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ABSTRACT

Isoforms of human miRNAs (isomiRs) are constitu-
tively expressed with tissue- and disease-subtype-
dependencies. We studied 10 271 tumor datasets
from The Cancer Genome Atlas (TCGA) to evaluate
whether isomiRs can distinguish amongst 32 TCGA
cancers. Unlike previous approaches, we built a clas-
sifier that relied solely on ‘binarized’ isomiR profiles:
each isomiR is simply labeled as ‘present’ or ‘ab-
sent’. The resulting classifier successfully labeled tu-
mor datasets with an average sensitivity of 90% and
a false discovery rate (FDR) of 3%, surpassing the
performance of expression-based classification. The
classifier maintained its power even after a 15× re-
duction in the number of isomiRs that were used for
training. Notably, the classifier could correctly pre-
dict the cancer type in non-TCGA datasets from di-
verse platforms. Our analysis revealed that the most
discriminatory isomiRs happen to also be differen-
tially expressed between normal tissue and cancer.
Even so, we find that these highly discriminating
isomiRs have not been attracting the most research
attention in the literature. Given their ability to suc-
cessfully classify datasets from 32 cancers, isomiRs
and our resulting ‘Pan-cancer Atlas’ of isomiR ex-
pression could serve as a suitable framework to ex-
plore novel cancer biomarkers.

INTRODUCTION

RNA-sequencing technologies have enabled the discovery
of novel categories of non-coding RNA (ncRNAs) (1).
Among ncRNAs, microRNAs (miRNAs) are the best stud-
ied to date (2–9), having been linked to a wide range of pro-
cesses (10–17) as well as conditions and diseases (18–20), in-
cluding cancer (21,22). Their important roles and relatively

easy quantification have made miRNAs ideal biomarker
candidates (23–26) for tumor classification (27,28).

Recently, we made three contributions to the miRNA
field. First, we discovered 3 707 novel human miRNAs most
of which are primate-specific and exhibit tissue-specific ex-
pression (29). Second, we demonstrated that miRNA iso-
forms (isomiRs) are produced constitutively in human tis-
sues and their expression depends on tissue type, tissue
state, disease subtype and a person’s sex, population ori-
gin, and race (30,31). Third, we showed that the level of
transcription is not the main determinant of isomiR rela-
tive abundance but the isomiR levels depend on secondary
features such as their lengths and their 5′ or 3′ termini (31).
We also showed computationally and experimentally that
different isomiRs of the same miRNA can target differ-
ent genes and pathways, a finding that greatly extends the
gamut of the regulatory events that are mediated by miRNA
loci (31).

These findings suggest that a complex process drives the
expression of isomiRs. Thus, we hypothesized that infor-
mation about the isomiRs that are present in a tissue may
suffice to permit accurate sample classification in a pan-
cancer setting. Specifically, we evaluated whether ‘bina-
rized isomiR profiles’ can distinguish among multiple can-
cer types. On a related note, an earlier application of bi-
narized signatures to protein-coding transcripts reported
promising results (32–34). For this project, we focused on
The Cancer Genome Atlas (TCGA) repository. TCGA rep-
resents an ideal framework for testing our hypothesis, be-
cause it makes available small RNA-sequencing profiles for
more than 11 000 samples from 32 cancer types (35–55).

MATERIALS AND METHODS

Data acquisition and correction

We quantified the TCGA isomiR expression data of 10 271
TCGA datasets representing 32 cancer types. From the
whole TCGA cohort, 1 134 datasets were skipped because
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they are annotated as ‘potentially problematic’ (TCGA
data portal, file annotations.txt files of 28 October 2015).
In order to do this, we downloaded the public loci-based
isoform.quantification.txt files from the TCGA datasets
(downloaded from the TCGA data portal https://tcga-data.
nci.nih.gov on 6 August 2015) and converted them to be
molecule/sequence based. Importantly, our pool of candi-
date biomarker miRNA loci includes miRBase as well as
those hairpin arms of miRBase for which we reported re-
cently that they are expressed in various tissues (29). Prior
to the analysis, we applied corrections to account for mature
sequences that could originate from any of several known
miRNA paralogs (56). We also corrected for the fact that
the isoform.quantification.txt files made available by TCGA
often list only a subset of possible loci of miRNA par-
alogs (56). Importantly, even though we counted the expres-
sion of miRNA paralogs once (thereby avoiding multiple
counting), we maintained the labels of all possible paralogs
throughout the analysis.

