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ABSTRACT

Ribosome profiling via high-throughput sequencing
(ribo-seq) is a promising new technique for charac-
terizing the occupancy of ribosomes on messenger
RNA (mRNA) at base-pair resolution. The ribosome
is responsible for translating mRNA into proteins,
so information about its occupancy offers a detailed
view of ribosome density and position which could
be used to discover new translated open reading
frames (ORFs), among other things. In this work, we
propose RP-BP, an unsupervised Bayesian approach
to predict translated ORFs from ribosome profiles.
We use state-of-the-art Markov chain Monte Carlo
techniques to estimate posterior distributions of the
likelihood of translation of each ORF. Hence, an im-
portant feature of RP-BP is its ability to incorporate
and propagate uncertainty in the prediction process.
A second novel contribution is automatic Bayesian
selection of read lengths and ribosome P-site off-
sets (BPPS). We empirically demonstrate that our
read length selection technique modestly improves
sensitivity by identifying more canonical and non-
canonical ORFs. Proteomics- and quantitative trans-
lation initiation sequencing-based validation verifies
the high quality of all of the predictions. Experimental
comparison shows that RP-BP results in more peptide
identifications and proteomics-validated ORF predic-
tions compared to another recent tool for translation
prediction.

INTRODUCTION

Ribosome profiling via high-throughput sequencing (ribo-
seq, (1)) is a promising new experimental technique for

identifying the position of ribosomes on messenger RNA
(mRNA). Several ribosome profiling protocols have been
developed. For example, Aeschimann et al. (2) lyse cells,
digest the lysate with RNAseI and purify the monosomes
via sucrose gradient fractionation or gel filtration. RNA is
then isolated from the monosome fraction, subjected to gel
purification and size selection to enrich for mRNA frag-
ments of interest, so-called ribosome footprints. The ribo-
some footprints are then amplified, sequenced and mapped
to a genome. We call the pattern of mapped reads for a par-
ticular region (e.g. an open reading frame (ORF)) as the re-
gion’s ribosome profile, or just profile.

Ideally, the ribosome profile reveals exactly and only the
position of ribosomes. In practice, though, a variety of other
signals and noise (1), such as RNAs protected by com-
plexes other than the ribosome, amplification biases and se-
quencing errors, dilute the ribosome profile signal. Further-
more, some evidence suggests that the ribosome can bind to
mRNA (and protect it) without actively translating (3).

The ribosome has known behavior which can help distin-
guish noise from true signal in ribosome profiles (1). In par-
ticular, the ribosome respects the genetic code and moves
along its RNA template during protein synthesis in steps
of 3-nt (i.e. size of a codon). Thus, the true signal of an ac-
tively translated mRNA transcript should exhibit a periodic
‘high-low-low’ behavior in which every third base pair has
more ribosome footprints than the surrounding base pairs.
(While other patterns, such as ‘high-low-high,’ are also peri-
odic, we specifically refer to the ‘high-low-low’ pattern with
respect to a specific starting point as periodic.)

Related work

A variety of techniques have been proposed for analyzing
ribo-seq data. Many focus on translational efficiency (4); for
example, regression models (5,6) have been used to detect
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differences in ribo-seq expression which is not explained by
matching RNA-seq measurements.

Ribosome profiling has also been used to study transla-
tional dynamics. For example, Gritsenko et al. (7) estimated
translation initiation and elongation rates with ribo-seq. In
particular, classic assumptions of tRNA concentrations and
elongation rates have been called into question as a result
of analysis with ribo-seq data (8). However, further analy-
sis (9,10) suggests that variations in protocols significantly
affect these estimates.

Recent work (11,12) has shown that using unannotated
ORFs supported by ribo-seq improves downstream pro-
teomics analysis.

The ribosome release score (3), which is a normalized ra-
tio of reads within an ORF and its transcript trailer, is an
early approach for distinguishing translated and untrans-
lated ORFs. The ORFscore (13) for classifying ORFs is
based on the amount by which in-frame reads exceed those
in other reading frames; conceptually, ORFscore is quite
similar to a � 2 test.

ORF-RATER (14) extracts characteristics from anno-
tated protein-coding transcripts to train a random forest
classifier; the classifier is then used to label unannotated
ORFs. It uses linear regression to account for overlapping
ORFs. Recently, a hidden Markov model-based approach,
RIBOHMM (15), was proposed to handle the variance in-
herent in ribo-seq profiles; however, RIBOHMM requires ad
hoc approaches to identify more than one translated ORF
for each transcript. Both ORF-RATER and RIBOHMM are
supervised prediction approaches; that is, they require exam-
ple ORFs a priori labeled as ‘translated’ for training. Thus,
these approaches are implicitly biased toward identifying
new ORFs similar to the ones selected for training.

A recent unsupervised approach, RIBOTAPER (16), uses
multitapers to identify ORFs which exhibit 3-nt periodic-
ity. RIBOTAPER is the current state of the art and falls into
the same domain as RP-BP. That is why, we include a com-
parison with RIBOTAPER in the ‘Results’ section.

As we discuss in more detail in ‘Materials and Meth-
ods’ section, our approach automatically determines peri-
odic read lengths and P-site offsets. The recent RiboProfil-
ing (17) package also does this; however, RP-BP uses a prin-
cipled model selection approach to identify only periodic
read lengths and their offsets. Furthermore, RP-BP allows
distinct P-site offsets for each read length.

Contribution

In this work, we propose an unsupervised Bayesian ap-
proach, called Ribosome profiling with Bayesian predictions,
RP-BP, which takes advantage of the ribosome’s periodic
behavior to identify translated ORFs based on ribosome
profiles. That is, we look for a ‘high-low-low’ pattern in the
profiles. By design, RP-BP naturally identifies all translated
ORFs which exhibit this pattern, regardless of how many
fall on the same transcript.

Conceptually, we capture the periodic behavior using a
two-component mixture model. The first component mod-
els in-frame ribo-seq signal, which is expected to be high
for actively translating ribosomes. The other component en-

forces periodicity by ensuring that the out-of-frame signal
is lower.

