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Abstract

The blood thinner warfarin has a narrow therapeutic range and high inter- and intra-patient 

variability in therapeutic doses. Several studies have shown that pharmacogenomic variants help 

predict stable warfarin dosing. However, retrospective and randomized controlled trials that 

employ dosing algorithms incorporating pharmacogenomic variants under perform in African 

Americans. This study sought to determine if: 1) including additional variants associated with 

warfarin dose in African Americans, 2) predicting within single ancestry groups rather than a 

combined population, or 3) using percentage African ancestry rather than observed race, would 

improve warfarin dosing algorithms in African Americans. Using BioVU, the Vanderbilt 

University Medical Center biobank linked to electronic medical records, we compared 25 

modeling strategies to existing algorithms using a cohort of 2,181 warfarin users (1,928 whites, 

253 blacks). We found that approaches incorporating additional variants increased model accuracy, 

but not in clinically significant ways. Race stratification increased model fidelity for African 
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Americans, but the improvement was small and not likely to be clinically significant. Use of 

percent African ancestry improved model fit in the context of race misclassification.

1. Introduction

Warfarin is a commonly used anticoagulant with a narrow therapeutic index and high rate of 

significant adverse reactions from both over- and under-dosing.1 A number of 

pharmacogenomic variants are associated with stable warfarin dose,2 and many studies have 

developed dosing algorithms using these variants.1,3 Genotype-guided dosing is part of the 

United States Food and Drug Association (FDA) product label for warfarin.

The two largest randomized controlled trials of pharmacogenomic-guided warfarin dosing, 

EU-PACT4 and COAG5, yielded discordant findings on the clinical utility of incorporating 

pharmacogenomics into current dosing strategies. The EU-PACT study showed significantly 

increased percent time in therapeutic range (PTTR) over 12 weeks for the pharmacogenomic 

group while the COAG trial did not see a significant difference in PTTR over a 4-week time 

period. One of the reasons highlighted for these inconsistent findings across trials was the 

higher frequency of African descent individuals in COAG (27%) compared to EU-PACT 

(0.9%).6 In COAG, African Americans with genotype-guided dosing spent an average of 8% 

less time in therapeutic range than the clinical algorithm group. Studies have shown that the 

CYP2C9*2/*3 variants used by both COAG and EU-PACT are less frequent among those of 

African descent.7 There are also variants important for dosing among individuals of African 

descent alleles that were unaccounted for in these trials.7–11 Drozda found that failing to 

take into account these expanded variants resulted in significantly worse dose predictions 

among African Americans.12 Additionally, Limdi found that using a race stratified dosing 

approach resulted in significantly more dose variation explained in both whites and blacks 

compared to a race-combined dosing model.13

Although much work has been conducted in this area, there remain outstanding questions 

that need to be answered. For example, because the algorithm proposed by Drozda was 

developed only in African Americans, its generalizability to individuals of European descent 

is unknown. Additionally, clinical dosing algorithms using a stratified approach, as 

advocated by Limdi have not been robustly tested to determine clinical validity. Further, in 

other clinical predictive models, using percent African ancestry as a more nuanced and 

biologically accurate measure of race provided better predictive performance than 

categorical race.14 This study seeks to expand on previous warfarin dosing algorithm 

development efforts within Vanderbilt’s EMR-linked biobank15 to account for new variants 

associated with warfarin dose in African Americans. Additionally, we investigate whether 

race-stratified models or models using percent African ancestry result in clinically 

significant improvements (≥0.5–1mg/day) in dose prediction accuracy.
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2. Methods

2.1. Study Population

Using BioVU, the Vanderbilt University biobank linked to electronic medical records 

(EMR), we selected all adult patients (≥18 years old) with DNA available who also had 

warfarin mentioned in the active prescription section of their problem list or a note from one 

of the hospital’s anticoagulation clinics as of July of 2015. We used two approaches to 

extract stable warfarin dose based on whether the patient’s warfarin was managed by an 

anticoagulation clinic or an individual physician.