We only included samples corresponding to primary solid
tumors (sample infix ‘01’ in the TCGA sample barcode),
except for acute myeloid leukemia (LAML) where blood-
derived samples were used (sample infix ‘03’).

‘Binarized isomiR’ and ‘binarized miRNA-arm’ profiles

We generate binarized isomiR profiles for a given sample
(dataset) by labeling its top 20% most expressed isomiRs
‘present.’ All other isomiRs are labeled ‘absent’ from the
dataset. Drawing the line at the top 20% represents a thresh-
old of ∼10 reads per million, which is stringent (Supplemen-
tary Figure S1). We generate binarized miRNA-arm profiles
for a given dataset by labeling the arm ‘present’ if and only
if at least one isomiR originating from the arm is ‘present;’
otherwise, we label the arm ‘absent.’ IsomiRs mapping to
the arms of (multiple) miRNA paralogs are merged into
meta-arms, i.e. collections of arms all of which share the
union of produced isomiRs.

Expression profiles of miRNA arms

For a given miRNA arm, we generated the arm’s expression
profile by summing the expression of all the isomiRs that are
produced by the arm.

Statistical and machine learning analyses

Statistical analyses were done in R version 3.3.0 (57) and
Python version 2.7. X2 tests were performed and P-values
were corrected to false discovery rate (FDR) values. We
called an isomiR or miRNA-arm feature ‘discriminatory,’
when the absolute difference between the percentage (%)
of datasets containing the feature in one cancer type but
not the other was ≥80%. Hamming distance was calculated
with the hamming.distance function of the e1071 package
(58), while all other distance metrics of hierarchical cluster-
ing (HCL) were performed with the hcluster function of the
amap package (59). Visualization of dendrograms was per-
formed with the dendextend package of R (60). Networks
were visualized using the igraph package in R (61).

Support vector machines (SVMs) (62,63) were run with
the svm function of the e1071 package in R (58) with lin-
ear kernel function and with allowed probability predictions
(see Supplementary Methods). The variable importance
(VI) scores were computed separately for each isomiR, or
for each miRNA arm, as the average of the squared values
of the weights across all pairwise SVM comparisons (64)
and then were scaled to one by dividing by the maximum
score. RandomForest was run with the H2O package in R
(65).

Significance analysis of microarrays (SAM) (66) was used
to identify differentially expressed (DE) isomiRs between
the tumor and normal tissue samples in eight cancer types
that contained enough (>35) normal samples. Indepen-
dently for each cancer type, the numeric expression profiles
were filtered so that only isomiRs with significant expres-
sion, i.e. the isomiR to be marked as ‘present,’ in more than
75% of the samples were used. SAM was run at 5 000 per-
mutations and an FDR cutoff filter of 0.00%. We note that
on average 593 isomiRs were included in the analysis of each
cancer (905 unique isomiRs across all eight cancers) and an
average of 54% of those were found to be DE in each can-
cer type (727 unique DE isomiRs across all eight cancers),
either up- or downregulated.

Retrieval of PubMed entries

For this step, we specifically used those miRNA loci that
have entries in the Gene database of National Center for
Biotechnology Information and retrieved the number of
PubMed entries associated with each miRNA gene (cur-
rent as of 7 October 2016) using Biopython (67). For each
PubMed entry, we also retrieved the title, converted all char-
acters to lowercase and searched for the strings ‘biomarker’
or ‘signature’.

Additional validation using non-TCGA datasets

We downloaded several, publicly available (29,68–70), non-
TCGA tumor datasets and generated the miRNA expres-
sion profile for each (See Supplementary Methods for more
details). We subsequently binarized the expression profiles
and used an SVM classifier trained on the TCGA tumor
samples of six cancer types to classify each of the datasets.

RESULTS

A ‘Pan-cancer Atlas of IsomiR Expression’ and statistics of
binarized isomiRs

We processed 10 271 normal and tumor TCGA datasets and
identified 7 466 isomiRs that arise from 807 arms and 767
miRNA loci (Supplementary Tables S1 and 2). The latter
include miRBase loci and novel human miRNA genes that
we reported previously (29). We intentionally focused on bi-
nary isomiR profiles, i.e. profiles that simply label an isomiR
or miRNA arm as ‘present’ or ‘absent’ (Supplementary Ta-
bles S1 and 2). We make available this complete Pan-Cancer
Atlas of isomiR expression in the Supplementary Tables.