The prediction pipeline consists of two phases. It first
constructs a profile for each ORF from ribo-seq reads.
This phase uses a number of filters to ensure high quality
of the profile. We propose a novel probabilistic approach
for automatically selecting periodic ribo-seq read lengths
and their P-site offsets. Our results show that this auto-
mated technique results in modestly more canonical and
non-canonical predicted ORFs than manual selection by an
expert; the numbers of variants and out-of-frame predicted
ORFs remain similar. Importantly, this selection does not
require manual intervention, so it is easily integrated into
analysis pipelines.

The second phase entails the prediction of ORF transla-
tion from the profiles using a different variant of the two-
component mixture model. A Bayesian model selection ap-
proach is again used to explicitly incorporate and propa-
gate uncertainty in the inference process. Our experimen-
tal analysis verifies the accuracy of these predictions us-
ing proteomics and an alternative sequencing approach for
identifying translation quantitative translation initiation se-
quencing (QTI-seq, (18)). Our results also show that RP-BP
results in more peptide identifications and ORFs with pro-
teomics validation than RIBOTAPER.

MATERIALS AND METHODS

Our Bayesian approach for translation prediction, called
Ribosome profiling with Bayesian predictions, RP-BP, con-
sists of two phases: ORF profile construction (Figure 1) and
translation prediction (Figure 2).

The ribo-seq ORF profiles are, by design, non-negative
integers because they are based on counts. Nevertheless, we
model these values with unbounded continuous distribu-
tions (Gaussian and Cauchy) in all of the graphical mod-
els which follow. As discussed below, we use a smoothing
strategy which converts the counts into continuous values.
Thus, count-based distributions, such as the negative bino-
mial, are not appropriate in this context. Furthermore, this
allows our models to directly use normalized replicates, al-
though we do not pursue that further in this work.

ORF profile construction

Our ORF profile construction technique largely follows
standard ribo-seq pre-processing protocols (e.g. ref. (2)). A
notable difference, discussed below, is our use of probabilis-
tic models to determine read lengths with periodic behavior
and their P-site offsets. We also incorporate a simple tech-
nique for handling replicates, after correcting for sample-
specific biases.

We first construct a base genome profile, as follows. (More
details, including program and parameter details are in the
Supplementary Data.)

1. Remove adapters and low quality reads
2. Remove reads mapping to ribosomal sequences
3. Align reads to the genome with a splice-aware aligner
4. Remove reads with multiple alignments
5. Retain only the 5′ ends of the unfiltered reads
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Figure 1. (A) Metagene profiles from a HEK293 dataset for reads with length 20 bp (top) and 21 bp (bottom). The reads of length 21 bp show a clear
3-nt periodicity, while those of length 20 bp do not. (B) Simplified view of graphical models for estimating the periodicity of metagene profiles. (Top) The
periodic model, H p, is a two-component mixture model in which the count of the first nucleotide of each codon is drawn from a ‘high’ component h
while the other two nucleotides’ counts in the codon are drawn from a ‘low’ component l. That is, this model fits the ‘high-low-low’ pattern of translating
ribosomes. (Bottom) The non-periodic model, H n, is a naı̈ve Bayes model in which all nucleotide counts are drawn from the same distribution.

Selecting periodic ribo-seq read lengths and P-site offsets.
The base genome profile contains reads of all lengths
present in the dataset (after removing adapters). We next
construct a metagene profile for each read length by count-
ing the 5′ read ends aligned at each position in a window
around the annotated translation start sites (TSSs). Some
read lengths (Figure 1A) lead to metagene profiles with clear
‘high-low-low’ periodicity; for other read lengths (Figure
1A), sequencing artifacts dampen, or even completely elim-
inate, the periodicity. Furthermore, Figure 1A is represen-
tative in the sense that a ‘peak’ of ribo-seq reads tends to ap-
pear upstream of the annotated TSS. This happens because
translation actually occurs at the P-site of the ribosome, not
the 5′ end of the ribosome-protected fragments.

For further processing, we must account for these se-
quencing and biological artifacts. Previous work typically
either used almost all of the read lengths and selected a uni-
form P-site offset (18) or selected both manually (16).

In this work, we use probabilistic graphical models to es-
timate the periodicity of the metagene profiles of each read
length starting at the observed peak. We only keep read
lengths which are periodic, according to the models. Fur-
thermore, the location of the peak gives the P-site offset
for reads of that length. Thus, we automatically select both
the periodic read lengths and their offsets (which may vary
for different read lengths within the same dataset due to,
for example, sequencing bias). We refer to this technique as
Bayesian Periodic fragment length and P-site offset Selection
(BPPS).

Constructing the metagene profile. We construct the meta-
gene profiles for each read length � by counting the num-
ber of 5′ read ends of length � at each base from 50 bp up-
stream to 20 bp downstream of all annotated TSSs. The en-
tire metagene profile for � is Y� = y�

−50 y�
−49 · · · y�

20, where y�
i

gives the number of 5′ read ends aligning to a particular po-
sition relative to the annotated TSSs. We take the peak for �
as the maximum y�

i ; the following periodicity analysis uses
the seven codons starting at the peak as the metagene pro-
file for �. Constructing the profiles is supervised in the sense
that it requires some annotated TSSs.

Periodic metagene profile model. Intuitively, the metagene
profile periodicity model, Hp shown in Figure 1B, is a two-
component mixture model. The first ‘high’ (h) component
models every third nucleotide; due to the known periodic
behavior of translating ribosomes, we expect to observe
many reads aligned to these locations. The other ‘low’ (l)
component models the other two nucleotides of the codon
triplets. We additionally model the peak expected at the be-
ginning of the signal. Hard constraints ensure �h > �l, so
the model interpretation remains consistent. The periodic
observation model for a metagene profile Y is as follows:

yi ∼
{ Cauchy(max(Y), σ )) if i = 1

Cauchy(μh, σ ) if i �= 1 and i mod 3 = 1
N (μl , σ ) otherwise,

(1)

where the notation is as before. The model hyperparameters
(which govern priors over �l, �h and �) are set according to
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Figure 2. The translation prediction workflow. For each identified ORF, posterior likelihoods of Ht and Hu are estimated from its smoothed profile using
Hamiltonian Markov chain Monte Carlo. The posterior distribution of the Bayes factor is calculated (in closed form) from these estimates. The posterior
Bayes factor distribution are used to label each ORF as ‘translated’ (�) or ‘untranslated’ (✗).

empirical estimates. The complete model is in the Supple-
mentary Data. The beginning of the metagene profile, y1, is
defined as the peak of the observed counts. The P-site offset
for reads of length � is given by the shift necessary such that
y1 coincides with the TSS.

