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Proteogenomics produces comprehensive and highly
accurate protein-coding gene annotation in a
complete genome assembly of Malassezia
sympodialis
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ABSTRACT notation. Through long-read DNA sequencing, we ob-
tained a gap-free genome assembly for M. sympodi-
alis (ATCC 42132), comprising eight nuclear and one
mitochondrial chromosome. We also sequenced and
assembled four M. sympodialis clinical isolates, and
showed their value for understanding Malassezia re-
production by confirming four alternative allele com-
binations at the two mating-type loci. Importantly, we
demonstrated how proteomics data could be read-
ily integrated with transcriptomics data in standard

Complete and accurate genome assembly and an-
notation is a crucial foundation for comparative and
functional genomics. Despite this, few complete eu-
karyotic genomes are available, and genome anno-
tation remains a major challenge. Here, we present a
complete genome assembly of the skin commensal
yeast Malassezia sympodialis and demonstrate how
proteogenomics can substantially improve gene an-
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annotation tools. This increased the number of an-
notated protein-coding genes by 14% (from 3612 to
4113), compared to using transcriptomics evidence
alone. Manual curation further increased the number
of protein-coding genes by 9% (to 4493). All of these
genes have RNA-seq evidence and 87% were con-
firmed by proteomics. The M. sympodialis genome
assembly and annotation presented here is at a qual-
ity yet achieved only for a few eukaryotic organisms,
and constitutes an important reference for future
host-microbe interaction studies.

INTRODUCTION

Malassezia species are commensal yeasts and the predom-
inant fungi colonizing the human skin (1-3). They have
been associated with several common inflammatory skin
conditions and can also cause systemic infections (4). To
better understand the molecular basis of host-microbe in-
teractions in these diseases, it is important to establish
a high-quality catalog of genes and proteins encoded by
Malassezia species. We have previously reported a draft
genome sequence and a preliminary gene set for Malassezia
sympodialis (5), which is implicated in atopic dermatitis
(4). However, this genome assembly was primarily based
on short-read sequencing and therefore highly fragmented,
comprising 156 contigs (in 66 scaffolds), although the nu-
clear genome only consists of eight chromosomes (6). In ad-
dition, genes were chiefly inferred by computational predic-
tion based on the assembled genome sequence and compar-
ison with protein sequences from other organisms. A set of
1536 expressed sequence tags from Malassezia globosa was
used for training gene predictors and assessing predictions,
but no other Malassezia-specific transcript or protein data
were incorporated (5,7).

The ultimate proof of a gene being protein coding is ex-
perimental validation of the encoded protein products. De-
velopment of mass spectrometry (MS) based proteomics
has made it possible to perform such experiments in a com-
prehensive manner. In MS-based proteomics, proteins are
digested into peptides using proteolytic enzymes, such as
trypsin, and analyzed by MS. The resulting mass spectra are
interpreted by comparison to a theoretical peptide spectra
library, generated by in silico sequence digestion of known
and predicted proteins of the studied organism (8).

Proteogenomics is an emerging field in which proteomics
and genomics data are combined to improve genome an-
notation and study impact of genome variations at the pro-
tein level. Unbiased discovery of protein-coding regions can
be performed by interpreting mass spectra through com-
parison to a database of the hypothetical peptide sequences
obtained by translating a genome sequence in all six read-
ing frames (9). If candidate splice junctions are available
from RNA sequencing (RNA-seq), they can be included
in the database for discovery of novel splice junction pep-
tides (10). Unlike conventional MS data analysis, this ap-
proach does not rely on a reference protein database and can
therefore detect previously unannotated coding regions. Im-
provements in throughput and proteome coverage of MS-
based proteomics has potentiated the use of protein evi-

dence to improve gene annotation in many organisms such
as Campylobacter concisus (11), Saccharomyces cerevisiae
(12,13), Arabidopsis thaliana (14), mouse (9,15) and human
(9,16). In contrast to these previous proteogenomics stud-
ies, our present study combines proteomics and RNA-seq
for genome-wide annotation as part of an integrative work-
flow. The earlier studies primarily used proteomic data to
confirm gene models and discover missing genes after an-
notation by RNA-seq or homology based means.

When annotating large genomes, proteogenomics is chal-
lenging because protein-coding regions constitute a minor
part of these genomes and inclusion of hypothetical pep-
tides from non-coding regions may increase the search space
several hundred times. In this scenario, it is necessary to re-
strict database size to maintain an acceptable false discovery
rate (FDR) (17), e.g. using isoelectric points of peptides to
reduce the database sizes (9). Proteogenomics is particularly
applicable to fungal genomes without the need for database
reduction because they are small and gene-dense (18,19).

Several aspects of the M. sympodialis genome architec-
ture could not be resolved through short-read sequenc-
ing (5), e.g. telomeric and centromeric regions, mating-type
loci and mitochondrial genome (mtDNA) structure. As-
sembly of such regions can reveal new features and bio-
logical insights. A distinguishing feature of the M. sym-
podialis mtDNA is the presence of a 5.9 kb inverted re-
peat containing the ATP9 gene and tRNAs for methion-
ine, leucine and arginine (5). Large inverted repeats (LIRs)
are uncommon in basidiomycete mtDNAs, although a 4 kb
LIR encoding Nad4 has been identified in the white but-
ton mushroom Agaricus bisporus (20) and a 2.4 kb LIR,
harboring plasmid-related sequences and encoding tRNAs,
has been found in the poplar mushroom Agrocybe aegerita
(21). Species of the ascomycete genus Candida have LIRs
that facilitate inter-conversion between circular and linear
mtDNA architectures and may produce multiple mtDNA
isomers through flip-flop recombination (22). It is not cur-
rently known whether the mitochondrial LIR in M. sympo-
dialis has a similar function.