We found that the majority (90.2%) of the 7 466 isomiRs
are present in ≤50% of the analyzed datasets. A mere 48 of
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the 7 466 isomiRs are in all datasets (Supplementary Fig-
ure S2A). Interestingly, 11 of the 48 isomiRs are from the
let-7 family. Other ubiquitous isomiRs arise from widely-
studied loci including mir-21, mir-29, mir-30, the mir-17/92
cluster. For individual miRNA loci, the distribution of their
isomiRs varied greatly across samples. For example, let-7
isomiRs were ‘dichotomized:’ one subset is present in nearly
all datasets whereas a second subset is in fewer than 25% of
the datasets (Supplementary Figure S2B). Moreover, 77.5%
of the 7 466 isomiRs are in at least two of the 32 TCGA can-
cer types (Supplementary Figure S2C).

Figure 1A shows a heatmap of the number of isomiRs
arising from the 70 highest-yielding miRNA arms. Let-7a-
5p is consistently present in numerous isomiRs across all
32 cancer types. MiR-21-5p and miR-30a-3p produce many
isomiRs in most of the analyzed cancers. Ovarian cancer
(OV) in the case of miR-21-5p and LAML in the case
of miR-30a-3p are striking exceptions to this observation.
Also of note is the fact that several arms produce numerous
isomiRs in select cancers only: e.g. characteristically, the 5p
and 3p arms of mir-9 produce numerous isomiRs in lower
glade glioma (LGG). Lastly, we found the mean expression
of a miRNA arm correlates very well with the mean num-
ber of isomiRs that arise from this locus across all the tumor
samples in a given cancer (average Spearman correlation co-
efficient across cancer types: 0.976)––see also (31) for a sim-
ilar finding in our previous isomiR study that analyzed only
a small subset of the TCGA breast cancer (BRCA) datasets.
In Supplementary Figure S2D we show a specific example
of this correlation for bladder cancer (BLCA).

IsomiR production and miRNA-arm production are cancer
dependent

We studied the binary differences of presence/absence of
abundant isomiRs by conducting all pairwise comparisons
among 32 cancers.

We discovered several isomiRs that are significantly
present in one cancer and absent from many of the remain-
ing cancers (Supplementary Table S3). LGG offers a char-
acteristic such example. As mentioned above (Figure 1A),
isomiRs from the miR-9-3p arm are present in LGG sam-
ples and absent from nearly all other cancers. On the con-
trary, isomiRs of miR-10a-5p and the mir-200 family are
largely absent from LGG and present in 71–93% of the
other cancers (Figure 1B). Another example can be seen in
Supplementary Table S3: the mir-302 family and the mir-
371/372/373 cluster express several isomiRs that are nearly
exclusive to testicular germ cell tumors (TGCT) (71).

Use of ‘binarized miRNA-arm profiles’ largely replicated
the results we obtained with ‘binarized isomiRs’ (Supple-
mentary Table S4). In some cases, miRNA arms inherit the
specificity of the isomiRs they produce: e.g. the miR-215-
5p arm is specific to colon adenocarcinoma (COAD) (Sup-
plementary Table S3) as are the isomiRs it produces (Sup-
plementary Tables S3 and 4). This is visually summarized
in Figure 1C. The left hand-side column of this figure in-
cludes the miRNA arms, as boxes, that are differentially
present in the comparisons of COAD with at least one of the
other cancer types. The right hand-side column of the fig-
ure shows isomiRs as boxes labeled with isomiR coordinate-

pairs (see Loher et al. (30) for more details on this notation).
If a miRNA arm box is connected to an isomiR box, then
this is taken to mean that the specific isomiR from this arm
is differentially present in COAD as compared to at least
one other cancer type. The color of the line that connects
the two boxes indicates whether the miRNA arm and the
specific isomiR are ‘present’ in COAD (red color) or ‘ab-
sent’ (green color).

Next we examined how well HCL can classify the 32 can-
cer types when we use the cardinality of isomiRs that are
differentially present between two cancers as a distance met-
ric (Supplementary Table S3). The resulting dendrogram is
shown in Figure 1D. In it, several interesting clusters can
be seen. One cluster (light purple background) comprises
almost all the adenocarcinomas including pancreatic duc-
tal (PAAD) and prostate adenocarcinoma (PRAD). A sec-
ond cluster (light orange background) comprises BRCA
and BLCA (72) along with the squamous cell carcinoma
of lung (LUSC) and head-and-neck (HNSC) (73). A third
cluster (light yellow background) includes renal clear cell
carcinoma (KIRC), renal papillary cell carcinoma (KIRP),
hepatocellular carcinoma (LIHC) and cholangiocarcinoma
(CHOL). Note also the clustering of the uveal (UVM) and
skin (SKCM) melanomas (cyan background).