Non-periodic metagene profile model. We use two types of
non-periodic models. The first, shown in Figure 1B, handles
cases in which reads are distributed uniformly throughout
the metagene profile. It is a Gaussian naı̈ve Bayes model

yi ∼ N (μ, σ ), (2)

with notation as before. The complete model is in the Sup-
plementary Data.

The second type of non-periodic model is similar to the
periodic model given by Equation 1; however, the ‘i mod
3 = 1’ condition is replaced with either ‘i mod 3 = {1, 2}’
or ‘i mod 3 = {0, 1}’. Thus, these models account for ‘high-
high-low’ and ‘high-low-high’ patterns, respectively.

In total, then, we have three different non-periodic mod-
els. For a particular metagene profile, we select the non-

periodic model which best fits that profile and refer to it as
Hn .

Bayesian model selection. Given two competing models
for describing a dataset, the Bayes factor (19) quantifies
the extent to which one model should be preferred over the
other. Given a metagene profile Y, Hp and Hn , the Bayes
factor is the ratio of the marginal likelihoods of the profile
given the models.

BF = P(Y|Hp)
P(Y|Hn)

, or

log BF = log P(Y|Hp) − log P(Y|Hn),

where higher values for BF reflect that Y is better explained
by the periodic model. Typically, log BF > 5 is considered
‘very strong’ evidence to prefer Hp (19).

Bayesian inference. We adopt a fully Bayesian approach to
calculating the Bayes factor. This allows us to propagate the
uncertainty in inference encountered throughout the anal-
ysis. Rather than approximating the marginal likelihoods
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with point estimates, we integrate over the model param-
eters, as follows:

log BFY = log P(Y|Hp) − log P(Y|Hn) (3)

log BFY =
∫

θp

log P(Y|Hp) −
∫

θn

log P(Y|Hn)

log BFY =
∫

θp

log P(Y|θp)P(θp|Hp)

−
∫

θn

log P(Y|θn)P(θn|Hn)

log BFY ≈ N (μp, σp) − N (μn, σn)

log BFY ∼ N (μp − μn, σp + σn),

where �p and �n are the parameters of Hp and Hn, respec-
tively.

In general, the integrals in Equation 3 are intractable. We
use the state-of-the-art Hamiltoniam Markov chain Monte
Carlo (MCMC) sampler Stan (http://mc-stan.org/) to ap-
proximate them. Stan uses the No-U Turn Sampler (NUTS)
(20) to effectively tune the MCMC parameters. Long runs
of the sampler are guaranteed to converge to the true distri-
bution (21).

In practice, We selected 200 iterations of MCMC as a
reasonable tradeoff between computational cost and con-
vergence. The first 100 iterations are treated as burn-in and
discarded; we fit a normal distribution for the likelihood of
each model based on the final 100 iterations and approxi-
mate P(Y| · ) by the mean and variance of this distribution.

After estimating the Bayes’ factor for metagene profile Y,
we select Hp when P(log BFY > 5) > k, where k is a constant
between 0 and 1. We use k = 0.5. This approach explicitly
incorporates the uncertainty of inference because of the fi-
nal probability calculation.

We construct the filtered genome profile from the base
genome profile in two steps. First, reads of lengths for which
Hp was not selected are removed. Second, the remaining
reads are shifted according to the calculated P-site offset for
their respective lengths.

ORF extraction and profile construction. We extract ORFs
based on transcript exon structures. They could come from
standard annotations or de novo transcript assembly from
RNA-seq, or both. In particular, we first extract the spliced
transcript sequences of all isoforms. We then define an ORF
as a start codon until the next in-frame stop codon. (In
this work, we consider AUG as the only start codon; the
software allows the user to specify other sequences as start
codons.) This definition allows multiple start codons to use
the same stop codon, but each start codon will only match
a single stop codon. Finally, we extract the profile of the
ORF by splicing the relevant portions of the filtered genome
profile. Thus, the profile Y for ORF o can be considered
as Yo = yo

1 yo
2 · · · yo

n , where yo
i gives the number of 5′ ends

which map to position i in the ORF, after filtering and shift-
ing reads due to the P-site offsets, and n is the length of the
ORF.

Combining replicates. We use a simple approach to incor-
porate replicates in RP-BP. In particular, we create the ORF
profiles as described above for each replicate. We then con-
struct the combined ORF profile by summing the profiles
from all replicates: Yo = ∑r=R

r=1 Yo
r , where R is the number

of replicates and Yo
r is the profile for ORF o in replicate r.

While this approach is conceptually simple, it has several
important properties. First, it allows selection of different
read lengths from different replicates. Furthermore, P-sites
offsets for reads of the same length can differ between repli-
cates.

Filtering unlikely ORFs. The primary assumption under-
pinning our approach is that the profiles of translated ORFs
exhibit a clear ‘high-low-low’ pattern. Based on this, we in-
corporate two simple filters for the ORF profiles.

The profile under consideration must have at least five
mapped ribo-seq reads.

The number of reads mapped to the first reading frame must
exceed the number mapped in either of the other two read-
ing frames, individually.

This filtering brings two benefits. First, it saves computa-
tions by not considering ORFs which are very unlikely to
be translated. Second, as described in more detail later, the
second filter simplifies our models and makes the resulting
MCMC simulations easier.

