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Deforestation rates in primary humid tropical forests of the Brazilian Legal Amazon (BLA) have declined signif-
icantly since the early 2000s. Brazil’s national forest monitoring system provides extensive information for the
BLA but lacks independent validation and systematic coverage outside of primary forests. We use a sample-
based approach to consistently quantify 2000–2013 tree cover loss in all forest types of the region and char-
acterize the types of forest disturbance. Our results provide unbiased forest loss area estimates, which confirm
the reduction of primary forest clearing (deforestation) documented by official maps. By the end of the study
period, nonprimary forest clearing, together with primary forest degradation within the BLA, became compa-
rable in area to deforestation, accounting for an estimated 53% of gross tree cover loss area and 26 to 35% of
gross aboveground carbon loss. The main type of tree cover loss in all forest types was agroindustrial clearing
for pasture (63% of total loss area), followed by small-scale forest clearing (12%) and agroindustrial clearing for
cropland (9%), with natural woodlands being directly converted into croplands more often than primary forests.
Fire accounted for 9% of the 2000–2013 primary forest disturbance area, with peak disturbances corresponding
to droughts in 2005, 2007, and 2010. The rate of selective logging exploitation remained constant throughout
the study period, contributing to forest fire vulnerability and degradation pressures. As the forest land use
transition advances within the BLA, comprehensive tracking of forest transitions beyond primary forest loss
is required to achieve accurate carbon accounting and other monitoring objectives.
INTRODUCTION
Rates of deforestation in Brazil significantly slowed after 2004 according
to the Brazilian national satellite–based deforestation monitoring system
PRODES (www.obt.inpe.br/prodes) (1). The major underlying cause of
deforestation has been beef and soybean production in response to grow-
ing global and national demands (2, 3). Deforestation in the region in the
early 2000s was reported to be predominantly due to pasture expansion
(4), with increasing forest-to-cropland conversion in Mato Grosso (5).
Success in slowing deforestation is attributed to a number of factors, in-
cluding declining commodity prices, the role of government policies and
implementation, civil society activism, and private industry engagement
(6–8).Despite the recent deforestation reduction, Brazil remains the single
largest contributor to natural forest loss among tropical countries (9). Ex-
tantdemands for commodities sourced through tropical deforestationwill
test the ability of Brazil to achieve further reductions in forest loss.

The PRODES (1) data set and a global forest loss map from the Uni-
versity of Maryland (UMD) (10) agree on the general decreasing de-
forestation trend in Brazil for the past decade but disagree in terms of
the absolute forest cover loss rates, presumably due to differences in
methodology. Although PRODES quantifies large-scale deforestation
of disturbed andundisturbedprimary forest, other forest change dynam-
ics (including secondary forest clearing, logging, and fire) are omitted.
Conversely, the UMDmap quantifies any tree cover loss, including for-
est plantation rotations, fire, logging, and natural disturbances. PRODES
ignores all changes outside of the old-growth forests of the dense humid
tropical forest biome, whereas the UMDproduct maps all tree cover dy-
namics, including secondary forest and dry tropical woodland clearing.
Additionally, minimummapping units of 6.25 and 0.09 ha for PRODES
and UMD, respectively, result in product differences.
Most regional- and continental-scale studies on the types of de-
forestation are based on tabular data sources and modeling (4, 11, 12).
Remote sensing data, specifically time series of medium– and high–
spatial resolution optical imagery, can be used to attribute types of stand-
replacement forest clearing (deforestation), for example, clearing for
pasture, cropland, mining, infrastructure, and urban expansion. This has
been realized in the form of postdeforestation land-use mapping by the
Brazilian systems TerraClass (www.inpe.br/cra/projetos_pesquisas/dados_
terraclass.php) and TerraClass Cerrado (www.dpi.inpe.br/tccerrado/)
and the nongovernmental land-cover and land-use mapping initiative
MapBiomas (http://mapbiomas.org). The use of remotely sensed data in as-
sessing the degree and type of partial canopy loss (forest degradation) has
been demonstrated inmonitoring wildfires and selective logging (13, 14).
Given these demonstrated capabilities, amore comprehensive accounting
of forest disturbance dynamics is possible for the Brazilian Amazon.

