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Inferring large-scale processes that drive biodiversity hinges on
understanding the phylogenetic and spatial pattern of species rich-
ness. However, clades and geographic regions are accumulating
newly described species at an uneven rate, potentially affecting
the stability of currently observed diversity patterns. Here, we
present a probabilistic model of species discovery to assess the
uncertainty in diversity levels among clades and regions. We use
a Bayesian time series regression to estimate the long-term trend
in the rate of species description for marine bivalves and find a dis-
tinct spatial bias in the accumulation of new species. Despite these
biases, probabilistic estimates of future species richness show con-
siderable stability in the currently observed rank order of regional
diversity. However, absolute differences in richness are still likely
to change, potentially modifying the correlation between species
numbers and geographic, environmental, and biological factors
thought to promote biodiversity. Applied to scallops and related
clades, we find that accumulating knowledge of deep-sea species
will likely shift the relative richness of these three families, empha-
sizing the need to consider the incomplete nature of bivalve tax-
onomy in quantitative studies of its diversity. Along with estimat-
ing expected changes to observed patterns of diversity, the model
described in this paper pinpoints geographic areas and clades
most urgently requiring additional systematic study—an impor-
tant practice for building more complete and accurate models of
biodiversity dynamics that can inform ecological and evolutionary
theory and improve conservation practice.
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The number of biological species on Earth is notoriously
uncertain, but such estimates are critical for a broad range of

issues, from the environmental and biological limits of diversity
to the design of conservation strategies in dwindling habitats (1–
6). Geographic and phylogenetic differences in the discovery and
description of species can change the patterns of species richness
that are used, for example, to pinpoint biodiversity hotspots (7).
A frequent approach to either anticipating or evaluating these
taxonomically driven shifts is to estimate the “true,” unknown
species richness from a cumulative taxonomic description curve
(8–10).

In theory, the cumulative count of newly described species
should approach an asymptote as knowledge of the species pool
nears the true value (Fig. 1A). However, many curves fail to
“level off” or “saturate” because new species are being named
at a steady or even accelerating rate (Fig. 1 B and C) (11, 12).
These “unsaturated” curves lack a stable asymptote and there-
fore cannot provide robust estimates of the true species rich-
ness (12)—a result reflected in the many incongruent estimates
of global diversity (13). Even with a robust estimate, a sin-
gle value for the global number of species, or for high-level
taxa such as Aves or Mammalia, is of limited utility in com-
parative diversity analyses across space, phylogeny, and time.
Here, we develop a Bayesian model that can both accommodate
nonasymptotic trends in species description to forecast species
richness and operate at higher spatial and phylogenetic resolu-

tion. We use this model to assess the stability of observed differ-
ences in regional and among-clade diversity for a major animal
group that has accrued newly described species at an unabated
rate for the past 165 years: the marine bivalves.

In our Bayesian time series model [available from Zenodo
(doi.org/10.5281/zenodo.159033)], the number of species de-
scribed in a given year is a function of the long- and short-term
trends in description rate. We first model the trajectory of
species accumulation using only the history of currently valid
species description beginning with Linnaeus (14), the start-
ing point of formal taxonomy. We then add a simple esti-
mate of taxonomic effort (TE), another factor relevant to esti-
mates of taxonomic knowledge (15–19). For both approaches,
we find strong regional differences in the long-term trend of
species description, suggesting a spatial bias in the saturation
of taxonomic knowledge. We also identify potential instabil-
ity in the relative richness of closely related clades but find
that, overall, the major geographic and phylogenetic diver-
sity patterns in our example are robust to the spatial and
taxonomic heterogeneity of description rates. Thus, these proba-
bilistic estimates can be useful measures of data stability in com-
parative analyses of diversity when focal regions or clades have
not reached taxonomic saturation.

