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RNA-binding proteins (RBPs) control the fate of nearly every
transcript in a cell. However, no existing approach for studying
these posttranscriptional gene regulators combines transcriptome-
wide throughput and biophysical precision. Here, we describe an
assay that accomplishes this. Using commonly available hardware,
we built a customizable, open-source platform that leverages the
inherent throughput of Illumina technology for direct biophysical
measurements. We used the platform to quantitatively measure
the binding affinity of the prototypical RBP Vts1 for every
transcript in the Saccharomyces cerevisiae genome. The scale and
precision of these measurements revealed many previously un-
known features of this well-studied RBP. Our transcribed genome
array (TGA) assayed both rare and abundant transcripts with equiv-
alent proficiency, revealing hundreds of low-abundance targets
missed by previous approaches. These targets regulated diverse
biological processes including nutrient sensing and the DNA dam-
age response, and implicated Vts1 in de novo gene “birth.” TGA
provided single-nucleotide resolution for each binding site and de-
lineated a highly specific sequence and structure motif for Vts1
binding. Changes in transcript levels in vts1Δ cells established the
regulatory function of these binding sites. The impact of Vts1 on
transcript abundance was largely independent of where it bound
within an mRNA, challenging prevailing assumptions about how
this RBP drives RNA degradation. TGA thus enables a quantitative
description of the relationship between variant RNA structures, af-
finity, and in vivo phenotype on a transcriptome-wide scale. We
anticipate that TGA will provide similarly comprehensive and quan-
titative insights into the function of virtually any RBP.

RNA | next-generation sequencing | systems biochemistry |
RNA binding proteins | Vts1

RNA-binding proteins (RBPs) constitute 5–10% of the
eukaryotic proteome (1–3) and collectively govern the lo-

calization, translation, and decay of virtually every transcript (4–6).
Despite the ubiquity of RBPs and their central importance in
gene regulation, decoding the links between RNA primary se-
quence and its cadre of regulators remains a major unresolved
challenge (7). Current approaches for characterizing RBP
function generally involve trade-offs between throughput, com-
prehensiveness, and quantitative precision. Biophysical measure-
ments can be made with targeted biochemical approaches such as
electrophoretic mobility shift assays (EMSAs) or fluorescence
polarization (FP) (8, 9), but these methods can only interrogate
known RNA–protein interactions and are inherently low-
throughput. Selection-based approaches [e.g., in vitro selection,
high-throughput sequencing of RNA, and sequence-specificity
landscapes (SEQRS)/RNA bind-n-seq (RBNS)] achieve higher
throughput, but these techniques remove binding sites from their
natural sequence context and identify “winners” based on more
than simple affinity (10). Transcriptome-wide methods, which often
use cross-linking and immunoprecipitation [e.g., photoactivatable

ribonucleoside-enhanced cross-linking and immunoprecipitation
(PAR-CLIP), high-throughput sequencing of RNA isolated by
cross-linking and immunoprecipitation (HiTS-CLIP), RNA im-
munoprecipitation (RIP-chip/seq), individual-nucleotide resolu-
tion cross-linking and immunoprecipitation (iCLIP), RNA
tagging, targets of RNA-binding proteins identified by editing
(TRIBE)] (11–16), have yielded many insights. However, they do
not generally provide quantitative information about relative
affinity and often suffer from additional drawbacks. First, they
generally require high-quality, specific antibodies and are thus
not scalable to many proteins of interest. Second, binding targets
must be appreciably expressed in an individual cell type and
condition to be observed. Third, with notable exceptions (e.g.,
iCLIP), the sequence resolution of these techniques typically
precludes nucleotide-level resolution of binding motifs. Finally,
differences in cross-linking efficiency and transcript abundance,
both of which can vary over many orders of magnitude, are sig-
nificant sources of bias in transcriptome-wide approaches (17–19).
We overcame these biases with an approach that, for rare and

abundant substrates alike, combines the genome-wide scale of
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cross-linking methods with the quantitative precision of targeted
biochemical experiments. We applied our method to character-
ize the interactions of the conserved RNA binding domain of a
sequence- and structure-specific RBP (Vts1 in Saccharomyces
cerevisiae; Smaug in metazoans). We chose to study Vts1 because
of its biological significance as a key regulator of RNA stability in
development (20) and because decades of prior study provided a
gold standard against which to benchmark our results (21–27).