The majority of basidiomycetous species have tetrapo-
lar mating systems in which the P/R locus (encoding the
pheromone and pheromone receptors) and HD locus (en-
coding transcription factors that govern sexual develop-
ment) are located on different chromosomes and segregate
independently during sexual reproduction (23-25). In con-
trast, in some basidiomycetes such as Cryptococcus neofor-
mans, the mating system is bipolar and the P/R and HD loci
have fused to form a large mating-type (MAT) locus that
segregates as a single continuous unit during sexual repro-
duction (26). While recombination within the M AT locus is
generally repressed during sexual reproduction, likely due
to both the extensive sequence divergence as well as chro-
mosomal rearrangements that are typically present between
MAT alleles of compatible mating types, non-crossover re-
combination (such as gene conversion) has been observed
to occur within the M AT locus in C. neoformans (27). Inter-
estingly, in Malassezia species the P/R and HD MAT loci
organization differs from both tetrapolar and bipolar mat-
ing systems. Specifically, studies have shown that while the
two MAT loci are located on the same chromosome, they
are not tightly linked, but instead are separated by large



syntenic conserved chromosome regions that do not appear
to be involved in mating (5,28). This novel MAT organi-
zation has been termed a ‘pseudo-bipolar’ mating system
to reflect that, while the two M AT loci are linked, recom-
bination can still occur between the P/R and HD regions
to generate novel mating type configurations (29). It is not
known how linkage between the P/R and HD loci was ini-
tially established, or to what extent recombination occurs in
the region encompassing the P/R and HD loci during sex-
ual reproduction. Because extant sexual reproduction has
yet to be observed for any Malassezia species in a labora-
tory setting, evidence of recombination involving the MAT
loci has only been provided based on population genetics
studies of natural isolates.

Here, we used single molecule real-time (SMRT) DNA
sequencing on the PacBio RS II system to obtain com-
plete chromosome sequences for the M. sympodialis ref-
erence strain (ATCC 42132) and four selected M. sym-
podialis clinical isolates. In the sequenced M. sympodialis
genomes, we identified the presence of all four possible al-
lele combinations of two linked but recombining mating-
type loci, detected telomeres and predicted centromere re-
gions on all chromosomes, and found evidence for multi-
ple mtDNA arrangements. Additionally, we present a high-
quality reference genome annotation for M. sympodialis in
terms of both completeness and accuracy, produced by a
novel genome annotation workflow followed by manual cu-
ration. The workflow integrated several computational gene
predictors, transcriptome sequencing and mass spectrome-
try based proteomics data. The annotation obtained con-
tains 4493 protein-coding genes, 957 more than in our pre-
vious M. sympodialis annotation (5) and it is exceptionally
well supported by transcriptome and proteome data. The
M. sympodialis gene catalog resulting from this work con-
stitutes a high-quality reference for future studies of host-
microbe interactions with Malassezia species.

MATERIALS AND METHODS
M. sympodialis isolates

M. sympodialis ATCC strain 42132 were used in addition to
four clinical isolates obtained from the skin of two healthy
individuals and two patients with atopic eczema at the
Dermatology Unit, Karolinska University Hospital, Stock-
holm, Sweden. See detailed protocol in (5).

DNA extraction

M. sympodialis ATCC 42132 and the four clinical isolates
were cultured on Dixon agar (30) plates modified to con-
tain 1% (vol/vol) Tween 60, 1% (wt/vol) agar and no oleic
acid (mDixon) at 32°C and contamination was excluded us-
ing blood and Sab-oxide agar plates. After 4 days, cells were
harvested using a loophole and suspended in 20 ml phos-
phate buffered saline and counted by the trypan blue exclu-
sion method (31). DNA was extracted using the QIAGEN
Genomic-tip 500/G kit (QIAGEN GmbH, Hilden, Ger-
many) according to the manufacturer’s instructions with
some modifications. Briefly, ~4 x 10'° cells were used for
each extraction and two extractions were pooled onto one
QIAGEN Genomic-tip500/G. The lysing incubation was
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carried out on a shaker at 30°C for ~22 h in lysing buffer
Y1 containing 10 mM Tris. The protease treatment was in-
cubated for 3 h at 50°C. The DNA was analyzed on a 1%
agarose gel and the concentration was measured with Nan-
oDrop (NanoDrop Technologies, Wilmington, DE, USA).

Genome sequencing and assembly

DNA was sheared into 10 kb fragments using a Gen-
emachines HydroShear Instrument (Digilab, Marlborough,
MA, USA). SMRTbells were constructed and sequenced
according to the manufacturer’s instructions (Pacific Bio-
sciences, Menlo Park, CA, USA). Sequencing was per-
formed on a PacBio RS II sequencer with 3 h movie-time,
using 3 SMRT cells for strain ATCC 42132 and 2 SMRT
cells for each isolate.

Reads were assembled using the SMRT Analysis HGAP3
assembly pipeline. For strain ATCC 42132, 679 Mb of sub-
reads longer than 3 kb were used for preassembly and 395
Mb corrected reads (average read length 5 kb) were used to
assemble the genome with the Celera assembler, followed by
polishing with Quiver. The isolate genomes were assembled
using the same parameters and similar amounts of data.
To assess the completeness of the assemblies, read coverage
profiles were inspected and contig ends analyzed for repeti-
tive sequence motifs.

To assess read coverage, SMRT reads were mapped to the
genome assemblies using the MEM algorithm in BWA ver-
sion 0.7.12 (Li 2013 arXiv, http://arxiv.org/abs/1303.3997),
with parameter ‘—x pacbio’. Illumina and 454 reads from
our previous study (5) were similarly mapped using BWA-
MEM with default options. For reads with multiple equally
good matches, one was picked at random to avoid overes-
timating coverage of repeat regions. Coverage profiles were
computed with IGVtools (32). The new ATCC 42132 as-
sembly was compared to our previously published assem-
bly (5) using the tool r2cat (33). For centromere prediction,
GC content was computed at 25 bp intervals in windows of
250 bp. GC3 content was computed in windows of 10 genes,
using the final gene annotation from this study.

RNA extraction

M. sympodialis (ATCC 42132) was cultured on mDixon
agar plates as described for DNA extraction above. After
2 or 4 days the cells were suspended in diethylpyrocarbon-
ate water, harvested by centrifugation 1000 g for 5 min, re-
suspended in diethylpyrocarbonate water and counted. Be-
tween 1 x 10% and 4 x 10° cells were harvested by cen-
trifugation. The pellets were resuspended in 600 wl Buffer
RLT from the RNeasy kit (QIAGEN) and added to ~600
wl of acid-washed 0.4-0.6 mm silica beads. The cells were
disrupted in a Precellys 24 homogenizer (Bertin Technolo-
gies, Montigny-le-Bretonneux, France), using 3 cycles (6000
rpm, 3 x 30 s). The tubes were cooled on ice after each cy-
cle. RNA was extracted using the RNeasy kit following the
instructions from the manufacturer (Qiagen), including on-
column DNase digestion.
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RNA sequencing

Seven RNA-seq libraries were used (Supplementary Ta-
ble S1). Two of these were prepared from poly(A)-selected
RNA using the Illumina TruSeq sample preparation kit
(Catalog ID RS-122-2001, Illumina, San Diego, CA,
USA) in an automated procedure as previously described
(34). The remaining five libraries were prepared from
RNA treated with RiboMinus (Thermo Fisher Scientific,
Waltham, MA, USA) using a modification of the Illumina
TruSeq sample preparation kit to achieve strand-specificity
as previously described (35). Clustering was performed on
an Illumina cBot cluster generation system using a HiSeq
paired-end read cluster generation kit according to the man-
ufacturer’s instructions. All libraries were sequenced on
an Illumina HiSeq 2000 as paired-end reads to 100 bp.
Base conversion was done using Illumina OLB version 1.9.
Adapter sequences were removed with cutadapt version
1.2.1 (36). For de novo transcriptome assembly, we addition-
ally trimmed low-quality sequence (using cutadapt option —
q 15) and excluded reads shorter than 36 nt after trimming.