All wall-to-wall deforestation or postdisturbance land-use maps
derived using remotely sensed data contain errors, which results in
the biased area estimates derived via map pixel counting (15–17). This
study follows good practice recommendations (15–17) to use a prob-
ability sample for unbiased area estimation from remotely sensed data.
Our study includes the following objectives: (i) produce unbiased
estimates of annual forest disturbance rates between 2000 and 2013 for
the states of the BLA using a sample-based approach; (ii) characterize
the types of forest disturbance and predisturbance forest types; (iii)
assess carbon implications of the observed forest loss dynamics; and
(iv) compare sample-based estimates with the existing deforestation,
forest degradation, and postdeforestation land-use maps.
RESULTS
BLA total tree cover loss
Most tree cover loss in theBLAbetween 2000 and 2013 occurred in dense
primary humid tropical forests (Fig. 1 and table S1). The rates of human
clearing in all forest types decreased after 2005 (Fig. 2B). The relative
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difference between themaximumandminimum tree cover loss yearswas
73% in primary forests (maximum, 2003; minimum, 2013), 75% in
natural woodlands (maximum, 2004; minimum, 2008–2009), and 66%
in other forests (maximum, 2002; minimum, 2012) (table S2B). Fire dis-
turbance had three peaks (2005, 2007, and 2010). By 2013, human
clearing of other forest types, together with natural forest loss and
non–stand-replacement disturbances (fire and selective logging) in all
forest types (including primary), was comparable in area to that of
clearing of primary forests (0.70 ± 0.08 Mha versus 0.63 ± 0.07 Mha,
where the ± term is the SE of the estimate) (table S3 and Fig. 2B). That
is, by 2013, deforestation in woodlands and secondary forests, together
with natural tree cover loss and degradation in all forest types, had
reached a magnitude of area similar to that of deforestation in dense
primary humid tropical forests, which is the main target of current
national-level mitigation efforts.

State-level tree cover loss estimates
At the state level, the largest contributors to tree cover loss are Mato
Grosso and Pará, which together comprise 60% of the total 13-year loss
area (table S4 and Fig. 3A). These two states are also the leading con-
tributors to primary forest loss (Fig. 3B), whereas Maranhão, Mato
Grosso, and Tocantins, which are partially located within Cerrado
woodlands (Fig. 4),make up 99%of tree cover loss in natural woodlands
(table S4).
Tyukavina et al., Sci. Adv. 2017;3 : e1601047 12 April 2017
Agroindustrial forest clearing for pasture is the largest contributor
to primary forest loss at the state level (Fig. 3B), except for Roraima and
Amapá, where small-scale clearing prevails over agroindustrial. Small-
scale clearing is the second largest disturbance type in other frontier
states (Acre, Amazonas, and Rondônia).MatoGrosso has a substantial
portion of primary forest loss to croplands (18%; table S4), followed by
fire (14%). Primary forest fires are alsowidespread inMaranhão (16%),
Tocantins (15%), Amazonas (10%), Pará (5%), Rondônia (5%), and
Roraima (4%). Most selective logging occurs within Mato Grosso
and Pará, the two largest primary forest clearing contributors, and is
estimated at 8 and 7% of the total primary forest loss of these states,
respectively. Natural forest disturbances, namely, river meandering
and windfalls, contribute more than 1% of primary forest loss only
in Amazonas (8% river meandering and 3% windfalls) and Roraima
(2% windfalls).

Natural woodlands are converted to cropland more often than pri-
mary forests are converted to cropland (Fig. 3C).Conversion to cropland
is amajor type of loss dynamic in the natural woodlands ofMatoGrosso
(50%) and the second largest (after pasture conversion) loss type in the
natural woodlands of Maranhão (37%) and Tocantins (24%).