Results
An Open-Source Platform for Systems Biochemistry. Our approach
directly harnessed the throughput of Illumina sequencing, using the
MiSeq sequencing flow cell itself as a platform for high-throughput
biochemistry. Although the flow cell provides an ideal substrate for
massively parallel experiments, current Illumina instruments are not
amenable to customization (28, 29). Previous methods such as RNA
on a massively parallel array (RNA-MaP) and high-throughput
sequencing–RNA affinity profiling (HiTS-RAP) overcame this is-
sue by operating on the now antiquated Genome Analyzer II. Here,
we built our own hardware platform that enables custom bio-
chemical experiments to be performed on modern sequencing
chips. We developed a high-throughput imaging station, combining
hardware components from an Illumina Genome Analyzer II with
optimized optics, fluidics, and temperature control systems (Fig.
1A). We integrated these hardware components into a fully pro-
grammable interface (Fig. S1A), creating a modular design that
provides a blueprint for future applications to interrogate other
classes of biophysical interactions. To enable transfer of the tech-
nology to other laboratories, we integrated our imaging platform
with sequencing flow cells produced by a benchtop sequencer

(MiSeq), using cross-correlation methods to identify the physical
location of each sequenced cluster with submicron accuracy (Fig. S1
B–F). This exquisite spatial resolution allowed us to link images
generated on our imaging station to specific nucleotide sequences
obtained on a commercial sequencer, decoupling the instrument
used for sequencing from that used to carry out custom bio-
chemistry applications. Our imaging station thus provides an open
platform for systems biochemistry that we expect will encourage
further methodological development.
We next densely populated a MiSeq flow cell with an S. cerevisiae

genomic DNA library. During library construction, we incorporated
an Escherichia coliRNA polymerase (RNAP) promoter and RNAP
stall sequence. We then transcribed each DNA molecule into a
tethered RNA transcript (Fig. 1A, Figs. S2 and S3A (29, 30), and
Materials and Methods). This transcribed genome array (TGA)
displays the entire potential RNA sequence space of S. cerevisiae in
a highly redundant and unbiased manner; each nucleotide is rep-
resented at a mean coverage of >30× in overlapping transcripts of
∼100–300 nt (Fig. 1B and Fig. S3B). Moreover, the enzymatically
transcribed fragments can adopt physiologically relevant folds that
are dependent on local sequence context (see below).

A Multitude of Additional Binding Targets. We used this platform
and a workflow that spanned just 36 h to make >107 measure-
ments of binding for Vts1 across a ∼100-fold concentration
gradient (Fig. 1 C–E). Using these measurements, we identified
325 RNAs that reproducibly bound Vts1 at physiological protein
concentrations (∼130 nM) (31) across the many redundant
clusters on the TGA. These apparent affinities were comparable
to known Vts1 target elements that we doped into our library

Fig. 1. A quantitative method for rapid, unbiased
measurements of RBP affinity and kinetics across 107