Modeling Taxonomic Description
Model Design. Our model most closely resembles that of refs.
4, 10, and 11, with three key differences. (i) We balance our pre-
diction of species description events by modeling the short-term
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Fig. 1. Simulation of species description series under different long-term
trends (β in Modeling Taxonomic Description). (A) A declining description
rate produces the “saturated” asymptotic cumulative description curve.
Constant and rising trends in description produce cumulative description
curves with (B) linear and (C) exponential shapes.

volatility and the long-term trend in the description rate (includ-
ing consecutive years with no description). (ii) We shift our ana-
lytical focus from attempting to calculate a single, unknown true
species richness (as in ref. 11) to estimating the aforementioned
long-term trend in the number of species described per year (β,
Fig. 1). This approach can be applied to any species descrip-
tion curve regardless of its asymptotic shape. For example, we
can directly compare the degree of taxonomic saturation for two
regions with dramatically different description trajectories—the
North (N) Temperate East Atlantic and the Tropical West Pacific
margin (Fig. 2). (iii) We simultaneously estimate model param-
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Fig. 2. Description of marine bivalves species recognized at a water depth of <200 m across geographic regions (climate zones and coastlines marked in
Inset map). Each regional panel plots the cumulative species description curve (dark black line) and 200 modeled description curves for TE and noTE fits
(blue and gray lines respectively). Summary boxes report the total number of species recognized in the region today (S), the long-term trend in species
described per year β with its 80% credible interval, the long-term trend in species described per publication per year βTE, and a colored symbol marking the
sign of the long-term description trend (red down arrow, credible decline; blue up arrow, credible increase; and black X, no credible trend, i.e., constant).
Model fits are plotted separately in Fig. S1. Is, islands; Oc, ocean.

eters for all groups (i.e., regions and clades) in a hierarchical
Bayesian framework so that diversity estimates can be compared
among groups (estimates are relative to each other and the over-
all “average” regional pattern) (20). Thus, parameter estimates
for groups with low statistical power (low species counts and/or
erratic description events) are drawn toward the average regional
pattern, whereas parameter estimates from regions with high sta-
tistical power vary more freely. This approach makes group esti-
mates appropriately conservative when statistical power is highly
uneven. Altogether, these three model features improve the char-
acterization of taxonomic description at regional scales and clade
levels where description events can be irregular in time and
number.

Incorporating TE. In theory, an approach toward true taxonomic
knowledge should be reflected by a decline in species descrip-
tion rate and an increase in TE—a broad concept largely dis-
tilled into the time, energy, and funds required to discover
and describe a new species. Trends in TE and species descrip-
tion are often studied in parallel (15–19), but are difficult to
bring into the same model framework (12, 16). When mod-
eled simultaneously, trends in TE and species description mutu-
ally inform estimates of taxonomic saturation. Here, we follow
the logic of “catch per unit effort” (12) and model the num-
ber of publications as an exposure term in our Poisson regres-
sion, where the long-term trend becomes the number of species
described per publication per year (Fig. S2). Thus, we might
infer an approach toward taxonomic saturation from a decline
in the number of species described per publication—lower catch
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per unit effort. This metric must be used cautiously because the
steady attrition of professional taxonomists and the rise of non-
professional publications (21, 22) drives a tendency for publi-
cations devoted to describing a single species. Thus, we can-
not differentiate an increase in TE, i.e., an approach toward the
true taxonomic knowledge, from a cultural shift to publishing in
stand-alone journal articles rather than larger monographs.

We adopt this publications-per-year metric because alterna-
tive measures of TE are difficult to compile and apply across a
variety of biological groups and are subject to their own biases
in taxonomic culture [e.g., the number of authors per species,
the number of junior synonyms, the number of journal or book
pages dedicated to a species, and the average time required to
describe a new species (19)]. We emphasize that the simple met-
ric used here is only a first step toward evaluating the role of TE
in developing a more robust and complete probabilistic model of
species discovery.

Results and Discussion
Our primary goal is to shift the use of species description his-
tories away from estimating global richness toward comparing
differences among regions and clades. To that end, we estimate
the long-term species description rate, examine the utility of one
estimate of TE, and forecast the stability of ranked regional and
clade richness.

Comparing Model Performance. Posterior predictive simulations
show that both model fits, with and without the addition of
TE, accurately recover the observed species richness values in
2016, albeit by very different trajectories (compare median esti-
mates and their credible intervals in Fig. 2). The model without
TE (noTE) fails to follow the exponential, 1800–1860 spike in
description, but does track the constant description from 1860
to today (e.g., Tropical West Pacific margin in Fig. 2). The TE
model follows both the exponential spike in description and the
transition to a more constant rate. Including the number of publi-
cations in the TE model smooths the expected description events
through time by transforming the modeled value to a rate—the
number of species described per publication per year. Thus, the
short-term trends in description rate become more predictable
because the year-to-year variance in the number of species per
publication per year is considerably lower than the number of
species described per year (Fig. S3). Therefore, the TE model
has a tighter tracking of the description trajectory that leads to a
more constrained estimate of present-day richness.