Secondary forests and woodlands are primarily cleared for agro-
industrial pastures and small-scale agricultural activities (Fig. 3D).
Clearing for plantations is a significant contributor to loss dynamics in
some areas (45% in Amapá and 2 to 3% in Amazonas, Maranhão, Mato
Grosso, Pará, and Rondônia).

Construction of the Luis Eduardo Magalhães (Lajeado) Dam in
Tocantins, which was completed in 2002, resulted in extensive in-
undation and contributed 5% of the total 2000–2013 tree cover loss
in the state (4% of loss in primary forests, 3% in natural woodlands,
and 10% in secondary forests and woodlands).

Annual state-level tree cover loss estimates (Fig. 5 and table S5) show
a peak loss in primary forests and natural woodlands in 2003 and 2004
in most states and a less pronounced peak in secondary forests and
woodlands in 2002 in Mato Grosso, Maranhão, and Tocantins. The
largest annual loss amplitude is observed in Mato Grosso (1.62 ±
0.12 Mha in 2004 versus 0.12 ± 0.04 Mha in 2009).

Carbon implications
Our results indicate that, by 2013, clearing of woodlands and sec-
ondary forests and non–stand-replacement disturbances (fires and
selective logging) exceeded human clearing of primary forests in area
(53% versus 47%) (table S3 and Fig. 2B). We used our sample data to
estimate the implications of this result on gross carbon loss. From all
sample pixels of tree cover loss (3908 pixels), we derived the range of
mean predisturbance aboveground carbon (AGC) density estimates
from three carbon maps (Table 1). AGC loss was assumed to be
100%, resulting from stand-replacement forest disturbances (human
and natural), 4 to 37% (average 21%) from selective logging (18),
and 10 to 50% (average 30%) from fire (19). The results of this estima-
tion process indicate that 26 to 35% of 2013 gross AGC loss likely re-
sulted from disturbance types other than human clearing of primary
forests. The lowest contribution of other disturbance types to gross
AGC loss was in 2003 (13 to 18%), corresponding to an annual peak
of primary forest clearing, and the highest contribution was in 2010
(38 to 49%), the drought year with fire disturbance peak (Fig. 6). If
deforestation (clearing of primary forests) continues to decline, carbon
emissions from other forest and disturbance types, including natural
woodlands, will constitute a substantial proportion of gross carbon loss
in the BLA.
Fig. 1. Sample-based estimates of the total 2000–2013 tree cover loss area in
BLA. Estimates are disaggregated by predisturbance forest type and disturbance
type. Selective logging and fire categories do not represent complete tree cover
loss but rather the area affected by these processes. See table S1 for SEs of the
estimates.
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Comparison with deforestation and tree cover loss maps
PRODES and Souza et al. (20) both map deforestation in primary hu-
mid tropical forests of the Brazilian Amazon, which corresponds to the
human clearing of primary forests in our study. Although all three stu-
dies document decreased annual deforestation rates after 2005 and
agree in the overall area of deforestation, annual estimates vary up to
65% (Table 2 and Fig. 7). The largest relative disagreement is 2009,
when Souza et al. (20) detect substantially larger deforestation areas
than PRODES and the current study. The peak of deforestation is
2003 according to our study and 2004 according to others.

PRODES is successful in reproducing our unbiased sample-based an-
nual loss area estimates, but PRODES is not spatially accurate. Only 79%
of the sample-based estimated area of human clearing of primary forest
was within the PRODES forest mask. Thus, the forest mask imposed by
Tyukavina et al., Sci. Adv. 2017;3 : e1601047 12 April 2017
PRODES results in omitting 21% of the estimated area of primary forest
cover loss.