substrates. (A) Workflow for TGA. On the MiSeq, a
dense array of clonal clusters is produced as part of
the standard sequencing by synthesis workflow
(Top). Then, after moving the flow cell to a custom
imaging station, clusters serve as a template for in
situ generation of RNA (Bottom), enabling quanti-
tative measurement and analysis of 107 binding ex-
periments in less than 36 h. (B) Genome browser
track showing unique overlapping and strand-
specific Vts1 binding sequences covering each
Vts1 binding site (Top) and all candidate RNA se-
quences generated by the TGA (Bottom) for a low-
and high-abundance transcript. (C) Raw images of
fluorescently labeled Vts1 bound to a weak affinity
(TOR2, in blue) vs. a strong affinity (SRE3, in red)
substrate. The first image in each series shows the
RNA clusters, and subsequent images show Vts1
binding at increasing concentrations. (D) Quantifica-
tion of single-cluster image series from C. All reported
values are median apparent Kd estimates averaged
across multiple independent binding curves (nSRE3 =
156; nTOR2 = 14; see SI Materials and Methods for
further discussion). (E) Distribution of affinity mea-
surements across independent clusters for a strong
(SRE3)- and weak-affinity (TOR2) target (kernel den-
sity estimate). (F) Comparison of bulk solution affinity
measurements and TGA-derived measurements [lin-
ear fit, slope = 1, 95% confidence interval (CI)].
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(0.1%) as a positive control for RNA folding and protein
binding. They also were concordant with published bulk solu-
tion measurements (21, 22, 27) (Fig. 1F; see Materials and
Methods for further discussion). Using the RNAcontext algo-
rithm (32), we constructed a de novo binding motif from the 325
Vts1 targets. This analysis revealed two conserved features: (i) a
robust 11-nt motif and (ii) a strong enrichment for stem loop
structure (Fig. 2A and Fig. S4 A and B). Our data thus reiterate
yet significantly expand the consensus CNGGN0–3 hairpin loop
defined by decades of targeted biochemical studies in a wide
range of organisms (20–22) (Fig. 2A).
We next explored the specific structural features that drive

Vts1’s interactions with its target sequences. If Vts1 indeed binds
a stem loop structure, as has been hypothesized from studies of
individual substrates (33), nucleotides within the stem should
covary in a manner that preserves base pairing. We therefore
constructed a normalized covariation matrix spanning the core
0GCNGG4 motif and adjacent bases (Fig. 2B and Fig. S4 C–E).
This analysis confirmed our stem loop prediction and, without
any prior assumptions about RNA structure, allowed identifi-
cation of the Vts1 binding motif at single-nucleotide resolution
for each of its targets in the transcriptome (see Materials and
Methods for further discussion). As a negative control, we tran-
scribed and folded the entire yeast genome in silico (Fig. S5).
The consensus stem loop structure was highly enriched in our
binding targets compared with the rest of the transcriptome
(Fig. 2C).

Structural Requirements for Vts1 Binding. Our known Vts1 target
controls included three variants of the Smaug recognition ele-
ment (SRE), a widely used model Vts1 target. We compared
these targets to investigate the sequence and structural features
that modulate binding. These variants shared identical loop

residues but differed in stem composition (SRE1–3 in Fig. 3 A
and B). Although no stem composition preferences have pre-
viously been reported and no direct stem–Vts1 contacts are ob-
servable in the available structures (21, 27), TGA allowed us to
observe approximately 10-fold stronger binding under these
conditions to one of these variants (SRE3) (Fig. S6). We hy-
pothesized that the enhanced apparent affinity of SRE3 arose
from a G:C base pair at the base of the loop with guanosine on
the 5′ side (position G0), a feature not shared by the other two
SREs (SRE3 is not predicted to be more stable than SRE1 or
SRE2). Among the 325 endogenous binding targets defined by
TGA, ∼60% also had a G:C loop closure [Fig. 3C; P < 10−70 by
binomial cumulative distribution function (CDF)]. Collectively,
these targets bound Vts1 more strongly than those without G:C
closures (Fig. 3C; P = 5 × 10−6) (20). In contrast, the inverse C:G
base pair was represented in only ∼3% of targets (P < 10−14 by
binomial CDF). These bound Vts1 more weakly than average,
although many such stem loops in the transcribed genome likely
did not bind Vts1 at all. Based on the NMR structure of Vts1
[Protein Data Bank (PDB) ID code 2ESE], this preference may
arise from interactions of G0 with a highly conserved lysine
residue within Vts1 (Lys467, Fig. S7B). Indeed, Lys467 mutant
proteins exhibit reduced substrate binding (21, 22). Among all
Vts1 targets, our data revealed that among endogenous targets
C:G base pairing between loop positions 1 and 4 is preferred
(∼87% of targets) and correlates with the strongest apparent
affinities (Fig. 3D). Following position 4, a variable (0–3 nt)
uridine-rich bulge had minor discernable effects on apparent
affinity; a 1-nt bulge was most common in Vts1 targets (Fig. 3E,
Movie S1, and Materials and Methods).