We used a previously published and validated algorithm15 to extract stable warfarin dose 

from patients with their dose managed by a Vanderbilt anticoagulation clinic or, for a subset 

of African Americans, where the dose was managed by their primary care provider. This 

approach identifies stable warfarin dose windows, as summarized in Figure 1. A stable dose 

window is defined as the presence of two or more notes from the anticoagulation clinic (or 

problem list entries for those managed by a primary-care provider) at least three, but not 

more than 12, weeks apart. During this time (from 7 days before the first note through the 

second note) the patient must also have two or more International Normalized Ratio (INR) 

measurements at least one day apart and all INR measurements in the window must be 

between 2 and 3. For anticoagulation clinic patients the INR goal range at the time of the 

stable dose window was required to be between 1.9–3.2. Primary-care managed patients 

were assumed to have an INR goal range of 2–3 unless otherwise specified (where ranges 

outside of 1.9–3.2 resulted in exclusion from the study). Warfarin dose was extracted from 

every anticoagulation clinic note in the window using regular expressions. The first window 

with identical prescribed warfarin doses throughout the window was selected as the stable 

warfarin dose. Patients lacking a window with identical warfarin doses throughout the 

window were manually reviewed to confirm accurate dose extraction. If multiple doses were 

prescribed during the window, the median dose was used. All primary care managed patient 

records were manually reviewed to extract warfarin dose and verify INR goal range because 

problem lists are susceptible to copy/paste redundancies and computational extraction may 

be invalid.

Clinical covariates influencing stable warfarin dose were extracted with a variety of 

methods. Concomitant therapies (amiodarone, carbamazepine, phenytoin, and rifampin) 

listed in the problem list before or during the dose window were manually reviewed to 

confirm the prescriptions were active during the window. Smoking status was identified 

combination of natural language processing (NLP) and tobacco use International 

Classification of Disease version 9 (ICD9) codes,16,17 followed by manual review to confirm 

active smoking at the time of the stable dose window. Body surface area,18 was calculated 

using the median height and weight across the stable dose window or the closest height and 

weight measurement available within 3–6 months before or after the window (extracted via 

manual review). Age was defined as the age at the first anticoagulation clinic note or 

problem list warfarin entry in the stable dose window. “EMR recorded race” is defined by 

the care provider, but has shown concordance with genetic ancestry.19 Indication for 
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warfarin treatment, blood clots (i.e., deep venous thrombosis [DVT] or pulmonary 

embolism[PE]) or atrial fibrillation, was determined through ICD9 codes.20,21

2.2. Genotyping

This study genotyped twenty-one single nucleotide polymorphisms (SNPs) that had ever 

been associated with warfarin dose in European or African-descent populations and recorded 

in the Pharmacogenomics Knowledge Base (PharmGKB, www.pharmgkb.org).22 Three 

variants (rs9923231, rs1799853, rs1057910) were genotyped using a Taqman assay by the 

Vanderbilt Technologies for Advanced Genomics (VANTAGE) core. A subset of white 

subjects had previous genotyping for these variants on the Illumina ADME assay and were 

not included in the Taqman assay. The remaining 17 variants were genotyped across the 

entire study population with a Sequenom assay performed by the VANTAGE core. 

Genotyping data were checked for marker efficiency and samples removed if they were 

missing one or more genotype calls for the tested variants. Duplicates and HapMap controls 

were validated.

We used existing genotyping data to calculate percent African ancestry across a subset of the 

population. Individuals were genotyped on one or more of the following platforms: Illumina 

Exome Beadchip, Human Omni Express Exome v2, Metabochip and/or OmniQuad. For 

each platform independently, samples with discrepant genders or sample efficiency <99% 

were removed. Markers with genotyping efficiencies < 99% or minor allele frequencies<5% 

were dropped. For the Exome chip, thresholds were set to 97% and 98% for genotyping and 

sample efficiency respectively as has been done previously to account for low frequency 

variants.23 Within each platform, percent African ancestry was calculated using the 

ADMIXTURE supervised learning method with HapMap Phase III CEU and YRI reference 

populations.24 The median estimate was used for individuals genotyped on multiple 

platforms.

2.3. Analysis

We fit and tested 25 different dosing models, combing 5 genetic modeling strategies 

(including exclusion of genetics altogether) with 5 different methods of race/ancestry 

adjustment. A summary of the 25 models tested are presented in Table 1. For race-stratified 

models, variants that were monomorphic or non-varying clinical factors were not included. 