RNA-seq read mapping and splice junction discovery

Reads were mapped to the M. sympodialis genome assembly
with STAR version 2.3.0e (37) using a two-pass workflow
that increases accuracy of alignment across introns (38). In
the first pass, reads were mapped to discover an initial set
of splice junctions. All reads were then realigned in a sec-
ond pass, using the splice junction set from the first pass
to guide alignment. Reads mapped to the highly expressed
ribosomal repeat on chromosome 5 and the mitochondrial
large ribosomal RNA gene were excluded from all analyses.

The putative splice junctions reported by STAR were
pooled across all seven RNA-seq libraries and filtered to
retain high-confidence junctions for proteogenomic map-
ping. Specifically, we required junctions to have canonical
splice site dinucleotides (GT-AG, GC-AG or AT-AC), sup-
port from at least 10 RNA-seq reads and spliced alignments
extending at least 20 bp into the putative exons on each
side (Supplementary Figure S1). These characteristics are
reported by STAR, and thresholds were chosen by compar-
ison to M. sympodialis gene models predicted without using
RNA-seq data (5).

De novo transcript assembly from RNA-seq data

Four RNA-seq libraries with high strand-specificity were
used for transcript assembly (Supplementary Table S1).
Strand-specific sequencing typically produces a small pro-
portion of misoriented reads (39). We therefore filtered the
reads by analyzing the STAR alignments to the genome
and excluding spliced reads for which mapping orientation
disagreed with splice site dinucleotide sequences. The data
from all four libraries were combined and assembly con-
ducted with Trinity version 2013-11-10 (40). The option —
jaccard_clip was enabled to minimize fusion artifacts, us-
ing bowtie version 1.0.0 (41) for alignment. Transcript se-
quences were mapped to the genome using BLAT version
34 (36), requiring 95% identity and allowing introns up to
2000 bp. BLAT results were filtered by running the associ-
ated program psIReps with default parameters.

The PASA pipeline version 2.0.1 (42) was applied to iden-
tify likely protein-coding regions in the assembled tran-
scripts. PASA clusters transcripts by genomic location and
invokes the program TransDecoder to find coding regions.
PASA was executed according to the guidelines for strand-
specific RNA-seq, requiring stringent overlap (30 bp) for
transcript clustering. Untranslated regions (UTRs) were
stripped from PASA-inferred gene models. Only models
with open reading frames (ORFs) that began with a start
codon and ended with a stop codon were used for further
analysis.

Genome-guided transcript assembly from RNA-seq data

Transcripts were also assembled with a genome-guided
approach. The resulting models were used alongside the
Trinity models to support manual annotation, but not in-
cluded in the automated annotation pipeline. For each of
the strand-specific RNA-seq libraries (Supplementary Ta-
ble S1), reads were mapped to the genome with TopHat
version 2.0.8b (43) (using Bowtie version 2.1.0 (44) as the
alignment engine), followed by transcript assembly with
Cufflinks version 2.1.1 (45). The intron size range was set
to 10-2000 bp for both programs and TopHat micro-exon
search was enabled. We used TopHat instead of the STAR
alignments described above, because the latter contain soft-
clipping operations, which are not understood by Cufflinks.
Inspection of initial Cufflinks results using the WebApollo
genome browser, in comparison to the other data used in
this study, revealed an abundance of fusion artifacts, i.e.
Cufflinks transcript models comprising multiple adjacent
genes. One explanation is that Cufflinks was developed for
less compact vertebrate genomes. The occurrence of such
artifacts was substantially reduced by setting the parameter
overlap-radius to 1 and limiting the amount of input data
by processing each of the four samples separately.

Proteogenomics analysis

The MS data have been described previously (5) and de-
posited in PRIDE under accession PXD003773. Peptide
spectra were searched against a customized database us-
ing the SEQUEST algorithm (46) in Proteome Discoverer
1.4 (maximum two missed cleavage sites allowed). Peptide
spectra matches were filtered at 1% FDR, estimated with
the Percolator algorithm (47). The customized database
was constructed by combining peptide sequences from (i)
the complete genome sequence translated in all six reading
frames, (ii) splice junctions extracted from the previously
published M. sympodialis gene set (5), (iii) candidate splice
junctions discovered by RNA-seq as detailed above and
(iv) known Bos taurus proteins downloaded from UniProt.
Spectra matching B. taurus peptides were regarded as con-
taminants from bovine serum used in the culture medium
and therefore excluded. To generate splice junction pep-
tide sequences, 2 x 75 bp flanking nucleotide sequences
were taken from splice junction sites (previously annotated
or identified from RNA-seq data). If a previously anno-
tated exon was shorter than 75 bp, the whole exon sequence
was extracted. Three-frame translation was done on the ex-
tracted nucleotide sequences. In silico trypsin digestion of



splice junction sequences was performed with no miscleav-
age allowed between consecutive arginine or lysine and no
trypsin cut before proline. Peptides with six or more amino
acids and spanning the junction sites were kept.

Computational genome annotation

Protein-coding gene structures were first inferred compu-
tationally using the pipeline MAKER version 2.31 (48,49).
Transcripts assembled from RNA-seq data with Trinity, MS
peptides (excluding those mapped to multiple loci) and the
Swiss-Prot database (release 2014_02) of manually reviewed
protein sequences were used as evidence. Swiss-Prot com-
prised 542 503 sequences, including 40 from Malassezia
species (37 from M. globosa and 3 from M. furfur), but none
from M. sympodialis.

Three different MAKER workflows were tested (see Sup-
plementary Table S2). The results of workflow 3 formed the
basis for the final curated gene models, whereas workflows
1 and 2 were used for comparison. Workflow 1 represented
a basic pipeline run without RNA-seq or peptide evidence
(Supplementary Table S2, run 1). Workflows 2 and 3 were
more complex, each comprising three MAKER runs (2a—
and 3a—c), in order to improve performance by retraining
gene predictors between runs. These two workflows were
identical, with the exception that only workflow 3 made use
of peptide data.