Functional Consequences of Vts1 Binding. Next, we sought to de-
termine whether the Vts1–RNA interactions identified by TGA
had functional consequences in vivo, relying on Vts1’s role in
targeting its substrates for decay (20, 24). To do so, we per-
formed high-coverage, stranded RNA-sequencing data on both
S. cerevisiae wild-type and Vts1 knockout cells (vts1Δ). Because
TGA defines binding targets in a purely in vitro context, in the
absence of transfactors, posttranscriptional base modifications,
and without regard to transcript localization or abundance, one
might expect many of our TGA-defined targets to behave dif-
ferently in the complex environment of a cell. However, we
found a robust phenotypic signature for TGA-defined Vts1 tar-
gets. As a class, they were more highly expressed in vts1Δ cells
than in wild-type cells (Fig. 4C, P = 1.1 × 10−6 by permutation
test). Target transcripts showing more than twofold increase in
expression in vts1Δ cells were significantly stronger binders (P =
0.019 by bootstrap test), highlighting the unique quantitative
capability of TGA to systemically link biological phenotypes with
fundamental biophysical parameters (Fig. 4A). Conversely, some
up-regulated transcripts were not identified as Vts1 targets by
TGA. These could in principle be false negatives. However, none
of these up-regulated transcripts were predicted by in silico
folding to contain a Vts1 binding motif, making it likely that
many were perturbed by indirect effects from true Vts1 sub-
strates. As a whole, computationally predicted Vts1 binding sites
showed modest overlap with TGA targets (48/296), but se-
quences that showed no binding in our in vitro TGA assay
exhibited no up-regulation in vts1Δ cells (P < 0.0001, Welch’s
t test; Fig. S7 F and G).
We also compared the Vts1 substrates identified by TGA to

those determined in two independent RNA immunoprecipita-
tion (RIP-chip) studies (21, 23) (Fig. 4B and Fig. S6E). The two
RIP-chip experiments had poor overlap with each other (19.6%
or 42 shared substrates among 214 total). RIP-chip targets
missed by TGA were often very abundant, poor matches for the
identified binding motif (Fig. S5A), and showed no change in
expression between wild-type and vts1Δ cells (Fig. 4 C and D).

Fig. 2. Genome-wide, single-nucleotide resolution of Vts1 binding targets
defines a consensus structural motif. (A, Top) De novo motif search based on
325 genomic target regions of ∼80 nt each. The nucleotide positions are
marked on Top, and the asterisk (*) indicate nucleotides known from prior
literature consensus. (B) Covariation matrix where each element (i, j) indi-
cates an enrichment score for base-pairing interactions between residues i
and j (Materials and Methods). The diagonal density in the matrix defines
the residues in the hairpin stem. (C) Base-pairing probabilities for all 325
Vts1 targets via NUPACK folding algorithm. (D) NMR structure of Vts1 bound
to consensus RNA sequence (PDB ID code 2ESE) supports sequence and
structure predictions from TGA.
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Because these targets exhibited no functional repression by
Vts1 in vivo, they could represent false positives inherent to
immunoprecipitation methods. Targets common to both TGA
and RIP-chip exhibited a stronger degree of up-regulation than
either method alone, highlighting a potential synergy between
complementary methods for studying RBP function (Fig. S7C).
TGA analysis also identified 145 binding targets that prior