Smoothing profiles. The profiles based only on ribo-seq
counts tend to be very spiky and sparse. Therefore, we
smooth the profiles before proceeding to the translation pre-
diction phase. We use LOWESS (22); however, we smooth
the counts from each frame separately. That is, we construct
sequences Yo, 1, Yo, 2 and Yo, 3, where Yo,i = {yo

3·k+i |k ∈ [ n
3 ]},

where n is the length of the ORF and [m] is the set of inte-
gers {1, . . . , m}. We use a bandwidth parameter of 0.2 for
smoothing the frame-specific profile. After smoothing, we
stitch the smoothed profile back together.

Translation prediction

The goal of this work is to identify ORFs which are trans-
lated based on the (smoothed) ribo-seq profiles. We accom-
plish this goal by proposing a mixture model-based transla-
tion model, Ht and an untranslated model, Hu . After fitting
each model to an ORF profile, we label it as ‘translated’ if
it is better explained by Ht, according to the Bayes factor
(19). Similar approaches have been proposed in other con-
texts (23,24).

Translation model. The ORF translation model is concep-
tually similar to the metagene profile periodicity model Hp
described earlier. The translation model Ht is essentially a
mixture model which comprises one state for in-frame posi-
tions and a second for the other two frames. It also looks for
‘high-low-low’ patterns in profiles. A ‘high’ state h accounts
for the in-frame observations, while a ‘low’ statelmodels ob-
servations from the other frames. For an observed ORF
profile Y, the observation model is as follows:

yi ∼
{
N (μh, σh) if i mod 3 = 1
N (μl , σl ) otherwise, (4)

http://mc-stan.org/
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where yi gives the profile value at position i. The hyperpa-
rameters are again empirical estimates from the data. The
full model is given in the Supplementary Data.

As previously described, we filter all ORFs for which the
number of reads in the second or third reading frames ex-
ceed that of the first reading frame. Thus, we do not con-
strain the mean values of the model components, �h and �l.
Because of this filtering, they remain semantically correct.

Background model. We use a Gaussian naı̈ve Bayes model
to recognize untranslated ORFs. It uses Equation 2 as its
observation model. We refer to the model as Hu .

Bayesian model selection and inference. We use exactly the
same model selection and inference techniques described
previously to select betweenHt andHu . Again, we explicitly
incorporate the uncertainty in inference while making pre-
dictions. The experimental results confirm that this method-
ology leads to high-quality predictions.

Final prediction set. As described above, multiple ORFs
may use the same stop codon. For downstream analysis, we
select the longest ORF predicted as translated for each stop
codon. Finally, among each group of overlapping ORFs, we
select the one with the highest expected Bayes factor.

We label the selected ORFs according to their position
and exon structure. We use the following labels: CANON-
ICAL, CAN. VARIANT (canonical variants, such as trun-
cations), UORF (upstream ORFs), DORF (downstream
ORFs), NCRNA and OTHER. Additionally, we have NOVEL
ORFs which come only from a de novo assembly for
Caenorhabditis elegans. The Supplementary Data precisely
defines these labels.

RESULTS

In this section, we evaluate RP-BP on several ribo-seq
datasets using both standard annotations and de novo tran-
script assemblies, described shortly. First, we examine the
basic characteristics of the predictions, like the types of
ORFs. Experiments demonstrate that the Bayesian length
selection technique leads to more canonical and fewer out-
of-frame predicted ORFs; we then confirm that the pre-
dictions are of high quality with proteomics data and a
complementary sequencing technique, QTI-seq. This vali-
dation also includes comparison to RIBOTAPER (16), an-
other recently-proposed approach for identifying transla-
tion from ribo-seq data.

Throughout our analysis, we distinguish between mi-
cropeptides and longer ORFs. We call any ORF with length
<300 nt as a micropeptide. Micropeptides have been repeat-
edly discussed as potent functional entities in the literature
(e.g. ref. (25)).

Our analysis includes datasets from human, mouse and
C. elegans. Furthermore, the human datasets come from cell
cultures, the mouse datasets are tissue-specific and the C.
elegans datasets are whole-body. Additionally, we analyze
the human and mouse datasets in isolation; the C. elegans
datasets include replicates. Thus, we demonstrate that RP-
BP is widely applicable to diverse species and biological ex-
perimental designs.

Datasets

In this analysis, we use ten ribo-seq datasets (Table 1): two
HEK293 samples and two mouse samples from previous
publications, and six unpublished samples from C. elegans.
Sample preparation and sequencing protocols for the C. ele-
gans samples are given in the Supplementary Data. As Table
2 shows, the quality of the datasets varies substantially. For
example, the protocol used to create HEK293 included an
rRNA depletion step, so it includes very few reads which
map to ribosomal sequences. On the other hand, for ex-
ample, pre-processing leaves only about 1 000 000 reads for
analysis of the M. LIVER and C. elegans datasets.

We did not treat any of the HEK293 or mouse datasets
as replicates. Therefore, the replicate-combining technique
in the ‘Materials and Methods’ section was not used in their
analysis.

The six C. elegans ribo-seq libraries capture the first 4 h
of the dauer exit program in C. elegans. We maximize our
detection sensitivity by using them as replicates in transla-
tion detection as described in the ‘Materials and Methods’
section.

We use the HG19 genome reference, GENCODE
version 19 annotations and NCBI reference sequence
NR 046235.1 as the ribosomal sequence for the human
data. For the mouse data, we use the GRCM38 genome
reference and ENSEMBL 79 annotations; the ribosomal
sequence for mouse is GENBANK sequence BK000964.3.

For our C. elegans analysis, we use the WBCEL235
genome reference and corresponding ENSEMBL 79 anno-
tations. Furthermore, we augment transcript models by as-
sembling newly generated mRNA-seq datasets, which were
generated from dauer larvae at the onset of dauer exit and
after 8 h of dauer exit. The de novo assembly is available in
Supplementary File 1.

We merge the WBCEL235 annotations with those from
our reference-guided de novo assembly. We label any ORF
which falls entirely on a transcript from the de novo assem-
bly as NOVEL. We use GENBANK sequence X03680.1 to
filter for C. elegans ribosomal sequences.

All information on the final predicted ORFs for all
datasets are available as Supplementary Files 2–6.