The gene predictor GeneMark-ES (50) was used in all
MAKER runs, trained on the genome sequence only ac-
cording to an established protocol (51). The gene predic-
tors SNAP (52) and Augustus (53,54) were used in both
second and third iterations, trained on gene sets from the
preceding iteration. In the first iterations in workflows 2
and 3, candidate coding regions identified by RNA-seq (see
PASA analysis above) were provided to MAKER (via the
option pred_gff), such that the initial SNAP and Augustus
training sets were based on RNA evidence. The following
MAKER options were common to all runs: est2genome =
0, protein2genome = 0, keep_preds = 0, min_protein = 10,
single_exon = 1, correct_est_fusion = 1. Note that setting
keep_preds = 0 ensures that only gene predictions with sup-
porting evidence are retained. Setting single_exon = 1 en-
ables MAKER to consider evidence from single-exon tran-
scripts in the absence of protein evidence at the same loci.
As described in results, however, RNA-seq evidence was not
sufficient for detection of single-exon genes at some loci,
where genes were revealed only after addition of peptide ev-
idence.

Manual genome annotation

Gene models from MAKER run 3c (Supplementary Table
S2) were manually curated using the JBrowse (55) plugin
WebApollo (56). To assist manual annotation, multiple evi-
dence tracks were configured in JBrowse, including all ev-
idence provided to MAKER; GeneMark-ES, SNAP and
Augustus gene predictions from MAKER; RNA-seq read
alignments, candidate introns and strand-specific read cov-
erage; transcript sequences assembled by Cufflinks; known
and predicted proteins from other fungi; and the previously
published M. sympodialis annotation (5). The primary aim
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was to annotate protein-coding regions. UTR boundaries
were annotated when there was sufficient supporting data.
Minor isoforms were generally not considered. In the ab-
sence of peptide evidence, genes were required to have an
ORF longer than 300 bp and mean RNA-seq read count
above 10. Singleton peptides with a SEQUEST Xcorr score
below 2 were not considered sufficient evidence to annotate
genes.

Gene naming

A conservative procedure was used to assign descriptions
and gene names, such that automated name assignment
only was carried out for genes with high-confidence or-
thologs in the S. cerevisiae protein sequence database from
SGD (57). A gene name was transferred to M. sympodialis
only when there was a reciprocal best S. cerevisiae BLASTP
hit with E-value < 107>, >80% coverage of both query and
target and >50% identity. Other genes with BLASTP hits
(E-value < 10~°) were given a description of the form ‘Simi-
lar to S. cerevisiae protein ... . Other genes with peptide ev-
idence from mass spectrometry were given the description
‘uncharacterized protein’, and remaining genes annotated
as coding but having with only RNA-seq support were de-
scribed as ‘hypothetical protein’.

Direct comparison of annotations

The previously published annotation (5) was transferred to
our new genome assembly using the liftOver program (58)
and then compared to our current annotation using ParsE-
val (59). A chain file for liftOver was constructed by align-
ing the old and new genome assemblies with BLAT and
processing the alignments according to the instructions on
the UCSC Genome Browser wiki (http://genomewiki.ucsc.
edu/index.php/Minimal_Steps_For_LiftOver). We used the
gt stat command from genometools (60) to validate the
GFF3 format and check phase numbers for CDS features.
After that, ParsEval was run in HTML output mode us-
ing previously published annotation as reference and cur-
rent annotation as prediction.

Pfam analysis

Pfam analysis was conducted using interproscan-5.11-51.0
with default parameters, retaining matches with E-value
< 1071°, Matches to reverse transcriptase, integrase, virus-
related, unknown and uncharacterized domains were ig-
nored. The best scored (lowest E-value) Pfam domain was
counted for each gene. Protein sequences of S. cerevisiae
were downloaded from the SGD website (57). Protein se-
quences of other fungi were downloaded from the NCBI
website: Candida albicans strain WO-1 (61) (bioproject
16371), C. neoformans H99 (62) (bioproject 411) and Usti-
lago maydis strain 521 (63) (bioproject 1446).

MAT loci

The MATloci (HD and PR) of the four clinical M. sympodi-
alis isolates (Table 3), as well as for strain ATCC 42132, were
identified by searching the genome assemblies for matches
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to the M. sympodialis HD and PR sequences in GenBank
(accessions JX964802.1 and JX964848.1). The identified se-
quences were extracted from the genome assemblies and
aligned using the program ClustalX (64). Phylogeny was
constructed using the maximum likelihood algorithm im-
plemented in MEGA version 6.06 (65).

RESULTS

A complete and gapless reference genome assembly for M.
sympodialis

Through long-read sequencing (100x coverage, 3 SMRT
cells) of the M. sympodialis (ATCC strain 42132) genome,
we obtained an assembly comprising nine contigs, which
correspond to eight nuclear chromosomes and one mito-
chondrial genome. The nuclear contig sizes sum to 7.75
Mb and closely match the chromosome sizes previously
observed by pulsed-field gel electrophoresis (PFGE) (6,66)
(Table 1). These contigs are fully collinear with our previ-
ous assembly (Supplementary Figure S2) that was based on
short-read data using other sequencing technologies (Illu-
mina and 454) and comprised 156 contigs (5). A repeated
7 bp sequence was identified on both ends of the eight nu-
clear chromosomes. This telomere sequence is TTAACAC
at the 5'-end, and its reverse complement GTGTTAA at the
3’-end. No internal telomere repeats were identified (Sup-
plementary Figure S3). The new assembly contains no se-
quence gaps and it only has one unresolved region in the
nuclear genome: the ribosomal repeat on chromosome 35,
which was assembled in a short six-copy version with about
5 to 6 times higher read coverage than the rest of the chro-
mosome, indicating a ribosomal copy number of 30 to 36.
Read coverage was otherwise even across the nuclear con-
tigs (Supplementary Figure S4). Thorough genome annota-
tion, as detailed below, identified only one error (a mononu-
cleotide stretch missing one base), which caused a frame
shift and was corrected. We screened for additional base-
level errors by comparison to the independent Illumina and
454 reads (5), but no credible errors were identified (data
not shown; note that the lack of evidence for allelic varia-
tion is consistent with the hypothesis that M. sympodialis
is haploid (6,66)). The genome assembly was also in excel-
lent agreement with transcript sequences independently as-
sembled from RNA-seq data (described below). More than
97% of RNA contigs longer than 300 bp were mapped to
the genome and these displayed very high similarity to the
genome sequence (mean identity 99.96% within aligned re-
gions). Taken together, these analyses demonstrate that our
M. sympodialis reference assembly is highly accurate.
Centromeres of many fungal species including S. cere-
visiae are AT-rich as compared to the rest of the genome
(67,68). GC3-troughs (regions with low GC content at third
positions in codons) correlate with centromere loci in sev-
eral yeast species, specifically in Yarrowia lipolytica (69).
Kapoor et al. (70) provided corroboration of this and fur-
ther observed that global GC-troughs (regions of the chro-
mosome that have the lowest GC content) correspond pre-
cisely with centromere loci in Candida lusitaniae. Consider-
ing that M. sympodialis possesses a genome of comparable
size to those species in which GC3/GC troughs are found
to be associated with centromeres, we performed a similar