studies did not (325 vs. 180) (21, 23, 27). These targets included
many key regulators of metabolism, cell cycle, and DNA repair
(e.g., Tor2, Apc1, Polς) and they clustered into distinct func-
tional subnetworks, for example, controlling nutrient sensing and
the DNA damage response (Fig. S8A). Because we identified
these binding events in the absence of additional RBPs and other
factors inherent to the cellular environment, we examined their
functional relevance. Most of these transcripts bound Vts1
strongly and harbored robust consensus motifs. Virtually all were
expressed at low levels in standard growth conditions, high-
lighting a distinct advantage of TGA’s equimolar presentation of
the entire potential RNA landscape (Fig. 4D and Fig. S7D).
Critically, these targets were expressed at higher levels in vts1Δ
cells (Fig. S7E), providing strong evidence that they were bona
fide targets in vivo.
We picked two TGA-specific targets to investigate in greater

depth in vivo. TGA identified the RNA encoding the nutrient
sensing protein Tor2, but not its paralog Tor1, as a Vts1 target.
The Vts1 binding site in TOR2 fell within a region that encodes
an identical amino acid sequence in both paralogs. However,
several synonymous mutations abolished the Vts1 binding site in
TOR1 (Fig. 4E). Consequently, in vts1Δ cells, there was an in-
crease in TOR2 expression, whereas TOR1 expression was un-
changed (Fig. 4F). Because the TOR2 gene is essential, we used a
tor2 decreased abundance by mRNA perturbation (DAmP)
partial loss-of-function allele to reduce its expression while
maintaining cell viability (34). Cells harboring the tor2-DaMP
allele were sensitive to the antifungal drug fluconazole, whereas
those harboring a vts1 deletion (vts1Δ) were resistant. If tor2-
DaMP and vts1Δ acted via independent mechanisms, the com-
bined double-mutant vts1Δ tor2-DaMP cells should display an
intermediate phenotype. However, we observed a strong epi-
static relationship between the two genes: vts1Δ tor2-DaMP cells
grew very similarly to tor2-DaMP single mutant cells (Fig. 4G). In
contrast, mutants in vts1 and tor1 exhibited no epistasis (Fig. 4H).
We next extended our analysis to Rev3, the catalytic subunit of
DNA Polς, a translesion polymerase responsible for most mu-
tagenesis in eukaryotic cells and an emerging therapeutic target

for chemoresistant malignancies (35). As others have reported,
the rev3Δ cells were sensitive to DNA-damaging agents (Fig. 4I).
vts1Δ cells, in contrast, were more resistant than wild-type cells.
The double-mutant vts1Δ rev3Δ cells phenocopied the rev3Δ
single mutant, demonstrating negative epistasis between the two
genes. These robust genetic interactions demonstrate the power
of TGA to reveal previously unknown regulatory relationships
for even an exceptionally well-studied RBP.

Vts1 and the Birth of New Genes. Nearly one-third of the
Vts1 targets we discovered fell in intergenic sequences. We
wondered whether any of these sites might represent functional
RBP targets. The S. cerevisiae genome encodes over 100,000
transcribed nongenic sequences (protoORFs). Only a small
fraction of these sequences are detectably translated, but many
are transcribed at low or moderate levels; these “protoORFs”
have been hypothesized to provide a fertile evolutionary testing
ground for the birth of new genes (36). Although previous RIP-
chip experiments were incapable of detecting protoORF targets
for various technical reasons, we asked whether TGA could.
Indeed, the vast majority of intergenic TGA targets were con-
tained in previously defined protoORFs (73%, P < 10−19, Pois-
son CDF). We observed no binding to other classes of noncoding
RNAs, such as tRNAs, small nucleolar RNAs, or rRNA. The few
remaining targets fell in sequences that rarely or potentially
never exist as RNA within a cell. These sequences may illustrate
the possibility for the Vts1 regulatory motif to arise purely through
drift, in the absence of any selection on a functional transcript.
Vts1 binding sites were even more strongly enriched among longer
(>300 nt) protoORFs (P = 0.023, Poisson CDF), which some have
argued are more “evolutionarily developed” and are more likely to
be translated (36) (Fig. 4L).
To determine whether Vts1 regulates protoORF targets in