Predicted ORF characteristics

Translated ORF types. Table 3 shows that the propor-
tions of ORF types predicted by RP-BP for the human and
mouse datasets are similar. Around 75% of the predicted
ORFs are CANONICAL, annotated coding regions or vari-
ants, while about 20% of the translated ORFs come from
annotated 5′ leaders or non-coding regions; the remaining
translated ORFs are located in either annotated 3′ trailers
or are out-of-frame with respect to the annotated coding re-
gions. These results are consistent with other ribosome pro-
filing studies (14,16).

We see a different story for C. elegans, though. Almost all
of the RP-BP ORFs are CANONICAL or canonical variants.
Indeed, there are very few UORFs or DORFs predicted as
translated. We attribute these differences to the fundamen-
tal different genome organization and annotation quality of
C. elegans.
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Table 1. The names, abbreviations, original publications and Short Read Archive run accessions of the datasets used in this analysis

Dataset Abbreviation Source SRR accession

Human HEK293 cells HEK293 (16) SRR2433794
Human HEK293 cells HEK293-GAO (18) SRR1630831
Mouse liver cells M. LIVER (18) SRR1630812
Mouse endoplasmic fibroblasts M. EF (18) SRR1630816
C. elegans, Dauer 0 h 0 h unpublished SRR5026356
C. elegans, Dauer-exit 0.5 h 0.5 h unpublished SRR5026359
C. elegans, Dauer-exit 1 h 1 h unpublished SRR5026589
C. elegans, Dauer-exit 2 h 2 h unpublished SRR5026592
C. elegans, Dauer-exit 3 h 3 h unpublished SRR5026603
C. elegans, Dauer-exit 4 h 4 h unpublished SRR5026637
C. elegans (aggregate) C. elegans unpublished

Table 2. The number and percent of reads filtered at each stage of pre-processing for all datasets used in this section

M. Liver M. EF HEK293 HEK293, Gao C. elegans (aggregate)

Raw data 9E + 6 3E + 7 3E + 7 3E + 7 9E + 8
Poor quality 8E + 4 (1%) 4E + 5 (1%) 5E + 5 (2%) 3E + 5 (1%) 4E + 7 (4%)
Ribosomal 5E + 6 (55%) 6E + 6 (17%) 2E + 6 (7%) 2E + 7 (66%) 5E + 8 (56%)
No alignment 1E + 6 (15%) 9E + 6 (27%) 3E + 6 (11%) 3E + 6 (10%) 2E + 8 (25%)
Multimappers 6E + 5 (7%) 8E + 6 (23%) 6E + 6 (20%) 2E + 6 (9%) 3E + 7 (3%)
Non-periodic 1E + 5 (1%) 4E + 5 (1%) 4E + 5 (2%) 1E + 5 (0%) 6E + 7 (7%)
Usable 1E + 6 (21%) 1E + 7 (31%) 1E + 7 (59%) 4E + 6 (14%) 4E + 7 (5%)

‘Raw data’ gives the total number of reads in the dataset. ‘Poor quality’ reads are either too short after removing adapters or do not have adequate
fastq quality scores. ‘Ribosomal’ reads map to known ribosomal sequences. ‘No alignment’ reads do not align to the genome. ‘Multimappers’ map to
the genome in multiple locations. ‘Non-periodic’ reads are of lengths whose metagene profiles do not result in a periodic signal. ‘Usable’ reads are kept
for further analysis. The detailed counts for all samples, including all C. elegans replicates, are given in Supplementary File 7. We obtain a much higher
percentage of rRNA reads from dauer stage lysates than from lysates of other developmental stages of the C. elegans life cycle (2).

Table 3. The number of ORFs of each type predicted by RP-BP

C. elegans HEK293 HEK293, Gao M. EF M. Liver

CANONICAL 11 558 (82%) 11 056 (64%) 8237 (60%) 9471 (59%) 549 (65%)
CAN. VARIANT 1918 (14%) 1097 (6%) 2129 (16%) 1187 (7%) 1918 (22%)
UORF 71 (1%) 2244 (13%) 1216 (9%) 1858 (12%) 456 (5%)
DORF 35 (0%) 383 (2%) 425 (3%) 1719 (11%) 45 (1%)
NCRNA 254 (2%) 2 201 (13%) 1115 (8%) 1355 (8%) 154 (2%)
OTHER 154 (1%) 217 (1%) 554 (4%) 490 (3%) 453 (5%)
NOVEL 41 (0%)

The ORF types are described in the Supplementary Data.

In the Supplementary Data, we show the metagene pro-
files of the translated ORF types. As previously observed
(14), a spike is present in reads mapping to both the start
and stop codons for all ORF types for almost all samples;
the M. LIVER and C. elegans datasets do not exhibit a spike
at the stop codons, though. These results confirm that RP-
BP identifies ORFs with the hallmarks of translation.

UniRef comparison. As a final validation of the basic
characteristics of the predicted ORFs, we compared their
lengths to the lengths of proteins in the UNIREF90 database
(26). We also included ORF predicted as translated by RI-
BOTAPER. Supplementary Figure S3 shows that the lengths
of RP-BP ORFs match those in UNIREF90 much better
than those predicted by RIBOTAPER. In general, UNIREF90
includes more short ORFs (not including micropeptides,
ORFs with length <300 bp) than identified by either
method; however, the number of longer RP-BP ORFs is sim-
ilar to the number present in UNIREF90, while RIBOTAPER
predicts many more longer ORFs.

The length distribution of the RP-BP ORFs for C. elegans
closely follows that of C. elegans UNIREF90. Since so many
of the predicted ORFs are CANONICAL, this is unsurprising.

Bayesian periodic fragment length and P-site offset selection
(BPPS)

The BPPS technique has several goals. First, the approach
aims to automatically select periodic read lengths in an un-
biased manner, while still avoiding noisy read lengths. Sec-
ond, the approach identifies non-standard (12 bp) P-site off-
sets. Very recent findings highlight the importance of both
aspects (27). This helps to improve sensitivity in translation
predictions by using more of the available reads.