TheUMDmap detectsmore tree cover loss in the BLA each year, com-
pared to PRODES and Souza et al. (20) (Fig. 7). The explanation for this
difference is that the UMDmap is not limited to mapping deforestation of
primary forests but includes all tree cover loss dynamics. The UMD map
underestimates total tree cover loss at the beginning of the study period
(before2010)andoverestimates total treecover lossat theend, that is,displays
a temporal pattern of bias, which is absent in PRODES and Souza et al. (20).
This may be due to the following reasons: (i) loss date attribution uncer-
tainty (10); (ii) a possible increase of model sensitivity to loss events at the
endof the studyperiod causedby the after-effects of the two largedroughts
(2005 and 2010); and (iii) the newmodel includingLandsat 8data in 2013,
which has proven to increase sensitivity to small-scale disturbances.
Fig. 2. Sample-based estimates of annual tree cover loss area in BLA. Estimates are disaggregated by (A) disturbance type and (B) predisturbance forest type and
disturbance type group. Selective logging and fire categories do not represent complete tree cover loss but rather the area affected by these processes. See tables S2
and S3 for SEs of the estimates.
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Comparison with forest degradation maps
Results of the current sample-based analysis indicate fire peaks in 2005,
2007, and 2010 (Fig. 8), which is consistent with earlier Moderate Res-
olution Imaging Spectroradiometer (MODIS)–based observations (21).
Two of these fire peaks, 2005 and 2010, occur within years of extreme
drought (22, 23). Drought conditions, together with forest fragmenta-
tion edge effects and selective logging, increase humid tropical forest
susceptibility to fire, which often originates from human activities
outside of the forest (24, 25). Selective logging rates remain constant
in the region between 2000 and 2013 (Fig. 8). We compared our se-
lective logging and fire area estimates with mapping results from the
Brazilian national forest degradation monitoring system DEGRAD
and from Souza et al. (20) (Fig. 8).

DEGRAD detects areas affected by selective logging and fire during
2007–2013 (see www.obt.inpe.br/degrad/ and Materials and Methods
for more information on DEGRADmethodology). The larger degrada-
tion area detected by DEGRAD compared to the sample-based analysis
(combined selective logging and fire) is likely due to (i) differences in
methodology and definitions (DEGRADmarks the entire forest patches
as degraded when disturbance signs are present, whereas we consider
only a 120-m buffer around visible logging damage and fire scars as
degraded). This difference was partially offset by analyzing DEGRAD
only within the sampling region of the current study, leaving out 49% of
Fig. 3. The 2000–2013 state-level tree cover loss area estimates. Estimates are disaggregated by disturbance type in (A) all forests, (B) primary forests, (C) natural
woodlands, and (D) secondary forests, woodlands, and plantations. See table S4 for SEs of the estimates.
Fig. 4. Study area—BLA.
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DEGRAD area. (ii) DEGRAD includes some pre-2007 degradation in
the 2007–2013map: 26% (41 of 160) of the samplesmarked as pre-2007
fire or logging degradation were identified as 2007–2013 degradation in
DEGRAD.

Peaks of degradationdetected byDEGRADare 1 year later compared
to the peak fire years from our sample and independent MODIS esti-
mates (Fig. 8). The 1-year lag in DEGRAD is confirmed by a sample-
level degradation date analysis: 72% (89 of 124) of the sampled pixels
identified as 2007–2013 degradation in both our sample analysis and
DEGRADhadDEGRADyear of disturbance 1 year later. The lag in deg-
radation detection is probably due to the use of single-date imagery in
the DEGRAD system: Year 2008 DEGRADmap was based on imagery
Tyukavina et al., Sci. Adv. 2017;3 : e1601047 12 April 2017
from 7 April to 3 October 2008 (91% of the scenes were acquired before
September), whereas our sample-based analysis indicates that ~70% of
fires in 2000–2013 occurred in September to December (Table 3).

Souza et al. (20) 2000–2010 forest degradation estimates are also
based on a single-date Landsat imagery analysis and have a similar
1-year lag in degradation date detection (Fig. 8), detecting peaks of for-
est degradation in 2006 and 2008 instead of 2005 and 2007 andmissing
the 2010 peak.