To validate model summaries and prevent overfitting, we bootstrapped 1000 samples with 

replacement, trained a generalized linear model on each bootstrap, and tested the original 

dataset against each model. We calculated the mean absolute error (in mg/week) and R2 for 

each bootstrap model, then calculated the median and an empiric confidence interval using 

the 2.5th and 97.5th percentiles of the bootstrap summaries. For all combined race models, 

we calculated these evaluation criteria across the entire test population and then within each 

EMR recorded race group separately. Because there are different risks for over- and under-

dosing, we also calculated these summary evaluation criteria stratified by low (<21mg/

week), medium (21–49mg/week), and high (>49mg/week) stable dose across the entire test 

population and then within each EMR recorded race separately. To evaluate the validity of 

our models and compare to existing algorithms, we also calculated mean absolute error and 

R2 for a number of existing algorithms. The algorithms tested are summarized in Table 2.
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3. Results

A total of 3,498 patients (3188 whites, 310 blacks) had a stable dose window (all features in 

Figure 1, except INR goal range filtering) and were genotyped on the Sequenom platform. 

Of these, 596 whites had VKORC1-1369 and CYP2C9*2/*3 genotypes from the ADME 

platform, all other individuals were genotyped via Taqman. 291 individuals were missing 

one or more genotypes (with exceptions of rs7089580 and rs61162043 due to poor probe 

performance described below) and were removed from the analysis. Of the remaining 3,207 

individuals 2,419 (2,192 whites and 227 blacks) had warfarin managed by the 

anticoagulation clinic. Filtering this population for INR goal ranges between 1.9–3.2 

removed a further 233 individuals (212 whites, 21 blacks). Manual review to confirm stable 

warfarin dose, height and/or weight was performed for 203 whites and 28 blacks. This 

review removed 52 whites and 9 blacks for missing warfarin dose, height and/or weight. A 

total of 56 black individuals had warfarin managed by their primary care provider and were 

manually reviewed to extract warfarin dose and INR goal range. Combining the 

anticoagulation clinic and primary care populations yielded a final population of 2,181 

individuals (1,928 whites, and 253 blacks).

Population demographics are presented in Table 3. Blacks had higher warfarin doses (40.8 

vs 35mg/week), were younger (60 vs 66 years), were more likely to be current smokers 

(16% vs 8%), were more likely to be on anticoagulants due to thromboembolic events 

(30.4% vs 17.5%), and less likely to be on anticoagulants due to atrial fibrillation (59% vs. 

75%) than whites. All other demographics factors were similar between blacks and whites.

One marker, rs7089580, failed genotyping in the Sequenom pool. Genotyping efficiency 

rates and minor allele frequencies are presented for the remaining 20 variants in Table 4. 

One variant, rs61162043 had lower genotyping efficiency (failed genotyping in 111 whites 

and 21 blacks) and was excluded from the expanded variants model. However, this variant 

was included in the VKORC1 combined variable for the Combined Variant model. A 

summary of the frequency of observed diplotypes for CYP2C9 is presented Table 5. The 

majority of both racial/ethnic populations had a *1/*1 diplotype. Homozygotes and 

compound heterozygotes for the *2 and *3 variants (i.e., *2/*2, *3/*3, and *2/*3) were only 

observed in whites. Homozygotes and compound heterozygotes of the less common *5, *6, 

*8, and *11 alleles were only observed in blacks.

Within our final study population, 978 individuals (800 whites and 178 blacks) had genome-

wide data available. A total of 764 individuals were genotyped on two platforms, 98 had 

genotyped data from three platforms, and 5 individuals had genotyping on four platforms. 

Of these individuals, the majority (n=437) had a maximum difference of less than 1% 

between estimates across platforms. Only 7 individuals had estimates across platforms that 

differed by more than 5% (maximum range of 9.8%). Three individuals had an EMR-

recorded race of white, but had more than 50% African ancestry. The median ancestry 

estimate was used for all analyses.

A summary of the mean absolute error and percent variation explained (R2) for all twenty-

five fitted models, as well as the performance of existing dosing algorithms are provided in 
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Table 6. Comparing all new and existing algorithms, the Expanded Genetic unadjusted, 

Expanded Genetic EMR recorded race adjusted, Haplotype unadjusted, and Haplotype EMR 

recorded race adjusted models had the lowest mean absolute error across the combined 

population, with the Haplotype models explaining slightly more dose variance (54.4% vs 

54.1%). The Expanded Variant model with percent ancestry adjustment had the lowest mean 

absolute errors in whites, and the Expanded Genetic stratified model had the lowest mean 

absolute error in blacks.