However, this univariate analysis is not suitable for tack-
ling the multidimensional question of cancer classification,
as it does not reveal the widespread and significant differ-
ences among cancers that are observed at the isomiR level
(Supplementary Table S3).

Conventional multivariate clustering cannot separate all can-
cer types

We used multivariate statistics to test whether the binarized
isomiR and binarized miRNA-arm profiles can be used for
tumor discrimination and classification at the sample level.
Doing so allowed us to discriminate the samples from up
to seven cancers using HCL with binarized isomiR profiles
as features and Hamming distance as a metric (Figure 2A).
Using binarized miRNA-arm profiles as features did not
improve discrimination (Figure 2B).

To investigate the upper limit of discrimination power
that can be achieved by using HCL + Hamming distance, we
performed all pairwise comparisons and examined whether
each cancer’s samples clustered together. Figure 2C (bina-
rized isomiRs) and D (binarized miRNA arms) show the re-
sults. Not surprisingly, the isomiR profiles (Figure 2C) help
distinguish among more cancers by comparison to miRNA-
arm profiles (Figure 2D). In the shown networks, LAML,
TGCT, thymoma (THYM) and UVM act as ‘central hubs.’
In other words, these three cancers are easily distinguish-
able from several other cancers. The absence of nodes such
as, e.g. COAD and thyroid cancer (THCA) from these net-
works highlights the limited ability of this clustering model.

Binarized isomiR profiles can discriminate among cancers

At the interface of biology and machine learning (63,74,75),
SVMs have been the tool of choice for many multi-class
classification problems (62,76,77). For our multi-cancer
classification, we followed an SVM-based approach analo-
gous to PhyloPythia (78,79), our classifier of metagenomes.
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Figure 1. Differentially present isomiRs among different cancer types. (A) Heatmap of the number of isomiRs per miRNA arm. Shown are data from the 70
highest-yielding miRNA arms. The darker the color of each cell, the higher the number of isomiRs that the respective arm (rows of the heatmap) produces
in the respective cancer type (columns of the heatmap). (B) Differential presence of isomiRs in lower grade glioma (LGG) tumor samples as compared
to the rest of cancer types. Red indicates that the isomiR (row) was found as ‘present’ in LGG as compared to the respective cancer type (column), while
green indicates ‘absence’ in LGG. The data from all possible pairwise comparisons is included in Supplementary Table S3. (C) Overlap between miRNA
arms and isomiRs in the comparison of colon adenocarcinoma (COAD) with the rest of the cancer types. Red indicates that both the isomiR and arm
were ‘present’ in COAD as compared to at least one other cancer type, green indicates they were ‘absent’. For example, miR-205-5p is ‘absent’ in COAD as
well as its five isomiRs, miR-205-5p|0|0, miR-205-5p|0|−3, miR-205-5p|0|−2, miR-205-5p|0|−1 and miR-205-5p|0|+1. (D) Hierarchical clustering (HCL)
(complete method) considering the number of differentially present isomiRs as the distance between cancer types. Colored clusters are described in the
main text.
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Figure 2. Multivariate HCL on the binary expression vectors. (A and B) HCL (Hamming distance as metric) on the isomiR (A) or miRNA arm (B) profile
of samples from different cancer types. The leaves of the dendrogram are tumor datasets. The colored bar indicates the cancer type of the respective sample.
(C and D) Networks of all potential pairwise discriminations using HCL (hamming distance as metric) on the isomiR (C) or miRNA arm profile (D).
Two nodes (cancers) are connected if and only if the corresponding datasets are found to form two separate clusters in the respective comparison, with the
datasets of one cancer clustered distinctly from the other.

We ran a Monte-Carlo cross-validation approach for
1 000 iterations. In each iteration, we trained the SVM
classifier using a random sample comprising 60% of the
datasets. We used the remaining 40% of the datasets for
testing (See ‘Materials and Methods’ section and Supple-
mentary Data). Supplementary Table S5 contains an exam-
ple of the probability vectors for the test datasets as well as
the confusion matrix from one iteration. It is evident that
correctly-classified datasets receive high probabilities (∼0.9
or higher). We note that the SVM models produced at each
iteration are fairly similar to one another (Supplementary

Figure S3A and B), which indicates that the training pro-
cess is highly stable.