in silico analysis to predict centromere regions in M. sym-
podialis. We found that each chromosome had precisely one
locus with a sharply lower GC content (< 20% in all cases)
(Supplementary Figure S5). The next lowest trough has GC
content above 30% in all but one case. Each of these loci cor-
responds with a local trough in GC3 content. In addition,
these GC troughs bear very low nucleotide-composition
similarity to any other region on the chromosome (Supple-
mentary Figure S5). Based on this analysis, we predict that
these unique regions with global GC troughs are the cen-
tromere regions in M. sympodialis (Table 1). However, fur-
ther experimental validation is required.

Genome annotation combining RNA-seq and proteogenomics

To achieve an accurate and complete genome annotation,
we developed a novel genome annotation workflow in-
tegrating RNA-seq and proteomics data (Figure 1). For
RNA-seq data generation, we applied two different enrich-
ment methods (Supplementary Table S1) to sequence both
mRNA and non-coding RNA. In total, we obtained 71
million RNA-seq read pairs mapping to genomic regions
other than the highly expressed ribosomal loci. RNA-seq
is well suited for discovery of splice junctions, which are
difficult to identify from genomic sequence alone. In total,
we obtained 6786 putative splice junctions (excluding low-
confidence junctions; see Materials and Methods), of which
5169 (76%) were novel, i.e. absent from the previous anno-
tation that was produced without using RNA-seq (5). Can-
didate transcript sequences were assembled from RNA-seq
reads, mapped to the genome and scanned for ORFs. This
identified a conservative set of 2683 likely protein-coding
genes, which served as an initial set for training gene predic-
tion programs to recognize M. sympodialis gene structures.

To obtain peptide data for genome annotation, we per-
formed proteogenomics analysis using a previously gener-
ated comprehensive proteomics data set for M. sympodi-
alis (5). Here, we re-analyzed this data set by interpreting
the mass spectra against an expanded and more accurate
peptide database, including (i) all peptides from a six-frame
translation of the new genome assembly, (ii) the putative
splice junction spanning peptides from our earlier annota-
tion (5) and (iii) the 5169 novel candidate splice junctions
discovered by RNA-seq as described above. At an estimated
1% FDR, 35998 unique M. sympodialis peptides were iden-
tified, and 829 of these mapped to splice junctions. To as-
sess the extent to which these peptide data cover the pro-
teome, independently of any annotation, we divided the nu-
clear genome into 2 kb windows (M. sympodialis is thought
to harbor approximately 1 gene per 2 kb (5)) and counted
the number of unique peptides per window (Supplementary
Figure S6). Only 5.5% of windows lacked peptides entirely
and 90% of windows had at least two mapped peptides, in-
dicating that the proteomics data can be expected to pro-
vide direct evidence of translation for the great majority of
protein-coding genes. The only larger region lacking pep-
tides is a 0.5 MDb region on chromosome 5, corresponding
to the incompletely resolved ribosomal RNA repeat (Sup-
plementary Figure S6). In a complementary analysis, we
calculated how many ORFs in the nuclear genome were
supported by peptides when randomly subsampling differ-
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Table 1. M. sympodialis nuclear chromosome sizes and predicted centromeres

Size in current Size estimate from Putative centromeric GC content of 250 bp
Chr assembly (bp) PFGE (Mb) region (CEN) trough Size of CEN (bp)
1 1508 930 1.55 786 541-787 061 16.4% 520
2 1381175 1.37 355 760-355 841 20.0% 81
3 1353702 1.37 237 534-238 686 15.6% 1152
4 1203 350 1.17 418 202-418 728 15.2% 526
5 709 412 0.75 125056125 220 18.0% 164
6 634 681 0.62 101 950-102 502 14.4% 552
7 517 958 0.53 431 542-431 987 13.2% 445
8 438 251 0.47 24 694-25 564 18.4% 870
Total 7747 459 7.83 n.a. n.a. 4310

The PFGE karyotyping and corresponding chromosome size estimates have been described previously (6,66). Note that bands for chromosome 2 and 3
overlapped in the PFGE gel. n.a., not applicable.

Long-read DNA-seq

v

/ Complete
enome .
RNA-seq J . MS-proteomics
Six-frame

+ translation +

Intron discovery, 3 Splice z 3 Peptide
transcript assembly / junctions identification

and ORF search +
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/and initial gene models / Peptides /
Protein homologs
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Manual
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Annotated
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Figure 1. Integrative genome annotation workflow. Data from four different sources (long-read DNA sequencing, RNA-seq, MS-based proteomics and
Swiss-Prot reviewed proteins) were integrated using an evidence-based genome annotation framework (MAKER). Transcripts were assembled from RNA-
seq reads using Trinity and PASA was used to identify likely protein-coding regions to provide gene models for initial gene predictions. Three ab initio gene
predictors (GeneMark-ES, Augustus and SNAP) were included in MAKER. Augustus and SNAP were iteratively trained based on MAKER-generated
gene models (see Materials and Methods and Supplementary Table S2). The computationally inferred gene structures were manually curated. Shapes are
used according to workflow figure standards (rectangles show processes, data are in parallelograms, the trapezoid indicates a manual step and the rounded
rectangle represents output).
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ent proportions of the complete peptide data set. This indi-
cated that the number of supported ORFs is nearing satu-
ration (Supplementary Figure S7). Note that we do not ex-
pect peptide coverage of all protein-coding genes. The detec-
tion of a given protein depends on multiple factors in a MS-
experiment; mainly on protein abundance, but also on pro-
tein sequence, since for successful MS-detection tryptic pep-
tides (cleaving on arginine or lysine) in a certain length inter-
val need to be obtained (here, we used search parameters in-
cluding peptides between 6 and 50 amino acids). Moreover,
ionization properties of the generated peptides render some
peptides difficult to detect from a complex peptide mixture
by MS. Finally, not all protein-coding genes are expected to
generate proteins in the culture conditions used.