Long-term trends are not directly comparable between mod-
els because of the differences in their units (β=Nspecies described
per year; βTE =Nspecies described per publication per year). How-
ever, the rank order of trend estimates remains consistent across
both model fits (Figs. S4 and S5), likely reflecting a correlated
decline in the number of publications and number of species
described per year (Fig. S2).

Geographic Variation in Species Description. Globally, bivalve sys-
tematists have slowed in their description of new species over
time. This overall decline is inevitable because of the shift
near 1860 from a rising description rate to a remarkably con-
stant description rate of 21 (20 to 22 CI80%) new species per
year (Global, Fig. 2). Regionally, we find striking heterogeneity,
where 12 of 18 climate–coastline regions show a decline in the
number of species named per year (negative long-term trends
β; red arrows in Fig. 2), five show constant description rates
(black Xs), and only one shows a rising rate (blue arrow). In gen-
eral, N Polar/Temperate coastlines have the strongest declines
in description rate, followed by Tropical and then South (S)
Polar/Temperate coastlines. Across climate zones, coastlines in
the West Atlantic show some of the strongest declines in descrip-

tion rates, and those in the East Atlantic and West Pacific Islands
show the weakest declines (Fig. S6).

The variation in regional rates of species description highlights
a distinct spatial bias in the history of bivalve systematics. As with
many other groups, formal description of bivalve species began
in 1758 (14) and was pursued with zest for another 100 years by
several prolific European systematists (e.g., Gmelin, Lamarck,
Reeve, and Deshayes). Consequently, the N Temperate East
Atlantic exhibits the strongest decline in description rate, likely
reflecting the most complete taxonomic knowledge of any region.
However, proximity to the early European systematists does not
impart a similar level of taxonomic saturation on Tropical and S
Temperate East Atlantic coastlines. Our model identifies these
regions as two of the least described (Fig. S4), even compared
with coastlines in the Tropical Indian and West Pacific Oceans
that are considered highly undersampled (23).

More than half of the climate–coastlines show a decline in
the number of species described per publication per year, which
implies a decline in the catch per unit effort under the assump-
tion of constant taxonomic culture. Thus, these regions may be
nearing taxonomic saturation, but this inference must be made
cautiously, because, as noted above, decreases in scientific fund-
ing and political limitations on sampling might also drive the
description declines. Regardless of the link between description
rates and taxonomic completeness, the variation in description
rates among geographic regions indicates spatial differences in
taxonomic activity that must be accounted for in comparisons of
their observed species richness.

Geographic Comparisons of Species Richness. The long-term trends
in description rates across geographic regions vary in sign, magni-
tude, and credibility, which, together, provide a relative sense of
taxonomic activity. For example, the long-term trend in descrip-
tion rate is steeper in the Tropical West Pacific Islands than
on the Tropical West Pacific margin, implying the West Pacific
Islands are a comparatively undersaturated region (Fig. 2 and
Fig. S3). However, estimating differences in diversity depends
not only on the long-term trend in description but also on the
baseline description rate (Fig. S3) and the current differences
in observed diversity. Forecasts of species richness capture the
effects of all of the factors above and become a useful tool for
generating probabilistic estimates of species richness that help
prevent overinterpretation in macroecological and macroevolu-
tionary analyses (3, 24–26).

Forecasts of species richness after infinite time and effort
could provide estimates of the true, unknown species richness.
However, such estimates from our model accumulate a large
forecasting error under the assumption that current trends in
description rates will continue indefinitely (Fig. S7). Within
the bivalve description series, poorest forecasting performance
occurs during periods of relatively rapid change in description
rate (1820–1860). Even during the long period of approximately
constant global description (post-1860), longer forecasts create
larger forecasting error, demonstrating that even small changes
in description rate can compound into high predictive error.
Thus, the credibility of a particular forecasting window depends
on the likelihood that description rates remain constant, and that
the size of the forecasting error is not comparable to the cur-
rently observed differences in diversity. Given these limitations,
we conservatively interpret regional stability using a 20-y fore-
cast, but we also compare those conservative estimates to a 50-y
forecast with much greater inherent forecasting error.