Figure 3A is a heatmap of the average prediction perfor-
mance of the SVMs that used binarized isomiR profiles as
features. Each row designates the test sample’s cancer type.
Each column designates the cancer type predicted by the
classifier. The perfect classifier should not generate any non-
diagonal entries (specific) or any entries in the ‘Other’ cate-
gory (sensitive). As Figure 3A shows, the binarized isomiR
features can discriminate among cancer types and classify
samples correctly. One instance of seemingly decreased per-
formance involves several rectum adenocarcinoma (READ)
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Figure 3. Support vector machines (SVMs) correctly classify 32 cancer types. (A and B) SVM classification using the binarized isomiR (A) or the miRNA
arm (B) expression profile. Each row of the heatmap represents the original and each column the predicted cancer class. The color of each cell in the
heatmap is proportional to the percentage (%) of samples originally as the cancer type in the respective row to be predicted as the cancer type of the
respective column. The % is calculated as the average across 1 000 iterations. (C and D) Sensitivity (C) and FDR (D) scores for the SVM models built using
the binarized isomiR (magenta) or miRNA arm (yellow) expression profiles. The points at the bottom of the distribution represent the sensitivity (C) and
FDR (D) scores from the 10-fold cross-validation analysis.

tumors that are ‘misclassified’ as COAD. This is not a mis-
take but rather an expected result, because READ and
COAD tumors are molecularly similar and their distinc-
tion is largely driven by anatomy (35). We also note that the
classifier shows an ability to very effectively distinguish can-
cer types that originate from the same organ, such as lung
adenocarcinoma (LUAD) and LUSC, and the three kidney
tumors, KIRP, KIRC and chromophobe renal cell carci-

noma (KICH). Figure 3B shows the counterpart heatmap
for SVMs that used binarized miRNA-arm profiles as fea-
tures. Despite the sharp decrease in the amount of used in-
formation that results from using the miRNA-arm profiles,
classification performance remains high. This suggests that
simply examining whether a miRNA-arm produces one or
more isomiRs above threshold can achieve satisfactory clas-
sification performance.
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Figure 3C and D depict the distribution of the sensi-
tivity and FDR values respectively that were achieved by
each of the 1000 SVMs that were built. Evidently, binarized
isomiR profiles are very effective features, achieving an av-
erage pan-cancer sensitivity of 90% versus 83% when bina-
rized miRNA-arm profiles are used. Even at 83%, the pan-
cancer sensitivity of SVMs that leverage miRNA-arm infor-
mation is high in absolute terms. The binarized miRNA-
arm performance is particularly notable considering the
difficulty of the task and how little information is actu-
ally available to these SVM models. The concomitant FDR
scores further corroborate the effectiveness of the classifi-
cation. SVM models that use the binarized isomiRs exhibit
a mean FDR of 3% versus 6% for the models that use the
binarized miRNA arms.

Lastly, we validated the SVM-based classification by
shuffling dataset labels and by standard 10-fold cross-
validation (Supplementary Figure S3 and Supplementary
Methods). We also note that the differences in the number
of datasets across cancer types did not affect the SVMs’ per-
formance (Supplementary Figure S4 and Supplementary
Methods).

Expression-based profiles perform less well than binarized
isomiR profiles

In light of the ability of the binarized profiles to correctly
classify samples, we hypothesized that taking into account
the actual expression levels of the various isomiRs and
miRNA arms would improve the classification. In order
to generate a more comprehensive picture, we also con-
sidered the scenario where only the expression levels of
the archetype miRNA (0|0 isomiRs; for details on isomiR
nomenclature see (30,31)) were used as features. To enable
a direct performance comparison with the classifiers we de-
scribed already, we used the exact same iterative SVM ap-
proach as above, only this time we used as features the ac-
tual expression profiles of the (i) isomiRs, (ii) miRNA arms
and (iii) archetype miRNA, respectively. Classification re-
sults, and the sensitivity and FDR scores were calculated as
above.

Supplementary Figure S5 shows the results of this anal-
ysis. In all cases, use of the expression profiles resulted in
a diminished ability to classify samples: the sensitivity was
considerably lower and the FDR considerably higher, com-
pared to the classifiers with binarized features. The classi-
fier that used isomiR expression profiles achieved an aver-
age sensitivity of 67% with an FDR of 6%. When miRNA
expression profiles were used instead, the classifier’s sensi-
tivity decreased to 64%, whereas the FDR increased to 8%.
Lastly, we note that when the used features comprised the
expression profile of only the archetype miRNAs, the clas-
sifier’s sensitivity decreased further to 60% (t-test P-value <
10−4). Note added to the proofs: when we applied isomiR
expression standardization across the training samples, the
classifier’s sensitivity improved to 83% at an FDR of 4%
(data not shown) but continued to trail the performance of
the classifier that used binarized features.