We then customized the integrative genome annotation
framework MAKER (48) to infer gene structures based on
evidence from three different sources: transcripts assembled
from strand-specific RNA-seq data, peptides from the pro-
teogenomic search and the full Swiss-Prot database of man-
ually reviewed protein sequences from all domains of life
(Figure 1). Note that, although we refer to these genes as
predicted, we configured MAKER to output only gene pre-
dictions supported by RNA-seq, peptide and/or homology
evidence. The resulting gene structures were manually cu-
rated (Figure 2) according to the guidelines described in
Materials and Methods.

Integration of RNA-seq and proteogenomics facilitates
highly accurate annotation

To assess the benefits of including peptide data in gene pre-
diction, we ran MAKER both with and without peptide ev-
idence. We additionally compared these results to our pre-
viously published annotation (5), which primarily consists
of MAKER gene predictions based on homology evidence,
but no RNA-seq or proteomics data. We found that addi-
tion of RNA-seq evidence only slightly increased the to-
tal number of protein-coding genes predicted, but revealed
2585 (156%) more introns supported by RNA-seq reads
(Figure 3 and Table 2, columns 1 and 2). This compari-
son illustrates the value of including transcriptome sequenc-
ing for accurate annotation of intron-containing genomes.
Rather than identifying more introns, the integration of ad-
ditional peptide data in MAKER facilitated the identifica-
tion of substantially more protein-coding regions (Figure 3
and Table 2, columns 2 and 3). In total, 4113 genes were
predicted, 14% more than the number of genes predicted
using RNA-seq and homology data only. There was a cor-
responding 15% increase in the total amount of nucleotide
sequence predicted as protein-coding (5.35 to 6.14 Mb, see
Table 2). In accordance with more introns annotated, mean
exon and intron sizes were decreased, and fewer extremely
short or long introns were included (Table 2 and Supple-
mentary Figure S8).

Compared to the gene set acquired with RNA-seq and
homology data, 497 genes were annotated at novel loci by
MAKER when including peptide data. To investigate why
these genes were missed without peptide evidence, we exam-
ined multiple features: protein length, RNA-seq read cover-
age, intron and exon numbers and UTRs. First, these genes
are not particularly short as one may suspect (mean length

538 aa, compared to 498 aa for the entire final gene set).
However, we found that 249 of the 497 genes were merged
into neighboring genes with long UTRs when peptide evi-
dence was excluded. Among the other 248 missed genes, 188
are single-exon genes (based on manual annotation of the
corresponding loci). It is well recognized that single-exon
genes are hard to distinguish based on RNA-seq data alone,
because a certain background level of intronless read cov-
erage commonly exists, for biological and technical reasons
(e.g. run-through transcription from neighboring genes or
imperfect strand-specificity). Of the remaining 60 missed
genes, many had either very low RNA-seq coverage (<10
reads per gene) or no underlying gene prediction. To ex-
emplify these issues, Supplementary Figure S9 shows four
genes that were predicted only when peptide evidence was
used. Overall, provision of peptide data helps MAKER
overcome these problems and improves it to be a more ro-
bust and sensitive platform for discovery of protein-coding
genes.

Manual curation resulted in a further 9% increase in
the number of protein-coding genes to 4493 and a corre-
sponding 9% increase in total coding sequence (Table 2). All
4493 genes were supported by RNA-seq reads and only 611
(14%) lacked peptide support (Figure 4, panel A and B).
The inter-connection between the number of unique pep-
tides and RNA-seq reads is shown in Figure 4C. Of the
611 genes without peptide support, 344 were similar to S.
cerevisiae proteins (BLASTP E-value < 107°) or domains
characterized in other proteins (Pfam E-value < 10717),
We carried out a systematic comparison between previously
published (5) and current annotation. In total, we identi-
fied 957 more protein-coding genes, including 862 genes in
novel loci, i.e. regions without genes in the previous annota-
tion (5). These new genes include homologs to catalytic en-
zymes, transporter proteins and transcription factors from
S. cerevisiae (see classification of these genes in Supplemen-
tary Figure S10). There were only 1264 genes with identi-
cal amino acid sequences between the two annotations, and
only 649 of these have perfect matches in gene structure in-
cluding UTRs. Thus, our new gene catalog includes changes
to 64% of previously annotated protein sequences. These
statistics show that our current annotation constitutes a ma-
jor improvement over the previous annotation, not only in
identifying novel genes, but also in accuracy of gene struc-
tures.

In- and out-frame peptide analysis indicate that virtually all
coding genes have been annotated

Peptides identified by genome-wide six reading frame (6RF)
search are direct evidence of ORF translation, independent
of any annotation. The peptides falling outside annotated
protein-coding regions indicate potentially incorrect exon
boundaries, missed genes or coding exons, and can thus be
used to assess indirectly the completeness of a genome an-
notation. It was found that 4246 (14%) peptides from 6RF
search mapped outside annotated protein-coding regions in
our previously published annotation (5), indicating that a
substantial number of genes had been missed. The num-
ber of such out-frame peptides dramatically decreased (14%
to 5%) when using peptide data in MAKER annotation,
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Figure 2. Gene annotation facilitated by RNA-seq and peptide evidence. Screenshot from the WebApollo genome annotation editor showing a locus where
RNA-seq and peptide evidence improved gene annotation compared to the previous annotation described by Gioti et al. (5). The 5-UTR and protein-
coding segments were identified by the MAKER-based pipeline integrating RNA-seq and peptide data. Manual curation added a 3’-UTR (uppermost
track). The colors of exons and peptides indicate reading frame, such that exons and peptides with the same color are in the same reading frame. UTRs
are indicated in purple and introns in gray. RNA-seq coverage is shown for the genomic minus strand (i.e. the strand of the annotated gene) and indicates

the number of read pairs at each base.