To verify the efficacy of this approach, we compared the
RP-BP ORFs found using BPPS to using standard length se-
lection approaches. In particular, for the HEK293 dataset,
we compared BPPS with using lengths 26, 28 and 29 bp and
P-site offsets 9, 12 and 12 bp, respectively; for HEK293-
GAO, we compare to lengths 26, 27, 28 and 29 bp and P-



Nucleic Acids Research, 2017, Vol. 45, No. 6 2967

site offsets of 12 bp for all lengths. These lengths and offsets
were manually selected and used in previous analysis (16).

Similarly, previous analysis (18) of M. EF and M. LIVER
used all reads of lengths 25–35 and P-site offsets of 12 bp for
all read lengths; we compare our Bayesian length selection
approach to those values. In the Supplementary Data, we
examine the differences among the C. elegans replicates.

Differences in BPPS and manual selections. First, Figure
3 confirms that BPPS identifies many more periodic read
lengths than the restricted manual selection for HEK293
and HEK293-GAO. The main disagreement between the au-
tomatic selection and manual curation is the P-site offset for
reads of length 26 bp in HEK293; however, using an offset
of either 9 or 12 bp does not result in a change of frame
for those reads. BPPS does remove some non-periodic read
lengths from downstream analysis, such as reads of length
20 bp for HEK293. Additionally, the automatic approach
does identify non-standard P-site offsets, such as 13 bp for
HEK293 reads of length 31 and 3 bp for HEK293-GAO
reads of length 19 bp.

On the other hand, when compared to the very broad se-
lections originally made for M. EF and M. LIVER, our ap-
proach does not include the longer reads. Instead, we se-
lect many of the smaller read lengths, sometimes with non-
standard offsets. This highlights that manual selection may
ignore useful reads while including noisy ones.

In the Supplementary Data, we further examine the dif-
ferences among predictions with BPPS and manual selec-
tion based on whether the ORFs had external validation,
such as proteomics. We again find no significant differences.

Differences in ORF predictions. We then compared the
RP-BP ORFs using either BPPS or manually-selected read
lengths and P-site offsets. As shown in Figure 4, the differ-
ent selection techniques result in modest, but distinctly dif-
ferent, patterns among the RP-BP ORFs. In particular, in
both HEK293 and M. EF, BPPS results in more CANONI-
CAL, UORF, DORF and NCRNA ORFs, while manual se-
lection results in more CAN. VARIANT features. Both tech-
niques result in a similar number of out-of-frame overlap-
ping ORFs. This shows that the predictions using BPPS
are of higher quality than those from manual selection. Of
course, BPPS also has the advantage that it automatically
adapts to choose the best lengths and offsets rather than re-
quiring manual selection.

Proteomics analysis

We next used two high-quality mass spectrometry pro-
teomics datasets (PRIDE accessions [PXD002389 and
PXD001468] and MaxQuant (28–30)) to compare the
proteomics-verified support of predicted ORFs for
HEK293. We compare the ORFs predicted by RP-BP and
RIBOTAPER as well as those annotated as protein coding
in GENCODE. We also generated a C. elegans mass
spectrometry proteomics dataset to verify the predictions
made by RP-BP; the WBcel235 annotations are used as
a baseline for comparison. The details of the proteomics
analysis are in the Supplementary Data.

In silico digestion. As a baseline, we first compared the
theoretical number of peptide sequences each set of ORFs
could possibly identify; we found these via in silico diges-
tion of the respective peptide sequences. (More details are
presented as part of the Supplementary Data.) Figure 5
shows that RP-BP and RIBOTAPER result in a similar num-
ber of peptides, while, GENCODE includes many more
possible peptides. This is expected since the GENCODE an-
notations are not cell type-specific. According to the the-
oretical digestion, both RP-BP and RIBOTAPER identify
tens of thousands of peptides distinct from each other and
GENCODE. The differences from GENCODE arise from
NCRNA and other non-canonical ORFs.

The relative overlap among the RP-BP ORFs for C. el-
egans and the annotations is somewhat higher. As men-
tioned, though, many of the C. elegans RP-BP ORFs are
CANONICAL, so it is expected that the predicted ORFs have
more in common with the annotated proteins.

MaxQuant detection. We then compared the number of
peptide sequences actually detected using MaxQuant for
each set of ORFs. While the overlap among the three sets
of ORFs from HEK293 shown in Figure 5 is quite high,
RP-BP results in several thousand uniquely-identified pep-
tides compared to either RIBOTAPER or GENCODE. In
contrast, RIBOTAPER and GENCODE only produce about
a thousand unique ORFs each. The in silico peptide analy-
sis showed that RP-BP and RIBOTAPER yield a similar num-
ber of possible peptides, so RP-BP does not result in more
unique peptides than RIBOTAPER simply because more are
possible. Besides the peptides unique to RP-BP, another rea-
son more peptides are detected using RP-BP ORFs is that it
produces a smaller number of sequences than RIBOTAPER
and GENCODE; consequently, the false discovery rate and
error probabilities calculated by MaxQuant are lower. Simi-
larly, more C. elegans peptides are detected using the RP-BP
ORFs than annotations.

Peptide support for RP-BP ORF types. We next analyzed
the peptide support for all ORFs predicted as translated
by RP-BP. Over 75% of the CANONICAL RP-BP ORFs have
peptide support (Figure 6), and a majority of the canonical
variants also have peptide support. Additionally, over 20%
of the ORFs annotated as NCRNA or DORF, but predicted
as translated, have peptide support. While the peptide sup-
port for UORFs is not as strong, in total, the proteomics
analysis validates the accuracy of many of the predictions
made by RP-BP for longer ORFs.

For C. elegans, about half of the CANONICAL ORFs,
and a third of their variants, were supported by the pro-
teomics data. However, the other ORF types do not have
as much proteomics support. Nevertheless, as shown in Ta-
ble 3, about 95% of the RP-BP ORFs are CANONICAL or
variants. So many of the predictions do in fact have peptide
support.

Comparison of RP-BP and RIBOTAPER peptide support.
We also evaluated the peptide support of the predicted
ORFs in HEK293 as a function of the length of the ORFs,
shown in Figure 7. We included the ORFs predicted by
RIBOTAPER in this evaluation. For this analysis, we again
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Figure 3. The selected read lengths and P-site offsets selected by BPPS compared to manual selection.