The most discriminatory isomiRs and miRNA arms are not
the most studied

As the SVM attempts to identify the best-separating hyper-
plane in the multi-dimensional space, some of the features
(isomiRs or miRNA arms) are given more weight than oth-
ers. To elucidate these special features, we trained the SVM
yet again, this time using the binarized profiles from all 9
291 primary tumor TCGA datasets and extracted the VI
score for each feature (see ‘Materials and Methods’ section).

Our analysis shows that two isomiRs of miR-205-5p are
deemed most important by the isomiR-based SVM classi-
fiers (Supplementary Table S6), followed by several isomiRs
from both arms of mir-141. Notably, SVM models, built on
binarized isomiR features and on binarized miRNA-arm
features respectively, tend to agree with regard to the ge-
nomic loci that each model deems important, e.g. mir-205,
mir-141, mir-200c (Supplementary Tables S6 and 7).

To validate these findings, we used the RandomForest al-
gorithm because of its ability to identify significant vari-
ables for classification (80). The VI scores from Random-
Forest are strongly and positively correlated with the VI
scores from the SVM models: the Spearman rho correlation
coefficient is 0.886 (P-value < 0.01). For the models using
miRNA-arm features, the correlation of the VI scores im-
proves to 0.932 (P-value < 0.01). The validation of the SVM
conclusions by an independent algorithm adds further sup-
port to the relevance of using binarized profiles.

Having confirmed the VI scores, we associated the cor-
responding molecules with the number of PubMed entries
(see ‘Materials and Methods’ section). We calculated a
mean of 30 publications per mature miRNA arm. Figure
4A and B show the results for SVMs and RandomForest
respectively. Strikingly, mir-21 is associated with the high-
est number (689) of publications. However, both SVM and
RandomForest assign a considerably low VI score to mir-
21’s two arms, with regard to their discriminatory power.
Conversely, both SVM and RandomForest deem miR-944,
with only six PubMed entries, as one of the most important
for cancer classification (Supplementary Table S7). Other
highly discriminatory miRNAs with few PubMed entries
include miR-194-3p, miR-192-3p and miR-135a-5p with
10, 46 and 29 publications respectively.

A similarly weak correlation characterizes the number of
PubMed entries and the number of times a miRNA arm is
found differentially present between two cancer types (Sup-
plementary Figure S6A). We note that the miRNA arms
(or isomiRs) with the most impact on cancer classification
are those found to be differentially present in many cancer-
type comparisons (Supplementary Figure S6B and C). This
means that, for the purpose of multivariate SVM-based
classification, isomiRs and miRNA arms that are present in
(or absent from, respectively) only one cancer type are not
the most valuable. Nonetheless, such isomiRs and miRNA
arms do remain important for the biology of the cancer in
which they are exclusively present or from which they are
exclusively absent. RandomForest models produced similar
results for both isomiRs and miRNA arms (Supplementary
Figure S6D and E).

One could argue that the rationale for studying a miRNA
locus in the first place lies in its role as a producer of onco-
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Figure 4. The number of existing publications does not correlate with a miRNA’s importance for classification. (A and B) Number of publications against
the variable importance (VI) score as calculated in the SVM (A) or RandomForest (B) classification model based on the binary miRNA arm profiles.
Spearman correlation coefficients: for SVM: 0.303, for RandomForest: 0.266. (C and D) Number of publications with the string ‘biomarker’ or ‘signature’
in the title against the VI score as extracted from the SVM (C) or RandomForest (D) models that were trained with the binarized miRNA-arm profiles.
Spearman correlation coefficients: 0.123 for SVM and 0.128 for RandomForest.
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genic or tumor-suppressing miRNAs and not its utilization
as a biomarker. We thus filtered the publication lists and
kept only articles that contained the string ‘biomarker’ or
the string ‘signature’ in the title and correlated with the VI
scores as extracted from the SVM (Figure 4C) and Ran-
domForest (Figure 4D) algorithms. The results show a very
weak correlation of the public literature with the impor-
tance of specific miRNA loci as multi-cancer classification
features. Even this biomarker-specific list of publications re-
mains biased in favor of mir-21, whereas the most discrim-
inatory miRNAs have fewer than 10 publications.

Use of a reduced set of features preserves the ability to classify
with binarized profiles

Since only a relatively small number of isomiRs and
miRNA arms have high VI scores, we examined whether
we could obtain reasonable classification using a reduced
set comprising the most important isomiR or miRNA-arm
features.

