are constructed in a two-step process.
Step one is to analyze the number of available design parameters Np and
pick a set of values that produces the desired properties. For the specific
example of the lantern-like module, these chosen parameters are denoted
α0, γ0, m0, n0, and q0. Step two is to assemble the bulk metamaterial either
from (i) identical voxels, which are by definition geometrically compatible
for all folding configurations, or from (ii) dissimilar voxels, which are
designed to be geometrically compatible by optimizing parameters to
satisfy the design tolerances over the folding interval [θa,θb].

For geometric compatibility, there are Nc constraints imposed on each
voxel in the bulk structure. In the specific example discussed in the text
of the lantern-like module, Nc = 4. The constraint on ∠EDE′, which is the
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angle φ(θ;α,γ) (Fig. 1A), ensures voxels have matching φ(θ) over [θa, θb] and
sin(γ) ∝ sin(α). In light of these observations, the constraint that Y(θ) also
match between voxels implies q ≡ q0 for every voxel. Our error function
used to match a candidate voxel to a target voxel is then simply defined as

ε(θ) = [
X(θ;α,γ,m,n,φ)−X(θ;α0 ,γ0 ,m0 ,n0 ,φ0)

q0
]
2
+[

Z(θ;α,γ,m,n,φ)−Z(θ;α0 ,γ0 ,m0 ,n0 ,φ0)
q0

]
2
,

where φ is a function of θ parametrized by α and γ. The parameters
α, γ, m, and n, along with the already set value of q = q0, define the geom-
etry of the voxel being optimized for compatibility. To find the optimal

set of parameters, we calculate the integrated error s =
∫ θb
θa
ε(θ) dθ and

seek a set of parameters that satisfy [ε(θa), ε(θb)] < δ, where δ is our
design tolerance. Typically, the solution that minimizes s satisfies this con-
dition, but pathological situations can be constructed where near-minimum
values of s can satisfy the overall design tolerances with more desirable
results.

When constructing the large-scale 2D metamaterial with zero Poisson
ratio (Fig. 3 D and E) our error function used for calculating geometri-
cally compatible design patterns was adapted to penalize nonzero νZX .

Specifically, we used ε2D(θ) = [
ZO(2π−θ;α,γ,m,n,φ)−ZT (θ;α0 ,γ0 ,m0 ,n0 ,φ0)

q0
]
2

+

[
∂[XO (2π−θ;α,γ,m,n,φ)+XT (θ;α0 ,γ0 ,m0 ,n0 ,φ0)]/∂θ

∂ZT (θ;α0 ,γ0 ,m0 ,n0 ,φ0)/∂θ ]
2
. The first term penalizes dif-

ferences between the target module’s height ZT and the optimized mod-
ule’s height ZO. The second term penalizes Poisson effects, which are cal-
culated using the sum of target and optimized module widths. To more
easily find a set of parameters that satisfy the zero bulk Poisson ratio
along the x̂-direction, we set the optimized functions to depend on 2π − θ
whereas the target function depends on θ. This ensures solutions are sym-
metric about θ = π and is similar in principle to an expression of the form
sin(θ) + sin(2π − θ) = 0. In calculating the bulk strain (Fig. 3E, Inset) we
defined X0 = X(θ = 0) and ∆X = X(θ)− X0.

For the mechanical cloak (Fig. 3 F–I) we performed a similar optimiza-
tion with structures that consist of a 15 × 15 lattice. The original struc-
ture contains 225 voxels (Fig. 3F), the structure with the hole contains 104
voxels (Fig. 3G), and the cloaking structure contains 60 gray voxels and
44 orange voxels (Fig. 3H). Force-extension relations were calculated with

Foriginal(θ) =
∂[225·U(θ;α0 ,γ0 ,m0 ,n0)]/∂θ
∂[15·Z(θ;α0 ,γ0 ,m0 ,n0)]/∂θ

,Fhole(θ) =
∂[104·U(θ;α0 ,γ0 ,m0 ,n0)]/∂θ
∂[15·Z(θ;α0 ,γ0 ,m0 ,n0)]/∂θ

,

Fcloak(θ;α, γ, m, n) =
∂[60·U(θ;α0 ,γ0 ,m0 ,n0)+44·U(θ;α,γ,m,n)]/∂θ
∂[4·Z(θ;α0 ,γ0 ,m0 ,n0)+11·Z(θ;α,γ,m,n)]/∂θ

, where U and

Z denote the energy and height of a voxel, α0,γ0,m0,n0, and q0 are
the geometric parameters of the gray target voxel. Parameters for
the orange reinforcing voxels were obtained by minimizing the inte-
grated error s over the design interval with the error function εcloak(θ) =

[
Fcloak (θ;α,γ,m,n)−Foriginal (θ)

Foriginal (θ=π) ]
2

+ [
Z(θ;α,γ,m,n)−Z(θ;α0 ,γ0 ,m0 ,n0)

q0
]
2
, where we set

sin(γ) ∝ sin(α) to ensure the constraints imposed on φ(θ; α, γ) were
obeyed throughout the structure’s heterogeneous columns. Thus, we
obtain values for α, γ, m, and n for the orange voxels that allow
us to reconstitute the mechanical properties of the original structure.
For the force-extension calculations, we chose θ0 = 10◦, k1 = 0.02 N/mm,
k2 = 0, and q = 1 cm, then calculated F̃(θ) = dŨ/d(Z/q). These values
were chosen to approximate our experimental materials (SI Appendix).
We note that for this structure the error function being optimized
only generates geometric compatibility along Z and allows for gaps
along X. For this particular application, the extra constraint on X is
unnecessary.

To quantify differences between large-scale target 3D metamaterial
structures, and approximate voxelized structures, we define ε3D = 1 −
Vvoxel/Vtarget. Here, Vtarget is the volume of the desired 3D shape and
Vvoxel = N · (ξxX) · (ξyY) · (ξzZ) is the volume of the structure assembled
from metamaterial voxels. In this expression, N is the total number of voxels,
X, Y, Z are dimensions of a single module, and the scaling factors ξx , ξy , ξz

control how small the voxels are in the structure. That is, ξxX = Xvoxel,
ξyY = Yvoxel, and ξzZ = Zvoxel. As such, smaller values for ξx , ξy , and ξz lead
to a greater number N of smaller voxels, which, in turn, better approximates
the target structure. In the limit where the ξx , ξy , ξz→ 0, we have N → ∞
in such a way that Vvoxel → Vtarget and ε3D vanishes.

Design Patterns. Design patterns for 1D and 2D metamaterials are typically
straightforward to generate from a voxelized structure. For example, fold-
ing diagrams for the 1D and both 2D metamaterials are essentially the
structure split into a “front” and “back” connected along one edge (SI
Appendix, Fig. S7). Folding patterns for 3D metamaterials, however, can be
substantially more difficult to generate. Fortunately, methods for continu-
ously transforming 3D objects is an active field of research in computational
geometry, and the existing body of work offers potential solutions (28, 29).
Alternatively, multisheet assembly methods are also possible and have been
described in detail elsewhere (30, 31).
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