Figure 4. The number of RP-BP ORFs using BPPS and manual length and P-site offset selection for the human and mouse datasets. The ORF types are
described in the Supplementary Data.
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Figure 5. The number of peptide sequences identified with (A) in silico di-
gestion of the annotated proteins from GENCODE, and the ORFs pre-
dicted by RP-BP and RIBOTAPER for HEK293, (B) in silico digestion of
the annotated proteins from WBCEL235 and RP-BP for Caenorhabditis el-
egans, (C and D) MaxQuant for the respective datasets. The in silico diges-
tion and MaxQuant details are given in the Supplementary Data.

Figure 6. The percentage of each type of RP-BP ORF (≥300 nt) from the
HEK293 and Caenorhabditis elegans datasets with proteomics support. An
ORF is considered to have proteomics support if at least one peptide de-
tected by MaxQuant exactly aligns to the translated protein sequence for
the ORF. Furthermore, we require the peptide uniquely align to that ORF.
The numbers on the bars show the number of ORFs with and without
proteomics support, as indicated.

use only peptides which uniquely map to an ORF. We first
considered the support of the micropeptides (ORF length
<100aa). As Figure 7A and B shows, micropeptides do not
have much support from the proteomics data. It is techni-
cally challenging to obtain peptide evidence from these very
short proteins during the proteomics experiments and thus
expected that few of these have peptide support. Still, in
terms of raw numbers and percentage of predictions, more
RP-BP micropeptides have unique proteomics support than

those from RIBOTAPER. The RP-BP results for C. elegans
are similar to those for HEK293.

We then considered unique peptide support for longer
ORFs in Figure 7C and D. Herein, the percentage of ORFs
at almost all read lengths with unique peptide support is
much higher for RP-BP on HEK293 compared to RIBO-
TAPER. As with the micropeptides, in terms of raw counts,
RP-BP results in modestly more ORFs with unique peptide
support; as discussed previously, RIBOTAPER predicts many
more longer ORFs are translated than RP-BP. These results
show that many of the longer ORFs do not have unique pep-
tide support.

C. elegans micropeptides. The percentage of RP-BP C. el-
egans ORFs predictions, shown in Figure 8B, with unique
peptide support is somewhat less than that for the human
data; however, proteomics replicates were available for hu-
man, so it is unsurprising that more ORFs had proteomics
validation. Nevertheless, the percentage of RP-BP C. elegans
micropeptides with proteomics validation, in Figure 8A, is
somewhat higher than for the HEK293 dataset, especially
for micropeptides between 150 and 300 nt.

Finally, we identified 3622 novel transcripts in C. ele-
gans with a reference-guided transcriptome assembly ap-
proach (see Supplementary File 1). Several of them harbor
small ORFs that could encode for NOVEL micropeptides in
C. elegans. We predicted 41 NOVEL ORFs as being trans-
lated, 37 of which are micropeptides (<300 bp). We found
unique proteomics support for one of the micropeptides. In
essence, RP-BP is able to identify novel coding regions even
in genomes, which are excessively curated such as C. elegans.

Taken together, these results show that RP-BP predictions
from different species are well-supported by proteomics
data. The predictions result in more unique peptide identifi-
cations from proteomics data compared to standard anno-
tations and RIBOTAPER predictions; a large majority of the
longer ORFs have peptide support, and even many of the
predicted micropeptides have support from the proteomics
data.

QTI-seq analysis

QTI-seq (18) is a recently-developed protocol for identi-
fying ribosomes initiating translation. Briefly the method
consists of lysing cells, freezing initiating ribosomes with
lactimidomycin and depleting elongating ribosomes with
puromycin. Thus, only initiating ribosomes remain and, af-
ter further detailed protocols, the associated cDNA can be
sequenced.

Matching QTI-seq datasets are available (18) for all hu-
man and mouse ribo-seq datasets used in this study. We
matched reported QTI-seq peaks to the start codon of all
annotated transcripts and compared this to the set of tran-
scripts with RP-BP ORFs. The ORFs identified by RP-BP
show very good agreement with QTI-seq peaks; as Figure 9
shows the P-values of the overlaps for all datasets are very
close to 0. This gives another form of validation that the
predictions by RP-BP accurately reflect the biology in the
cell.
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Figure 7. (A and B) The percentage of RP-BP and RIBOTAPER micropeptides of different lengths (<100aa) with proteomics support in HEK293. Proteomics
support is described in the caption of Figure 6. All ORF types are grouped based on bin sizes of 20 bp. The numbers on the bars show the number of
micropeptides with and without proteomics support, as indicated. (C and D) The percentage of all RP-BP and RIBOTAPER ORFs with unique proteomics
support in HEK293. All ORF types are grouped based on bin sizes of 300 bp. The counts are also available in Supplementary File 8.

Figure 8. The percentage of RP-BP Caenorhabditis elegans (A) micropeptides and (B) all ORFs with unique proteomics support, as described in Figure 7.
The counts are also available in Supplementary Table S8.
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Figure 9. The overlap of transcripts with a QTI-seq peak within 50 bp of
the annotated start codon and a RP-BP ORF (of any type). The P-values
are calculated using a hypergeometric test.

DISCUSSION

The ribosome profiling protocols offer a genome-wide view
of the activity of the ribosome. However due to biologi-
cal and technical artifacts, principled analysis techniques
are required to fully leverage the ribo-seq profiles. We pro-
posed a fully Bayesian translation prediction approach, RP-
BP. The heart of RP-BP lies in state-of-the-art MCMC
sampling via Stan (http://mc-stan.org/) to estimate
posterior distributions from biologically-inspired models of
(un)translation. Bayesian model selection is then used to es-
timate a posterior distribution of translation. Unlike previ-
ous work (23,24), we do not resort to point estimates, but
instead maintain distributions over quantities of interest
through the entire process. Thus, our pipeline propagates
uncertainty to improve later predictions.

Additionally, we use the Bayesian model selection tech-
nique in a novel approach for selecting periodic ribo-seq
read lengths appropriate for downstream analysis; it also
automatically determines the P-site offset for each read
length.