We selected among the most important isomiRs from the
SVM and RandomForest models by thresholding at five dif-
ferent values: top 5%, top 10%, top 20%, top 30% and top
40%. For each selection, we used the resulting isomiRs to
train 2 000 multi-cancer SVM-based classifiers: 1 000 made
use of binarized isomiR profiles and another 1 000 of bi-
narized miRNA-arm profiles. Figure 5 shows the resulting
sensitivity and FDR for each choice of cutoff threshold.
Binarized isomiRs maintain their ability to correctly clas-
sify datasets, even after a >15× reduction in the number of
used features. Indeed, when using the top 5% (456) most im-
portant isomiRs, and following 1 000 training/testing iter-
ations, we observed an average sensitivity of 82% (from the
original 90%) at an average FDR of 5% (from the original
3%) (Figure 5).

We also repeated the analysis and built our SVM models
using the most important binarized miRNA-arm features.
Even the considerably reduced signature of 47 miRNA arms
(top 10%) maintained a reasonable ability to classify sam-
ples exhibiting a sensitivity of 70% (from the original 83%
when all features are used), but a rather increased FDR of
10% (from the original 6% when using all features) (Figure
5).

The most discriminatory isomiRs are differentially expressed
in normal versus cancer comparisons

During the training of the SVM classifiers, we had excluded
normal or metastatic tissue samples. We investigated the ef-
fectiveness of our pan-cancer classifier and studied its pre-
dictions when it was presented with these samples. To this
end, we used the SVM model that was trained with all of
the TCGA tumor datasets. As can be seen from Supplemen-
tary Figure S7, the resulting classification exhibited a tissue-
specific component. In other words, many of the normal
and metastatic samples were classified to the cancer type
of the organ of origin. For organs that give rise to distinct
types of cancers, the normal samples clustered with one of
the organ’s cancers: e.g. normal lung samples were labeled
as ‘LUAD,’ and normal kidney samples as ‘KIRP.’ In some
instances, as was the case with COAD and READ, the sam-

ples were labeled ‘Other,’ indicating uncertainty by the algo-
rithm as to how to best classify them.

The findings of this first foray suggest that the classifier
may also capture a component that relates to the state of the
tissue/organ of origin. We hypothesized that the most dis-
criminatory isomiR features across cancers are also dereg-
ulated between the normal and the cancerous state of the
corresponding tissue. To test this hypothesis, we focused on
the eight cancer types for which an adequate number of nor-
mal samples are available as part of the TCGA repository.
We performed SAM analyses and identified those isomiRs
that were DE between the normal and the tumor samples
(Supplementary Table S8). We observed that isomiRs with
high VI scores happen to also be DE in these comparisons.

Binarized miRNA-arm profiles from TCGA can correctly
classify non-TCGA datasets

In spite of our extensive tests, there remains the formal pos-
sibility that our models have been over-fitted to TCGA and
are not extendible to non-TCGA datasets. To investigate
this possibility, we sought public non-TCGA datasets that
were generated by independent sequencing platforms or mi-
croarrays.

Before continuing, it is important to stress that, from a
statistical point of view, the ideal classifier should be trained
using datasets that are a balanced representation not only of
the cancer types, but also of the data generating platforms
(e.g. deep sequencing as well as microarrays). This is not
feasible with the currently available miRNA data, because
data for many cancer types are either under-represented
or absent from public repositories. In addition, internal
control standards, like spike-in standards (81), among and
within sequencing and microarray platforms, which would
ensure a consistent binarization of the features, are lack-
ing. Moreover, the set of features (in this case, miRNA arms
or isomiRs) should be significantly large to adequately ac-
count for technical (e.g. library preparation) or biological
(e.g. race, population, disease subtype) variations and bi-
ases among datasets.

Taking the above considerations into account, we re-
duced the number of cancer types in our analysis while keep-
ing the same number of features (miRNA arms), in order
to increase statistical power. We selected six commonly de-
tected and deadly cancer types with large sample sizes in the
TCGA cohort: BRCA, LAML, LIHC, PRAD, COAD and
LUAD. We then trained an SVM classifier using the bina-
rized miRNA-arm profiles and all tumor samples that are
available in the TCGA repository for these six cancer types.
The resulting classifier was used to label publicly available
datasets (29,68–70) (see Supplementary Methods for de-
tails) that were acquired independently from TCGA and
from a diverse set of platforms, including microarrays and
RNA-seq with a different deep-sequencing chemistry (ABI
SOLiD). Table 1 shows the results of this analysis. As can be
seen, the TCGA-trained SVM classifier performed well and
correctly classified usually more than 90% of the samples in
each of the project. Supplementary Table S9 contains the
prediction probabilities for each sample. These validation
steps demonstrate the utility of binarized miRNA arm pro-
files of TCGA datasets for training an SVM classifier that
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Figure 5. Boxplots of the sensitivity (A) and FDR (B) for the SVM classification using reduced lists of features for different cutoff thresholds t for the most
important isomiRs or miRNA arms. The distributions with the full isomiR and miRNA profiles are also included for comparison.