Table 2. Characteristics of M. sympodialis gene sets

MAKER with

Published (MAKER MAKER with homology,

with homology homology and RNA-seq and Manually curated

evidence) (5) RNA-seq evidence peptide evidence annotation
Protein-coding genes 3536 3612 4113 4493
Gene density (genes/kb)! 0.46 0.46 0.53 0.58
Coding sequence (Mb) 5.40 5.35 6.14 6.72
Coding exons 6995 8453 9212 9793
Introns 3462 5030 5267 5350
Mean exon size (bp)? 772 635 669 687
Mean intron size (bp) 65 52 50 30
Genes supported by peptides 3176 3176 3674 3891
Introns supported by RNA-seq 1661 (48%) 4246 (84%) 4275 (81%) 5271 (99%)
Out-frame peptides 4658 (13%) 5453 (15%) 1796 (5%) 338 (1%)

!Gene density was computed relative to the size of the corresponding genome assembly (7.71 Mb for the draft assembly of Gioti et al. (5) and 7.79 Mb for

the current assembly).
2Excluding untranslated regions.

while such improvement was not observed in MAKER an-
notation using RNA-seq and homology data only (see Ta-
ble 2). After manual curation, only 338 (0.94%) peptides
mapped outside protein-coding regions or in a different
reading frame. The confidence score of these out-frame pep-
tides were significantly lower than those of in-frame pep-
tides (P < 1013, two-tailed t-test) and their score distri-
bution resembles the decoy peptide hit distribution (Sup-
plementary Figure S11), indicating that these 338 cases are
likely false peptide matches. The remaining 35 450 peptides
confirmed the reading frame and strand of annotated genes.
Thus, our curated annotation captures all genes that have
robust evidence in the proteomics data set.

Protein domain analysis confirms accuracy of M. sympodialis
gene annotation

We further assessed the quality of annotation by searching
for conserved protein domains (Pfam domains) in the pro-
tein sequences from different annotation approaches (71),
under the assumption that domains will be relatively more
detectable in a well-annotated genome. The number of pro-
teins with Pfam domain matches detected in M. sympodialis
was increased by integration of RNA-seq and peptide data
in genome annotation, and was highest in the final manually
curated gene set (Figure 5). For reference purposes, we car-
ried out the same analysis for our previously published M.
sympodialis annotation (5) and four other well-annotated
fungi: S.cerevisiae (57), Candida albicans (61), C. neofor-
mans (62) and U maydis (63). Apart from S. cerevisiae,
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Figure 3. Increases in coding sequence and intron detection through addi-
tion of RNA-seq and proteomics data. Percentages were calculated using
the values (length of coding sequences and total number of introns) from
the manually curated annotation as denominator.

M. sympodialis contained the highest percentage of pro-
teins with Pfam domains among the selected fungal species
(Figure 5). Besides annotation quality, the high propor-
tion of M. sympodialis proteins with Pfam domains (70%)
compared to other species likely reflects the evolution in
Malassezia species of compact genomes with a high pro-
portion of conserved essential genes (28).

Evidence for multiple mitochondrial genome arrangements in
M. sympodialis

We previously assembled and annotated a 38.6 kb sequence
representing the M. sympodialis mtDNA (5). The SMRT
reads confirmed this sequence, with the exception of a sin-
gle base insertion in an intergenic region (an A at position
9822). As previously described, the M. sympodialis mtDNA
contains a large inverted repeat of 5.9 kb separated by an
intra-repeat region of 655 bp (5). Interestingly, SMRT read
assembly produced a greater-than-unit length alternative
mtDNA contig of 65.8 kb that contains two copies of the in-
verted repeat region having different flanking regions (Sup-
plementary Figure S12). The SMRT reads were not suffi-
ciently long to verify the existence of these different con-
figurations; however, the shorter length of the intra-repeat
region allowed for confirmation of two orientations rela-
tive to the flanking IR (Figure 6). This indicates that the re-
peated regions undergo homologous recombination that in-
verts the intra-IR region. By inference, recombination may
occur between distal repeats in multimeric molecules, which
could produce multiple genomic configurations as predicted
by the longer 65.8 kb assembly (Supplementary Figure
S12). Similar evidence for mitochondrial genome variabil-
ity was also observed in the sequencing data from the four
clinical isolates (Supplementary Figure S13). The inverted
repeats are present in the majority of Malassezia species
that have been analyzed (Kennell J.C. et al., manuscript in
preparation) as well as in Candida species (72). Inverted re-
peats in mtDNAs have been demonstrated to mediate inter-
conversion between linear and circular forms of the mito-

chondrial genome in Candida species (72), but similar anal-
yses have not yet been carried out in Malassezia species.

Evidence for sexual reproduction in M. sympodialis from
comparative analysis of mating-type loci

Our analysis of the M. sympodialis draft genome sequence
(5) provided evidence for an unusual mating type locus
configuration termed pseudo-bipolar. Specifically, the two
MAT loci (HD and PR) are physically linked, but suffi-
ciently far apart that recombination can occur between the
two and thus drive meiosis. Here, we further examined this
unusual genomic configuration using the new complete M.
sympodialis ATCC 42132 genome sequence. In addition, we
SMRT sequenced the genomes of four M. sympodialis clin-
ical isolates selected based on previous PCR and sequence
analysis (5) to test if the two M AT loci were linked in all
four possible allele combinations. These four genomes were
independently assembled, resulting in the same number of
chromosomes with no major structural differences or gaps
(Supplementary Figure S14).

We found the MAT loci to be similarly organized in
the four selected clinical M. sympodialis isolates and strain
ATCC 42132. That is, the two M AT loci are located on the
same chromosome (chrl) and are ~145 kb apart from each
other. For the PR locus, only two sequence clusters were
identified among strain ATCC 42132 and the four clinical
isolates, corresponding to the PR1 and PR2 alleles (Figure
7). For the HD locus, while polymorphisms are present be-
tween alleles of any pair of isolates, phylogenetic analysis
showed that the five alleles form two well supported clusters
(HD1 and HD?2) that each contain two alleles, with the al-
lele from isolate KS024 (HD3) being significantly different
from either cluster (Figure 7). It should be pointed out that
while the sequences at the HD locus for isolates KS004 and
KS292 cluster together, significant polymorphism is present
between the two alleles. Interestingly, when the three com-
ponents of the HD locus (the bW and bE genes, as well
as the intergenic region between the two genes) were ana-
lyzed separately, it was clear that the majority of the poly-
morphisms between the HD alleles of isolates KS004 and
KS292 are contributed by the divergence present in the in-
tergenic region, where the KS004 allele (HD?2) clustered to-
gether with the HD1 alleles (Figure 8). Additionally, closer
inspection of the bW alleles showed that the polymorphisms
between the isolates KS004 and KS292 are restricted to a
small region at the 5’ end of the gene, where the allele in
KS004 is similar to the HD1 sequences, consistent with the
observation for the intergenic region. Thus, it appears that
the HD?2 allele of isolate KS004 has a mosaic structure,
where although the majority of the allele is composed of
HD?2 sequence, the intergenic region and the 5 end of the
gene b W are more similar to HD1 sequence (Figure 8). This
could be the result of a homogenization process, such as
gene conversion, which may have occurred during sexual re-
production. Additionally, our analysis showed that the five
genomes represent all four possible allele combinations of
the HD (HD1 and HD2) and PR (PR1 and PR2) loci (see
Table 3), which is consistent with the scenario where sexual
reproduction is extant in the natural population and reshuf-
fles the allele combinations.
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Figure 5. Pfam domain content in different annotation sets compared to reference species. The percentage of proteins with Pfam domains in M. sympodialis
annotation was calculated using the total number of genes after manual curation as denominator. The numbers of M. sympodialis proteins with Pfam
domains identified from different annotations sets were 2595 in the Gioti annotation (MAKER with homology evidence) (5), 2647 in MAKER annotation
with homology and RNA-seq evidence, 2903 in MAKER annotation with homology, RNA-seq and peptide evidence, and 3173 after manual annotation.