The differences between the three estimates are probably due to
different degradation definitions, which are often difficult to formalize
(for example, how the boundaries of the burnt areas are defined or
what distance fromvisible logging extractions is considered degraded),
Fig. 5. Annual human forest clearing by state. (A) In all forests, (B) in primary forests, (C) in natural (primary) woodlands, and (D) in secondary forests, woodlands,
and plantations. See table S5 for SEs of the estimates.
Table 1. Mean AGC density in predisturbance forest types (MgC/ha). For carbon data source description, see Materials and Methods.
Sample size (n)

Predisturbance (year 2000) AGC density (MgC/ha)
Baccini et al. (48)
 Saatchi et al. (50)
 Avitabile et al. (51)
 Range
Primary forests
 2702
 99.3
 94.9
 77.4
 77.4–99.3
Natural (primary) woodlands
 387
 27.5
 28.4
 18.9
 18.9–28.4
Secondary forests, woodlands,
and plantations
819
 48.4
 48.3
 44.8
 44.8–48.4
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differentmethodological approaches [automated image classification of
Souza et al. (20) versus visual image interpretation of DEGRAD versus
visual sample interpretation of the current study], different input data
[a single Landsat image per year by Souza et al. (20) and DEGRAD ver-
sus a continuumof 16-day Landsat composites in our study], and slight-
ly different study areas.

Comparison with land-cover and land-use maps
We have compared our sample-based estimates of forest disturbance
types to the existing land-cover and land-usemaps for the BLA, namely,
TerraClass, TerraClass Cerrado, and MapBiomas. The TerraClass sys-
tem (www.inpe.br/cra/projetos_pesquisas/dados_terraclass.php) maps
land uses following deforestation detected by PRODES by 2004, 2008,
2010, 2012, and 2014 (26). We compared sampled pixels identified as
Tyukavina et al., Sci. Adv. 2017;3 : e1601047 12 April 2017
human clearing of primary forests in our analysis with the temporally
closest TerraClassmap (seeMaterials andMethods andTable 4). Similar
to our results, TerraClass identified pasture as themost widespread post-
deforestation land use: 87% of area identified as TerraClass pasture
corresponds to the agroindustrial clearing for pasture disturbance type
in our sample analysis, indicating a high degree of agreement between
the two products. Of the sample pixels falling within TerraClass pasture,
7% are labeled as small-scale clearing disturbance, a difference that does
not necessarily represent a thematic disagreement. Only 6% of the area
TerraClass labels as pasture disagrees with our sample interpretation,
falling into cropland, tree plantation, construction, dam, andmining dis-
turbance types. More than 85% of the TerraClass area of annual agri-
culture was in agreement with our agroindustrial clearing for crops
disturbance type. A large percent of small-scale clearing area from our
current study corresponds to TerraClass forest (46% of the area), which
is likely explained by themedian size of small-scale clearing in our study
being 5 ha and minimum mapping unit of PRODES being 6.25 ha.
Small-scale clearings also correspond to TerraClass pastures (26%),
secondary regrowth and reforestation (15%), mosaic of land uses
(5%), and other classes (8%). Numerous forest loss sample pixels are
identified as no deforestation or secondary vegetation in TerraClass
(columns “Forest,” “Nonforested areas,” and “Secondary regrowth and
reforestation”), probably because of the differences in deforestation date
identification between our sample-based analysis andPRODES,which is
the deforestation baseline for TerraClass.