Table 1. Predictions of non-TCGA datasets using the SVM model trained with the binarized miRNA arm profiles of the TCGA tumor samples

Accession number Platform Cancer type Samples correctly classified (%)

GSE35834 Affymetrix miRNA Array COAD 26 (84%)
GSE36802 Affymetrix miRNA Array PRAD 16 (76%)
GSE53159 Affymetrix miRNA Array COAD 29 (91%)
GSE67138 Affymetrix miRNA Array LIHC 52 (91%)
GSE67139 Affymetrix miRNA Array LIHC 110 (96%)
SRP034550 ABI SOLiD sequencing PRAD 5 (100%)
SRP034557 ABI SOLiD sequencing BRCA 2 (100%)

does not exhibit overfitting to the TCGA project and can be
used to analyze data from other projects and platforms.

DISCUSSION

We sought to determine whether binarized isomiR and
binarized miRNA-arm profiles can be used to classify
datasets in a pan-cancer setting. If validated independently,
these features could become potential biomarkers. Our
work was spurred by previous observations that miRNA
profiles can be tissue-specific (27–29,82,83) and cell type dif-
ferences can be described adequately by the presence (or ab-
sence) of RNA transcripts (33,34). Our analysis led to sev-
eral observations.

For instance, we discovered isomiRs with cancer-specific
expression. For example, the isomiRs of mir-9, a miRNA
that is highly expressed in the nervous system and has im-
portant roles in neuronal development and diseases (84,85),
are present exclusively in LGG datasets. Similar comments
can be made for LGG and the isomiRs of mir-219, a
miRNA that is implicated in neural differentiation pro-
cesses (86). Also, isomiRs from the mir-302 family, which
has important roles in stem cell pluripotency and cell re-
programming (87,88) are present in TGCT exclusively.

We also identified miRNA loci with cancer-specific ex-
pression. Examples include the novel miRNA ID00737-3p
(29) for THCA, mir-671 for OV and other. OV is partic-
ularly interesting in that a large number of isomiRs and
miRNA arms, which are expressed in other cancer types,
are absent from OV. On the contrary, tumors of the male
reproductive system, TGCT, are characterized by a gain of
isomiRs and miRNAs as compared to all other tumor types.

Molecules with tissue-specific expression are invaluable
biomarker candidates. Consequently, ubiquitous isomiRs
and miRNA arms are suboptimal choices in this regard
(89). Two characteristic examples include mir-21 and let-
7a: both loci produce many abundant isomiRs in most of
the studied TCGA datasets and all 32 cancer types. The
miRNA molecules studied to date exhibit mixed expression
patterns across tissues, which previously led to the proposed
use of miRNA ‘panels’ as biomarkers (90–92).

In a pan-cancer setting, we found that an SVM-based
classifier using binarized isomiR profiles as features can
label datasets accurately (≥90% sensitivity, FDR<5%).
SVMs using binarized isomiR features outperformed SVMs
using binarized miRNA-arm features (Figure 3), even when
the number of features was reduced by 15× (Figure 5). Use
of binarized miRNA-arm features lowered the prediction
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rates. Conceivably, this is because modeling at the miRNA
arm level inherently discards information that may be re-
flecting underlying biological events (93–95). This area re-
mains largely unexplored and the number of reports on
the discriminatory power of isomiRs is currently limited
(31,96).

We stress that causative links should not be inferred based
on our analysis. Additionally, the identified tissue-specific
isomiRs and miRNA arms are not guaranteed to be ex-
pressed only when the tissue enters its cancer state. However,
we found that the most important isomiRs for the discrim-
ination of various cancer types were also present in normal
tissue but, importantly, were DE in the cancer state. These
results suggest a tissue-specific trajectory of deregulation
from the normal to the cancer state (97). Similar to previous
studies (28), further resolving this question hinges upon the
availability of ‘normal’ samples. Such samples do not cur-
rently exist in adequate numbers and for multiple tissues. As
the TCGA initiative focused on tumor classifications, only
a limited number of normal samples were included. Thus,
alternative sources will be needed to embark to addressing
these questions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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