Despite the regional heterogeneity in description rate, we find
an overall stability in the estimated rank order of regional diver-
sity in 2035 and 2065 (Fig. 3, Fig. S8, and Table S1). Forecasts
from both the TE and noTE models show that regions within
the Indo-West Pacific are expected to gain the bulk of newly
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Fig. 3. The 20-y forecast of species richness (noTE model year 2035); fore-
cast values with uncertainty provided in Table S1. Regional richness rank
order is expected to remain stable to 2035, and most of the newly discov-
ered species are expected to come from coastlines in the Indo-West Pacific.

described species and will remain the richest. A mixture of Trop-
ical and Temperate coastlines will continue to occupy the mid-
dle richness ranks, with Polar regions toward the lowest ranks.
A few regions show nonzero but low probabilities of diversity
rank shift across the 20- and 50-y forecasts (Fig. 3 and Fig. S8).
These unlikely shifts are mostly confined within climate zones,
implying that the global latitudinal diversity gradient will persist
in light of continued species discovery.

Forecasts are especially useful in targeted comparisons of
species richness among regions. For example, an outstanding
question in the geographic patterning of bivalve biodiversity has
been the greater species richness in the Tropical East Pacific
(TEP) than in the Tropical West Atlantic (TWA). Paleonto-
logical studies have proposed that differential extinction under-
lies this seemingly reversed diversity pattern given the larger
continental shelf area and greater habitat heterogeneity in the
reef-bearing TWA (27, 28). However, the difference is only
66 species, and we should consider the possibility that biases
in taxonomic discovery may bias this interpretation. The TWA
appears to be approaching taxonomic saturation faster than the
TEP (joint probability βTWA <βTEP =1; Fig. S4), but the TWA
has a higher baseline rate of description and may still gain on
the diversity of the TEP before reaching saturation (Fig. S3).
Assuming trends in description rate remain constant for the
next 20 and 50 y, we predict that the diversity of the TWA will
get closer to that of the TEP, reducing the difference to 44
species [median forecast difference by 2035 and 20 species by
2065 (Table S1)]. The TEP has a 75% probability of remaining
more diverse over the next 20 y and only a 58% probability over
the next 50 y. This closing gap in estimated richness between
regions should be considered when analyzing the oceano-
graphic and biological factors that may underlie their diversity
differences.

Clade Comparisons. The description model and its associated
forecasts are also useful tools for comparisons of clade diver-
sity. In the marine system, deep-sea exploration has dramatically
elevated our estimates of species diversity in many groups (29),
and we estimate that 43% of marine bivalve species described
since 2005 were discovered in the deep sea (Fig. S9) (30). Thus,
newly discovered species may be concentrated within particular
clades, which may challenge the interpretation of many ecolog-
ical and evolutionary patterns derived from strictly continental
shelf occurrences (31).

Including newly discovered deep-sea species changes the rela-
tive richness of three well-studied, monophyletic bivalve families.
When only considering continental shelf species (water depths
of <200 m), true scallops (Pectinidae) are nearly 3 times as
diverse as their closest relatives, the mainly tropical thorny oys-
ters (Spondylidae) and the cold-water glass scallops (Propeamus-
siidae). However, recent deep-sea discoveries (e.g., ref. 32) have
more than doubled the number of glass scallops, bringing their
diversity much closer to that of their sister clade, the true scal-
lops (Fig. 4). Still, even with their apparent taxonomic undersat-
uration, we do not predict the glass scallops to surpass or even
match the diversity of the mainly continental shelf true scallops
for the next 20 and 50 y (Table S2).

These probable estimates of clade diversity raise questions
about the relationship between each clade’s richness and biolog-
ical or environmental factors. At least within these three fami-
lies, bathymetric affinity alone appears to be a poor predictor of
species richness. Instead, the greater ecological breadth of the
true scallops may explain their higher diversity over the more
restricted ecology of the mostly carnivorous glass scallops and
sessile, filter-feeding thorny oysters. Estimating the probability of
diversity shifts among clades with continued description of deep-
sea species will be paramount for correctly interpreting evolu-
tionary patterns.