The algorithm performance with respect to mean error within low, medium, and high weekly 

dose groups are presented in Figure 2. When broken down by dose range 362 individuals 

(336 white and 26 black) had low warfarin requirements (<21mg/week), 1,313 individuals 

(1,173 whites and 140 blacks) had moderate warfarin requirements (21–49mg/week), and 

486 individuals (402 whites and 84 blacks) had high warfarin requirements (>49mg/week). 

Within the medium dose requirement group (60% of the study population), dose predictions 

in whites were less than 5mg/week overestimated, while dose predictions in blacks were 

~5mg/week overestimated. For the 17% of individuals with low warfarin dose requirements, 

mean dosing error was <10mg/week overestimated in whites, and 10–20mg/week 

overestimated in African Americans. The existing algorithm with the best performance 

among low-dose requiring African Americans was Ramirez et. al. (overestimating warfarin 

dose by 11.6mg/week). Within the high dose requirement individuals (22%), all races were 

consistently underestimated by 10–20mg/week.

4. Discussion

The goal of this study was to: 1) account for variants associated with warfarin dose in 

African Americans, 2) investigate whether race-stratified dosing leads to clinically 

significant improved dose predictions, 3) investigate whether race adjustment using percent 

ancestry offers improved prediction accuracy compared to EMR recorded race. The last goal 

was predicated on a study of lung function predictions (a continuous trait that, like warfarin 

dose, differs by race) that found improved model fit when they included percent African 

ancestry.14 This hypothesis was bolstered by a study among Caribbean Hispanics that found 

adjusting for admixture improved warfarin dose prediction.25

Although this study required that individuals have DNA available in our biobank, because 

we took a complete cross-section of all individuals with warfarin exposure and DNA, the 

relative percentage of African Americans in this study (~10%) is consistent the broader 

Vanderbilt clinical population. As previously observed in the literature,13 our black study 

population had a higher incidence of DVT/PE as an indication for anticoagulation. The 

genetics of our population were consistent with expected allele frequencies from the 

HapMap populations, with African Americans having allele frequencies lying between the 

Yoruba in Ibadan, Nigeria (YRI) and African Americans in the Southwest USA (ASW). 

Ancestry estimates for the black population were as expected with African Americans 

having approximately 80% African ancestry,26 and allele frequencies for CYP2C9*2/*3 and 

VKORC1-1639 were consistent with other studies within the Vanderbilt clinical population 

(that are not necessarily part of the biobank population).27 Importantly, CYP2C9 *2 and *3 

homozygotes and compound heterozygotes were only observed in our white population, 
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lending support to the notion that use of only CYP2C9*2/*3 for warfarin dosing algorithms 

may be insufficient for African Americans.

Examining algorithm performance over the entire study population, the inclusion of 

additional variants associated with warfarin dose did increase dosing accuracy (mean 

absolute error) and percentage of dose variation explained for the combined, white and black 

populations. In all three populations one of the novel algorithms using SNPs independently 

(Expanded Genetic) or combined by CYP2C9 diplotype (Haplotype) outperformed existing 

algorithms, the Clinical, and the Limited Genetic models. When considering confidence 

intervals, the Expanded Genetic and Haplotype models performed at similar levels across all 

populations. This is important for future clinical implementation as algorithms such as 

MyDrugGenome use CYP2C9 diplotype. These diplotypes do not always have unambiguous 

assignments and are subject to change as the number of known genetic variants in a gene 

rise.28 Our results suggest that algorithms utilizing unique SNPs can perform at similar 

levels to those using diplotypes and may be preferable due their more stable identification.

When considering only mean absolute error, stratified dosing models outperformed 

combined models only in African Americans. Interesting, stratified dosing did not result in 

improved performance over combined models in whites. This may be due to race 

misclassification of the three individuals recorded as white in the EMR, but who 

nevertheless had greater than 50% African ancestry. We chose not to manually change these 

individuals’ race, as this misclassification is a real, generalizable14 problem in the clinic, and 

would have an effect on algorithms’ accuracy if clinically deployed. Although stratified 

dosing did improve algorithm performance among African Americans, it did not increase 

percent of warfarin dose explained by the model as has been seen in other studies.13

Correcting for race with percent ancestry yielded interesting results. Within the clinical 

model, percent ancestry improved model fit (lower mean absolute error, higher R2) in the 

combined population, but not when pharmacogenomic markers were added into the model. 