On publicly-available ribo-seq datasets, we show that the
Bayesian read length selection approach results in more
canonical and non-canonical ORFs predicted as translated.
Furthermore, validation with high-quality proteomics and
QTI-seq data confirm the predictions are of very high
quality. Our proteomics analysis also demonstrates that
more RP-BP ORFs have unique peptide alignments com-
pared with RIBOTAPER (16), another recent translation-
prediction pipeline. Additionally, RP-BP results in more
peptide identifications than RIBOTAPER.

As suggested in the method description, one limitation of
RP-BP is its unnormalized parameter estimates. For exam-
ple, it would not be appropriate to compare estimates from
two different datasets. A natural next step is normalization
of the ribo-seq profiles so the parameter estimates are useful
for differential translation analysis. Another venue for fur-

ther development are more sophisticated models that could
aid in distinguishing isoforms, detecting overlapping ORFs
and identifying programed frameshifts.

AVAILABILITY

Our implementation of RP-BP is available at https://
github.com/dieterich-lab/rp-bp. The pipeline is
implemented as a set of Python3 scripts and is installed via
pip. A simple driver script runs the entire pipeline; it can
optionally submit the processing to the Simple Linux Utility
for Resource Management (Slurm) workload manager. The
software requires a genome reference fasta file and match-
ing GTF3/GFF annotations. The final output is a valid
BED12 file with the predicted ORFs, as well as DNA and
protein fasta files containing the predicted sequences.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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12. Crappé,J., Ndah,E., Koch,A., Steyaert,S., Gawron,D., De
Keulenaer,S., De Meester,E., De Meyer,T., Van Criekinge,W., Van
Damme,P. et al. (2015) PROTEOFORMER: deep proteome coverage
through ribosome profiling and MS integration. Nucleic Acids Res.,
43, e29.

13. Bazzini,A.A., Johnstone,T.G., Christiano,R., Mackowiak,S.D.,
Obermayer,B., Fleming,E.S., Vejnar,C.E., Lee,M.T., Rajewsky,N.,
Walther,T.C. et al. (2014) Identification of small ORFs in vertebrates
using ribosome footprinting and evolutionary conservation. EMBO
J., 33, 981–993.

14. Fields,A.P., Rodriguez,E.H., Jovanovic,M., Stern-Ginossar,N.,
Haas,B.J., Mertins,P., Raychowdhury,R., Hacohen,N., Carr,S.A.,
Ingolia,N.T. et al. (2015) A regression-based analysis of
ribosome-profiling data reveals a conserved complexity to
mammalian translation. Mol. Cell, 60, 816–827.

15. Raj,A., Wang,S.H., Shim,H., Harpak,A., Li,Y.I., Engelmann,B.,
Stephens,M., Gilad,Y. and Pritchard,J.K. (2016) Thousands of novel
translated open reading frames in humans inferred by ribosome
footprint profiling. Elife, 5, e13328.

16. Calviello,L., Mukherjee,N., Wyler,E., Zauber,H., Hirsekorn,A.,
Selbach,M., Landthaler,M., Obermayer,B. and
Ohler,U. (2015) Detecting actively translated open reading frames in
ribosome profiling data. Nat. Methods, 13, 165–170.

17. Popa,A., Lebrigand,K., Paquet,A., Nottet,N., Robbe-Sermesant,K.,
Waldmann,R. and Barbry,P. (2016) RiboProfiling: a Bioconductor

package for standard Ribo-seq pipeline processing [version 1;
referees: 3 approved]. F1000 Res., 5, 1309.

18. Gao,X., Wan,J., Liu,B., Ma,M., Shen,B. and Qian,S.-B. (2015)
Quantitative profiling of initiating ribosomes in vivo. Nat. Methods,
12, 147–153.

19. Kass,R.E. and Raftery,A.E. (1995) Bayes Factors. J. Am. Stat.
Assoc., 90, 773–795.

20. Hoffman,M.D. and Gelman,A. (2014) The No-U-Turn sampler:
adaptively setting path lengths in Hamiltonian Monte Carlo. J.
Mach. Learn. Res., 15, 1593–1623.

21. Brooks,S.P. and Gelman,A. (1998) General methods for monitoring
convergence of iterative simulations. J. Comput. Graph. Stat., 7,
434–455.

22. Cleveland,W.S. (1979) Robust locally weighted regression and
smoothing scatterplots. J. Am. Stat. Assoc., 74, 829–836.

23. Kalaitzis,A. and Lawrence,N. (2011) A simple approach to ranking
differentially expressed gene expression time courses through
Gaussian process regression. BMC Bioinformatics, 12, 180.

24. Topa,H., Jonas,A., Kofler,R., Kosiol,C. and
Honkela,A. (2015) Gaussian process test for high-throughput
sequencing time series: application to experimental
evolution. Bioinformatics, 31, 1762–1770.

25. Payre,F. and Desplan,C. (2016) Small peptides control heart activity.
Science, 351, 226–227.

26. Suzek,B.E., Huang,H., McGarvey,P., Mazumder,R. and Wu,C.H.
(2007) UniRef: comprehensive and non-redundant UniProt reference
clusters. Bioinformatics, 23, 1282–1288.

27. Baranov,P.V. and Loughran,G. (2016) Catch me if you can: trapping
scanning ribosomes in their footsteps. Nat. Struct. Mol. Biol., 23,
703–704.

28. Eravci,M., Sommer,C. and Selbach,M. (2014) IPG Strip-based
peptide fractionation for shotgun proteomics. Methods Mol. Biol.,
1156, 67–77.

29. Chick,J.M., Kolippakkam,D., Nusinow,D.P., Zhai,B., Rad,R.,
Huttlin,E.L. and Gyg,S.P. (2015) A mass-tolerant database search
identifies a large proportion of unassigned spectra in shotgun
proteomics as modified peptides. Nat. Biotechnol., 33, 743–749.

30. Cox,J. and Mann,M. (2008) MaxQuant enables high peptide
identification rates, individualized p.p.b.-range mass accuracies and
proteome-wide protein quantification. Nat. Biotechnol., 26,
1367–1372.