Improving Estimates of Species Richness.
Alternative estimates of TE. Estimating true TE will require neg-
ative evidence, that is, the failure to recognize new species after
repeated attempts. Combining recent region- and clade-specific
faunal inventories can offer unparalleled insight into the taxo-
nomic stability and saturation of the taxonomic record. In marine
bivalves, recent rigorous molecular and morphological exam-
ination of a chemosybiotic group (Lucinidae) from Panglao,
Philippines, in the Tropical West Pacific confirmed 50 existing
species and discovered 26 new species (34); a similar treatment
of lucinids from Guadeloupe in the TWA confirmed 25 existing
and 1 new species (35). Despite all of the potential biases con-
flating the results of our model, these observed descriptions are
precisely the dynamic that our model and other models (36) pre-
dict for the undiscovered diversity within these two regions.
Trends in biological characteristics. As the clade analysis shows,
the biological properties of organisms can strongly affect the tim-
ing of the discovery and description of new species (8, 25). The
earliest descriptions within many marine groups are commonly
of species with larger body sizes, larger geographic ranges, and
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Fig. 4. Description of three closely related clades of marine bivalves exclud-
ing and including deep-sea species (phylogeny from ref. 33). Panels are orga-
nized as in Fig. 2. Despite the doubling of diversity in Propeamussiidae when
including deep-sea species, these glass scallops are not forecast to overtake
the diversity of their more speciose sister clade Pectinidae—the true scallops.
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shallower bathymetric occurrences (37, 38). As the model stands
here, we interpret a region or a clade with a relatively strong
decline in species description rate as being closer to taxonomic
saturation. However, if the body sizes and geographic range
sizes of the species within that region show a temporally con-
stant or increasing trend over time, we might conclude that the
observed richness is unsaturated, because those species most eas-
ily encountered by systematists are still being described (39, 40).
The challenge remains to directly incorporate these biological
trends into a spatially and taxonomically explicit probabilistic
model of species discovery.
Accounting for invalid descriptions. We modeled the description
of currently accepted species and thus assumed the observed tax-
onomic record is completely stable. However, taxonomic revi-
sion on both morphological and molecular grounds can split
(add) and synonymize (remove) species throughout the history
of description. Reshaping the description curve changes the
inferred rates of long-term description and the subsequent fore-
cast of undiscovered species.

The history of taxonomic practice within a particular clade
provides qualitative insight into the stability of an observed
description curve. Most marine bivalve species have been defined
by their morphology, and recent molecular work largely supports
these lower-level taxonomic delimitations (22, 41). This general
agreement between morphology and molecules reduces the like-
lihood of extensive synonymies or adding a large number of mor-
phologically cryptic species. Cryptic species certainly exist, but
their influence on the description curve is difficult to predict.
Systematists reinstate an older, synonymized name (e.g., from
year 1850) for a newly verified genetic unit or apply a new name
entirely (e.g., in year 2017). Reinstatement of older names will
produce stronger declines in the long-term trend of description,
suggesting higher taxonomic saturation. Applying new names
will contribute to a rise in long-term description rates, imply-
ing lower taxonomic saturation. Given the general congruency
between molecules and morphology in bivalves, we expect most
synonymized older names to remain synonymized and changes
to the shape of the description curve to come primarily from new
species descriptions.

Higher taxonomic groups such as birds, mammals, and bivalves
are unlikely to exhibit similar histories of taxonomic revi-
sion, making the qualitative tactic above impractical for study-
ing broad patterns in comparative biology (e.g., ref. 42). The
net species description rate is the sum of the synonymization
rate (reduce accepted species) and reinstatement rate (increase
accepted species). Thus, in a given year, the probability of observ-
ing the currently accepted number of species is a function of the
long- and short-term trends in description rate and the rate at
which species are deemed invalid. Alternatively, the persistence
of a species name could be modeled as a birth–death-type pro-
cess in an extension of the “flux rate” method (43). Either pro-
posed framework would provide the most probable “net taxo-
nomic output” for a given year.

Comparing the idiosyncrasies of system-specific taxonomic
records will be very important for designing and testing general
models of species discovery. Removing the effects of taxonomic
culture will always be difficult in comparative studies of higher
taxonomic groups, but modeling the dynamics of description loss
and reinstatement is likely the most promising method for future
development.