Interestingly, percent ancestry improved dosing among whites across all models including 

those with pharmacogenomic markers. It is possible that the race misclassification also 

affected the algorithms using percent African ancestry. While this misclassification would be 

an important limitation in clinical implementation, at the current time this is less important 

because genetic ancestry is typically unavailable in current clinical systems. However, 

should this information have increased clinical utility in the future, panel testing of ancestry 

informative markers could enable implementation of these data.

While the algorithms developed in this study outperformed existing algorithms when 

considering the mean absolute error of prediction, we advocate using Figure 2 to evaluate 

algorithm performance for desired implementation. We also caution that to determine the 

overall “best” algorithm, one must think within the context of clinical implementation of 

these algorithms. “Best” needs to be defined not just by performance, but also the 

generalizability and feasibility of implementation. For example, the Ramirez et. al. 
algorithm outperforms all algorithms for blacks with low warfarin doses and performs 

similarly to the best algorithms across most other race/dose requirement groups. However, 

the Ramirez et. al. algorithm requires the reason for anticoagulation (DVT/PE or atrial 
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fibrillation), information typically computationally unavailable at the time of warfarin 

initiation. Many settings implementing prospective pharmacogenomic testing rely on 

automated clinical decision support and active intervention at the time of ordering to tailor 

the prescription. Although our overall best performing algorithm/s are not clinically 

significantly improved over the Ramirez et. al. algorithm, they can all be computed with 

information readily available in a patient’s medical record, allowing for immediate 

calculation of starting warfarin dose at the time of prescription.

In addition to the question of implementation one must also consider that the clinical impact 

of dose misclassification is not consistent across all dosing groups. Overdosing individuals 

with low warfarin requirements (warfarin dose <21mg/week) can lead to serious bleeding 

events, while under-dosing those with high warfarin requirements (doses >49mg/week) can 

lead to clotting events.29,30 Although the IWPC algorithm performs similarly to the highest 

performance algorithms, it is particularly poor at predicting doses of low dose African 

Americans (~4.5 mg worse than the best performing algorithms). Depending on the 

frequency of low dose African Americans in the health system (determined with 

retrospective data), the IWPC algorithm may not be the best option. However, if the health 

system had a significant Asian population, use of the IWPC algorithm may be preferred 

because it takes these variables into account even if performance among low dose African 

Americans is reduced.

An important limitation of this study is that one of the previously tested algorithms, Ramirez 

et. al. was derived on a subset of patients included in this study. Thus it is possible that the 

high performance of the Ramirez algorithm in our population is inflated and may not be 

generalizable. The novel algorithms were also likely positively biased given the lack of an 

external validation set. Further, the results of the Hernandez et. al. algorithm were likely 

negatively biased as two SNPs predicting higher dose in African Americans were not 

included in this study due to poor genotyping quality. This study was also limited by the 

small number of African Americans studied. Additionally, since these data are from a single 

institution the results may not generalize to other populations. Warfarin dose is highly 

affected by vitamin K intake and the eating habits/cultural norms in the South may not 

reflect other parts of the US and world. Similarly, since this study only included whites and 

blacks, it is not clear how well the derived algorithms will perform among other ancestry 

groups.

In conclusion, expanding the variants in a warfarin dosing model does increase model 

accuracy, but not in clinically significant ways over existing algorithms in the literature. 

Similarly, race stratification resulted in the best model fits for African Americans, but the 

difference is unlikely to be clinically significant. Finally, percent ancestry surprisingly 

improves model fit – especially in the context of race misspecification in EMR recorded 

white race. However, the improvement in model fit among the white population is not 

clinically significant. When determining which dosing model to use, care must be given to 

selecting a model that not only matches the racial distribution of the population, but is also 

technically and financially achievable.
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Figure 1. 
Stable Warfarin Dose Window Algorithm
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Figure 2. Performance of Dosing Algorithms by Stable Dose Range
This figure shows the algorithm performance (mean error in mg/week) divided by EHR 

recorded race and the stable dose range, e.g. patient’s stable warfarin dose is a low weekly 

dose (<21mg/week), medium weekly dose (21–49mg/week), or high weekly dose (>49mg/

week). Mean errors greater than 0 indicate over dosing, while mean errors less than 0 

indicate underdosing.
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Table 2

Summary of Previous Algorithms Tested for Warfarin Dosing

Algorithm Clinical Predictors Genetic Predictors Notes

Fixed 35mg
Weekly Dose

- - -

FDA Dosing Table1 - VKORC1-1639 Used mean of dosing range given.