living cells, we again examined our high-coverage, stranded
RNA-sequencing data from vts1Δ and wild-type cells. Strikingly,
Vts1-targeted protoORFs were as strongly regulated by Vts1 as
canonical ORFs, which is remarkable given their recent evolu-
tionary origins (Fig. 4J; P = 0.036, bootstrap distribution). We
obtained similar results for a set of randomly selected proto-
ORFs not detected in our RNA-seq experiment via quantitative
RT-PCR (qRT-PCR) (Fig. S8B). We propose that acquisition of
a Vts1 binding site allows a nascent gene to easily acquire a regu-
lated expression profile downstream of the complex developmental
pathways that regulate Vts1/Smaug itself.

Fig. 3. Structural determinants of affinity and kinetics. (A) Cartoon representations of the canonical Smaug recognition elements (SREs) and SSA1 target
region. (B) Median apparent Kd (Materials and Methods) of the canonical SREs reveal that the two elements derived from the nanos 3′-UTR are weaker
binders than the synthetic stem loop SRE3 and comparable to genomic target SSA1 (nSRE1 = 748; nSRE2 = 99; nSRE3 = 156; nSSA1 = 10, 95% CI). (C–E) Relationship
between binding affinity and various hairpin structures classified by loop closure bases (C), base identity in positions 1 and 4 of the loop (D), and U-rich bulge
presence and length (E) across all genomic targets identified by TGA.
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Acquisition and loss of Vts1 binding sites was not confined to
nascent genes alone—among paralogs in the yeast genome, we
found 40 pairs of paralogs where only one of the two paralogs
contains a Vts1 binding site. In all cases, the nonbinding paralog
mutated critical elements of the core Vts1 binding motif. We
also discovered three pairs of paralogs that contained Vts1
binding sites in entirely different regions of the transcript. Thus,
gain and loss of Vts1 binding sites over evolutionary time can
provide a route for diversifying gene duplications and rewiring
regulatory networks.
Finally, because TGA provides nucleotide-level resolution, we

investigated how the location of a Vts1 binding site within a
message influences transcript levels. In light of a large body of
literature implicating Vts1 binding in transcript deadenylation
via recruitment of the CCR4-NOT1 complex to 3′-UTRs (24,
37), it is striking that only seven 3′-UTR binding sites occur

across the entire transcribed genome array. Indeed, Vts1 binding
sites were strongly enriched in 5′-UTRs but not in 3′-UTRs (P =
0.0067, P = 0.31, Poisson CDF; Fig. 4L). The enrichment in
5′-UTRs could point to the importance of Vts1 in the regula-
tion of translation initiation (25). However, our genome-wide,
nucleotide-resolved dataset established that the impact of
Vts1 on transcript abundance is largely independent of where it
binds within an mRNA (Fig. 4K). We conclude that Vts1 binding
outside of the 3′-UTR may be the predominant mode by which
this RBP regulates gene expression.

Discussion
TGA combines the best features of many separate methods for
studying RNA–RBP interactions and complements many of their
individual weaknesses (Table 1) (10). Like RIP- and CLIP-seq, it
identifies a transcriptome-wide compendium of functional binding