Conclusions
Comparative macroecological and macroevolutionary studies
often treat observed richness as known, but failing to account for
the spatial and phylogenetic variation in taxonomic activity may
mislead interpretations of biodiversity dynamics derived from
currently observed species richness. Modeling the long-term

species description rate provides a direct comparison of taxo-
nomic knowledge among geographic regions or clades. Incorpo-
rating those trends and their associated uncertainties into short-
term forecasts of species richness generates a set of probable
values, which can be directly used in quantitative ecological and
evolutionary models and in assessing the knowledge of diversity
in and around biological reserves. Integrating description rates
with forecasts of species richness not only improves our interpre-
tations of current biodiversity patterns but also highlights areas
where continued systematic research and discovery is necessary
for building more rigorous quantitative analyses at higher spatial
and phylogenetic resolution.

Materials and Methods
Marine Bivalve Database. Our marine bivalve database includes 5,744 cur-
rently valid species with 62,059 georeferenced occurrences (44) (Dataset S1).
For the regional richness study, we focus on intertidal to continental shelf
bivalves (living at depths from 0 m to 200 m), as deep-sea bivalves are
widely acknowledged to be an independent and undersampled system
(45). We also exclude two clades of exceptionally small body size (<1 cm)
that have poorly understood taxonomy [Cyamioidea and Galeommatoidea
(21, 30, 46)]. For the clade study, we include taxonomically standardized
deep-sea occurrences from a low-resolution taxonomic dataset of 136 deep-
sea species (largely from ref. 30; Dataset S2).

We define 18 geographic regions termed “climate–coastlines” using a
combination of coastline geography, climate zones, and major biogeo-
graphic turnover (map in Fig. 2) (47). Our climate–coastlines resemble the
12 “realms” in the Marine Ecoregions of the World (48), but we split the
realms by coastline to reflect the biogeographic structure of shelf biotas. We
assigned species to one or more climate–coastlines by intersecting the indi-
vidual occurrences for each species with the climate–coastline boundaries.
Approximately 48% of species are endemic to one climate–coastline, and
∼40% of species occur across two and three climate–coastlines (Fig. S10).
Allowing species to occur across more than one climate–coastline makes the
regional description histories more similar, which biases against the test for
differences in description history.

Modeling Species Description. We generate the number of species described
in a given year following a zero-inflated Poisson distribution (49). Zero
inflation accommodates an excess of individual years having zero descrip-
tion events above that expected under a Poisson distribution—a common
characteristic of regional and clade description curves. We modified the
zero-inflation component to allow for long runs of consecutive years with
zero species described by modeling the occurrence probability of a descrip-
tion event as a two-state Markov chain. We characterize the long-term
temporal trend in species description series using an autoregressive condi-
tional Poisson regression (50). Within this regression, the predicted num-
ber of species described per year is a function of time and the long-term
and short-term autoregressive components of the description rate. Finally,
we incorporated TE, defined here as the number of unique publications
describing new bivalve species for a given year, as an offset term for the
number of species named per year (51). Including TE in the model trans-
forms the interpretation of the estimated parameters from the expected
number of species described per year to the rate of species described per
publication per year. Full model description, formulation, and choice of pri-
ors is in Supporting Information, and model code is available from Zenodo
(doi.org/10.5281/zenodo.159033).

The joint posterior of our model parameters was estimated using a vari-
ant of Hamiltonian Monte Carlo called the No U-Turn Sampler, as imple-
mented in the probabilistic programing language Stan (52). Four indepen-
dent chains were run for 15,000 steps each (5,000 warm-up) and were well
mixed [R̂ = 1 (52)]. Model adequacy was assessed using posterior predictive
simulations to determine whether patterns generated from the parame-
ter estimates resemble the empirically observed patterns—the fundamen-
tal determinant of model fit. We made 1,000 independent draws from the
marginal posterior distributions of each parameter and compared these pos-
terior estimates to the observed patterns of taxonomic discovery through
graphical comparisons (Fig. 2).

Forecasting Species Richness. We forecast species richness across groups
(regions and clades) by simulating forward in time from the posterior pre-
dictive distribution. We examined the forecasting error using a variant
of leave-p-out time series cross-validation [“rolling forecast origin” (53),
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recommended in ref. 4], where we fit the model to incremental time series
from k blocks of p years each starting with 1758–1765. For p = 5, the series
is 1758–1765, 1758–1770,..., 1758–2010. We estimated the species richness
p years into the future for each block by drawing parameter estimates
from the model posterior (for the TE model, we used random samples of
publication counts p years before the end of the time series). We estimated
the forecasting error as the difference between the observed and forecast
counts within a forecast window (Fig. S7).
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