CYP2C9*2

CYP2C9*3

IWPC (International Warfarin 

Pharmacogenetics Consortium)2
Age (in decades) VKORC1-1639 -

Height CYP2C9*2

Weight CYP2C9*3

Asian

African American

Amiodarone

Enzyme Inducers

Ramirez et. al.3 Age (in years) VKORC1-1639 -

Race CYP2C9*2

Sex CYP2C9*3

Body Surface Area CYP2C9*6

Smoking Status CYP2C9*8

DVT/PE rs2108622

Atrial Fibrillation rs339097

Hernandez et. al.4 Age (in years) VKORC1-1639 Performed on subset of population with genotyping for 
rs61162043. Missing CYP2C9 rs7089580 due to probe 

failure. Set all patients to reference alleleWeight VKORC1,

DVT/PE rs61162043

CYP2C9*2

CYP2C9*3

CYP2C9*5

CYP2C9*8

CYP2C9*11

rs7089580

rs12777823

1
www.accessdata.fda.gov/drugsatfda_docs/label/2010/009218s108lbl.pdf;

2
Klein et. al. NEJM. 2009;

3
Ramirez et. al. Future Medicine. 2010;

4
Hernandez et. al. The Pharmacogenomics Journal. 2014.
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Table 3

Population Demographics

Combined (n = 2181) Whites (n = 1928) Blacks (n = 253)

Weekly Warfarin Dose, mg/wk (median, sd) 35.0 (±17.6) 35.0 (±17.0) 40.8 (± 19.9)

Age, years (mean, sd) 66 (± 15) 66 (± 15) 60 (± 16)

Female (n, %) 911 (41.8%) 784 (40.7%) 127 (50.2%)

African American (n, %) 253 (11.6%) - -

% African Ancestry (median, sd)1 0.99 (± 31) 0.65 (± 4.5) 81.6 (± 10.3)

Height, cm (median, sd) 173 (± 13.5) 174 (±13.0) 170 (±16.1)

Weight, kg (median, sd) 89 (± 24.0) 88 (± 23.9) 91 (±24.7)

Body Surface Area, m2 (median, sd) 2.0 (± 0.29) 2.0 (± 0.29) 2.0 (± 0.30)

Current Smokers (n, %) 209 (9.6%) 168 (8.7%) 41 (16.2%)

Amiodarone (n, %) 229 (10.5%) 202 (10.5%) 27 (10.7%)

Enzyme Inducers (n, %) 20 (0.92%) 15 (0.78%) 5 (1.98%)

Indication

 VTE (n, %) 414 (19.0%) 337 (17.5%) 77 (30.4%)

 Atrial Fibrillation (n, %) 1592 (73%) 1443 (75%) 149 (59%)

1
%-African ancestry available for 987 individuals (808 whites, 179 blacks)
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Table 5

CYP2C9 Diplotype Frequencies

CYP2C9 Haplotype Combined (n = 2181) Whites (n = 1928) Blacks (n = 253)

*1/*1 1402 (64.3%) 1222 (63.4%) 180 (71.2%)

*1/*2 357 (16.4%) 345 (18%) 12 (4.8%)

*1/*3 214 (9.8%) 205 (10.6%) 9 (3.6%)

*1/*5 8 (0.4%) 2 (0.1%) 6 (2.4%)

*1/*6 7 (0.3%) - 7 (2.8%)

*1/*8 28 (1.3%) 1 (0.1%) 27 (10.7%)

*1/*11 15 (0.7%) 11 (0.6%) 4 (1.6%)

*2/*2 100 (4.6%) 100 (5.2%) -

*2/*3 31 (1.4%) 31 (1.6%) -

*3/*3 11 (0.5%) 11 (0.6%) -

*3/*8 1 (<0.1%) - 1 (0.4%)

*5/*8 1 (<0.1%) - 1 (0.4%)

*5/*11 1 (<0.1%) - 1 (0.4%)

*8/*8 3 (0.1%) - 3 (1.2%)

*8/*11 2 (0.1%) - 2 (0.8%)
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