TerraClass Cerrado (www.dpi.inpe.br/tccerrado/) maps 2013 land
uses for the Cerrado region of Brazil.We compared sample pixels iden-
tified as 2001–2012 human clearing of natural woodlands in our anal-
ysis with the 2013 TerraClass Cerradomap (seeMaterials andMethods
and Table 5). Of the sample pixels falling within TerraClass Cerrado
pasture, 79% were labeled as pasture in our sample interpretation; of
TerraClass cropland, 95% of sample pixels were labeled as cropland.
At the same time, TerraClass Cerrado omits 21% of the area identified
as human clearing of natural woodlands in the current study, marking
themas natural vegetation (Table 5). TerraClass andTerraClassCerrado
confirm our finding that natural woodlands are converted to croplands
Fig. 6. Estimated annual percent of gross AGC loss from human clearing of
primary forests versus other forest disturbances. Other disturbances include hu-
man clearing of woodlands and secondary forests, fires, and selective logging. Uncer-
tainty is based on the range of mean AGC estimates per forest type from Table 1.
Table 2. Comparison between annual deforestation estimates. (A) Current study (human clearing of primary forests), (B) PRODES, and (C) Souza et al. (20).
Total difference between (A) and (C), and (B) and (C) is calculated only for 2001–2010 because of the absence of Souza et al. (20) estimates for 2011–2013.
Area of deforestation (Mha)
2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 Total
(A) Sample
 1.51
 2.30
 2.77
 2.59
 2.33
 1.52
 1.38
 1.24
 0.73
 0.56
 0.65
 0.53
 0.63
 18.72
(B) PRODES
 1.82
 2.17
 2.54
 2.78
 1.90
 1.43
 1.17
 1.29
 0.75
 0.70
 0.64
 0.46
 0.59
 18.22
(C) Souza et al. (20)
 1.72
 2.33
 2.22
 2.44
 2.22
 1.60
 1.38
 1.24
 1.20
 0.55
 —
 —
 —
 16.91
Difference between estimates (%)
2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 Total
Sample versus PRODES
(A − B)/A × 100%
−20.5
 6.0
 8.2
 −7.4
 18.3
 6.3
 15.3
 −4.4
 −2.3
 −25.2
 1.4
 13.5
 6.3
 2.7
Sample versus Souza
(A − C)/A × 100%
−14.2
 −1.4
 19.6
 5.5
 4.5
 −4.9
 0.1
 −0.3
 −64.2
 1.7
 —
 —
 —
 0.04
PRODES versus Souza
(B − C)/B × 100%
5.3
 −7.8
 12.5
 12.0
 −17.0
 −11.9
 −18.0
 3.9
 −60.5
 21.5
 —
 —
 —
 −2.3
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more often than primary forests are converted to croplands (Tables 4
and 5): The pasture/cropland conversion ratio is 2:1 in TerraClass
Cerrado (natural woodlands of Cerrado region) and 11:1 in TerraClass
(primary forests of BLA).

MapBiomas (http://mapbiomas.org)mapsmajor types of land cover
and land use (forest, cropland, pasture, planted forests, coastal forests,
water, and others) annually between 2008 and 2015 for the Amazon,
Cerrado, and Pantanal biomes, which enables comparison with our
sampled pixels, identified as 2001–2013 human clearing of all forest
types (see Materials and Methods and Table 6). Of the sample pixels
falling within MapBiomas pasture, 86% were labeled as pasture in
our sample interpretation; ofMapBiomas cropland, 64% of sample pix-
els were labeled as cropland. Thirty percent of the area identified as hu-
man clearing of all forest types in the current study falls within the
MapBiomas “Other” category, which represents nonforested types of
Tyukavina et al., Sci. Adv. 2017;3 : e1601047 12 April 2017
land cover and therefore does not disagree with our interpretation in
terms of forest cover absence. A major disagreement between our sample-
based result andMapBiomas is the 26% of the human forest clearing
area that MapBiomas labels as “Forest.” This disagreement is probably
due to the different forest definitions used and possible commission errors
in theMapBiomas annual forest layers (MapBiomas has yet to undergo
a formal accuracy assessment).
DISCUSSION
Forestmonitoring systems using remote sensing have traditionally been
map-based. Wall-to-wall maps are useful for a variety of applications,
including regional forest management and law enforcement, planning
of ground-based measurement campaigns, and informing ecosystem
and biodiversity modeling. Sample-based validation data provide criti-
cal information necessary to quantify classification errors and biases
present in the maps and to produce unbiased area estimates and their
associated uncertainties expressed as confidence intervals (17). Here, we
demonstrate how sample reference data can be used for multiple re-
search objectives, complementing map-based monitoring, including
(i) unbiased area estimation, satisfying Intergovernmental Panel
on Climate Change emissions reporting requirements, which specify
the absence of over- or underestimation so far as can be judged, and re-
duction of uncertainties as far as practicable (27); (ii) verification of tem-
poral trends from the maps or revealing their biases over time; and (iii)
attribution of additional thematic information (for example, forest distur-
bance type or predisturbance forest type).