Fig. 4. TGA reveals evidence of positive selection
and enrichment in protogenes. (A) Targets with
more than twofold increase in expression upon vts1
deletion (purple; smoothed density estimation, n =
20) have generally lower apparent Kd compared
with all Vts1 targets identified by TGA (gray). (B and
C) TGA targets (blue, nonintergenic, n = 205) are
enriched vts1Δ cells compared with wild-type cells.
RIP-chip targets not detected in TGA [red, n = 108,
Hogan et al. (23); green, n = 43, Aviv et al. (21)] do
not show enhanced expression in vts1Δ cells. The
y axis in C is in log2 scale. (D) RNA abundance for
TGA targets vs. RIP-chip targets. (E) Vts1 binding site
is present in tor2 but not in its homolog tor1. (F) tor2
is more highly expressed in vts1Δ vs. wild type. tor1
is not (two biological replicates each; SEM). (G and H)
tor2 exhibits strong negative epistasis with vts1. tor1
does not (4–16 technical replicates; SEM; dotted line
represents no epistasis expectation; Materials and
Methods). (I) rev3 shows negative epistasis with vts1
under DNA damage conditions. (J) RNA-seq expres-
sion for protoORF targets. (K) Metagene showing the
distribution of Vts1 binding targets by position in
ORF. Position in ORF is not correlated to up-regulation
in vts1Δ cells. (L) Enrichment analysis based on
equimolar representation of all genomic sequences.
Vts1 targets are enriched in 5′-UTRs and but not in
3′-UTRs. Vts1 targets are also highly enriched on the
template strand compared with the nontemplate
strand (P < 10−16, binomial CDF).

Table 1. Summary characteristics for various methods of studying RNA–protein interactions [adapted from Campbell
and Wickens (10)]

Method
De novo motif
ID (length)

Measurement of
equilibrium Kd

Transcriptome-wide
analysis

Unbiased equimolar
transcriptome In vivo context

TGA Yes (11) Direct Yes Yes No
HiTS-RAP Direct Direct No No No
CLIP-seq No No Yes No Yes
RIP-chip/seq Yes Indirect Yes No Yes
SEQRS Yes (3) Correlated No No No
RNA tagging Yes Indirect Yes No Yes
EMSA No Direct No No No
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targets. Like EMSA and FP, TGA can provide estimates of
binding parameters for each target. Like selection-based methods
(SEQRS/RBNS), de novo primary sequence and structural motifs
are recovered in a single experiment (38, 39). Last, unlike other
methods, TGA enables a quantitative description of the relation-
ship between variant RNA structures, affinity, and in vivo pheno-
type irrespective of transcript abundance. Although TGA is at its
core an in vitro measurement between a recombinant protein and a
highly redundant array of RNA fragments, our data demonstrate
that experimental evaluation of sequence- and structure-specific
binding synergistically complements in vivo measurements of RBP
occupancy.
Our technology establishes a flexible platform for high-throughput

biochemistry that can be easily extended to any nucleic acid
template (e.g., the human exome), used to study diverse types of
biochemical interaction (e.g., RNA-guided nucleases), and adap-
ted to even higher- throughput systems (e.g., HiSeq). Our appli-
cation of TGA to Vts1 (i) doubled the number of known Vts1
targets, identifying key regulators of cell cycle and the DNA
damage response; (ii) provided a marked improvement in the
specificity of the protein’s binding motif; (iii) generated struc-
tural insight into its ability to discriminate among targets; and
(iv) suggested that Vts1 may have a role in regulating the transcripts

of evolutionarily nascent genes. The breadth of findings stemming
from analysis of an already exceptionally well-studied RBP sug-
gests that TGA technology will be similarly enabling for other
RBPs and establishes a paradigm for quantitative, ultrahigh-
throughput biochemistry.

Materials and Methods
Detailed information is provided in SI Materials and Methods. After sequencing,
additional chemistry was performed on theMiSeq flow cell to generate RNA in a
manner similar to RNA-MaPmethodology (29). A custommicrofluidic station was
built from repurposed components harvested from an Illumina Genome Ana-
lyzer II (GAII) (see Table S1 for parts list). Vts1 recombinant protein was purified
from E. coli. Biological validation of TGA hits was performed in S. cerevisiae.
Additional tables, example images, and code can be found at https://www.
dropbox.com/s/juo3bnow2wdd8zq/Supplemental%20Data.zip?dl=0.
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