Table 3. HD and PR allele combinations for M. sympodialis strain ATCC 42132 and four clinical isolates

Strain Diagnosis Mating type HD locus PR locus
ATCC 42132%* albl HDI PR1
KS004** HC a2b2 HD2 PR2
KS024 HC a2b3 HD3 PR2
KS292%* AE alb2 HD2 PR1
KS327%* AE a2bl HD1 PR2

Isolates highlighted with ** represent all four possible allele combinations between the /D (HD1 and HD2) and PR (PR1 and PR2) loci. HC: healthy
controls; AE: atopic eczema patients.



2640 Nucleic Acids Research, 2017, Vol. 45, No. 5

cox3 nad1 nad5

i cob nad2 nad3| cox2 | nad4L |

atp9

Monomer length = 38,623 bp
Inverted Repeat = 5,953 bp
Intra-IR region = 655 bp

— - {ui—
o =

atp8

Inverted Repeat cox1 | rps3

ns

<., atp9 nad4 atp6

Figure 6. Evidence of multiple mitochondrial genome configurations. The physical map of the mitochondrial DNA (mtDNA) is displayed in a linear form,
beginning with the rn/ gene. Rectangles indicate genes or exons of highly conserved protein-coding regions (black), ribosomal RNAs (blue) and intron-
encoded homing endonuclease genes (grey). The unit-length, monomeric mtDNA contains a large inverted repeat (purple), separated by an intra-repeat
region. The intra-repeat and flanking region is shown below, with the position of tRNAs met (M) and his (H) indicated in green. SMRT reads demonstrated
that the intra-repeat region exists in two orientations relative to the inverted repeats.

100 |-

HD Locus

ATCC 42132 [HD1]
KS327 [HD1]

100

0.005

KS024 [HD3]
KS004 [HD2]
KS292 [HD2]

KS024 [PR2]
100

PR Locus

KS327 [PR2]
KS004 [PR2]
ATCC 42132 [PR1]

—
0.05

100 | KS292 [PR1]

Figure 7. Phylogeny of the M AT loci and mating type designations of the M. sympodialis isolates. Phylogenetic relationships among the five sequenced
M. sympodialis genomes (Table 3) at the HD and PR loci. The allele designation for each genome is shown in brackets. Scale bars indicate the number of

substitutions per site. Bootstrap values are based on 1000 replications.

DISCUSSION

In this study, we described the gap-free genome sequences
of M. sympodialis ATCC 42132 and four clinical M. sympo-
dialis isolates based on high-coverage, long-read sequenc-
ing. The long sequence reads were critical for assembly of
complete chromosome sequences. These data further con-
firmed that M. sympodialis mating type loci undergo re-
combination and revealed the existence of multiple mito-
chondrial genome arrangements. Although only a handful
of gapless eukaryotic genomes have been reported so far,
more complete genomes will be anticipated as long-read
sequencing technologies are increasingly applied and im-
proved (73). Besides the complete genome assemblies, we
also attained a comprehensive and highly accurate genome
annotation for M. sympodialis, using a novel annotation
workflow integrating RNA sequencing and proteogenomics
followed by manual curation (Figure 1). As demonstrated,
RNA-seq data were particularly useful in detecting introns
and provide initial gene sets for accurate model training in
gene prediction. Proteogenomics data made the annotation
pipeline even more robust and accurate, by distinguishing
genes with overlapping UTRs and enabling discovery of
single-exon genes that are hard to distinguish from tran-
scriptional noise, as well as genes that ab initio predictors
missed and genes with little RNA-seq evidence. Further-
more, the RNA-seq and peptide data also facilitated ac-

curate manual curation. As a result, 4493 protein-coding
genes were annotated, representing a 27% increase over the
previously published gene set (5) and revealing 862 novel
protein-coding loci. Compared to the previously published
M. sympodialis annotation (5), our new integrative strat-
egy resulted in changes to 64% of protein sequences and
explained >4000 peptides (14% of all identified peptides)
mapping outside previously annotated protein-coding re-
gions. All genes and 99% of introns in our current annota-
tion were supported by RNA-seq reads and 87% of protein-
coding genes were confirmed by peptide level evidence.

RNA-seq data have been widely used in evidence based
genome annotation to improve accuracy and current anno-
tation tools are specifically designed to utilize RNA data.
Although some programs, such as MAKER, can make use
of peptide data, this information is not fully exploited.
Large-scale MS-based proteomics is becoming a widely ac-
cessible method, with a cost comparable to that for RNA-
seq, and the amount of proteomics data in public databases
is rapidly increasing. We therefore advocate further develop-
ment of current gene predictors to make best use of readily
available proteomics data, to improve genome annotation
in various organisms. Gene prediction algorithms should
be extended to integrate information provided by MS-based
proteomics, such as reading frame and identification scores
of peptides.
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We have demonstrated the utility of peptide data for
annotating a small eukaryotic genome. The same strategy
should be applicable to large genomes, if the proteogenomic
analysis is adapted to limit the amount of false peptide
matches, using, e.g. rational database reduction and class-
specific FDR estimation (17). We recently used those tech-
niques to discover 98 and 52 novel coding loci in human and
mouse genome through proteogenomics (9). In our opinion,
the integrative genome annotation approach presented here
should be broadly applied to newly sequenced genomes and
to refine previous genome annotations.

The M. sympodialis gene catalog resulting from this work
can in the future be used as a high quality reference to study
a range of biological questions, e.g. regarding host-microbe
interactions, and assist genome annotation of closely re-
lated fungal species.
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