Brazil conducts the most advanced operational forest monitoring
system, integrating near–real-time deforestation monitoring [DETER
and DETER-B (28)], annual deforestation [PRODES (1)], forest deg-
radation (DEGRAD), and postdeforestation land-use (TerraClass)
mappingwithin primary forests. However, the increasing contribution
of tree cover loss in other (nonprimary) forest types to gross tree cover
and carbon loss suggests that national monitoring systems should
Fig. 7. Comparison of sample- andmap-based annual deforestation estimates. Three-year averages of sample-based annual tree cover loss estimates by disturbance
type (stand-replacement disturbances, selective logging, and fire) and forest type (primary forests and other forests and woodlands) compared with 3-year averages of
annual map-based deforestation estimates from PRODES and Souza et al. (20) and tree cover loss estimates from UMD map.
Fig. 8. Comparison of forest degradation estimates. Sample-based fire and selec-
tive logging estimates are compared with DEGRAD map within sampling region and
Souza et al. (20) degradation estimate. Error bars represent ±SE.
7 of 15
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expand beyond the ever-decreasing primary forest resource that is
currently monitored by PRODES. For example, secondary forests
have rapid carbon and nutrient accumulation potential (29), which
may be offset by their widespread reclearing. Cerrado woodlands
and savannas have high species richness and endemism, high rates
of land conversion to agriculture, and low level of protection, which
pose an imminent threat for biodiversity, water recycling to the at-
mosphere, and other deleterious impacts (30–32). Brazil has proto-
typed a deforestation monitoring system for other biomes outside of
the Amazon region (PMDBBS system, http://siscom.ibama.gov.br/
monitora_biomas/). This effort included producing a baseline map
of 2002 vegetation for Caatinga, Cerrado, Mata Atlântica, Pampa,
and Pantanal biomes and mapping 2002–2008 and 2008–2009 vege-
tation changes using data from Landsat and CBERS (China-Brazil
Earth Resources Satellite) satellites. However, the maps were updated
for the years 2010 and 2011 only for the Cerrado biome; no updates
are available for the following years. TerraClass postdeforestation
land-use mapping was expanded to include the Cerrado region but only
for the year 2013. Moderate-resolution (MODIS-based) monitoring of
vegetation changes in the Cerrado region has been prototyped in several
studies (33, 34), but not yet implemented operationally, as with DETER
in primary forests.

National forest monitoring should not focus only on forest clearing
and conversion to nonforest land uses (“deforestation”). Non–stand-
Tyukavina et al., Sci. Adv. 2017;3 : e1601047 12 April 2017
replacement disturbances, such as selective logging, paired with climate
change and increased vulnerability to fire, may lead to significant car-
bon emissions and biodiversity losses and eventually to conversion of
forests to other land covers. DEGRAD is one example of such a
national-scale degradation monitoring effort, even though limited by
a single-date image analysis approach. Our results suggest that the
use of the entire record of satellite observations, rather than a single best
image for a given year, may yield better results in tree cover loss date
attribution and improve near–real-time forest disturbance monitoring
(35). An independent nongovernmental MapBiomas system is moving
in this direction by using the entire archive of Landsat observations to
map annual land-cover and land-use transitions in all biomes of Brazil.

As illustrated in this study, quantifying forest disturbance dynamics
is a complex task. Comprehensive tracking of predisturbance state
(primary versus secondary), disturbance factor (for example, fire versus
mechanical clearing), and subsequent land use (for example, soybean
versus mining) is a challenge. The work of the Brazilian National
Institute for Space Research (INPE) on documenting these dynamics is
at the forefront of all similar national capabilities, as evidenced by the
host of INPE products seeking to track comprehensive forest change.
Our study demonstrates the increased need for such systematic
monitoring because the relative amounts of tree cover loss due to dif-
ferent factors have changed dramatically since 2000. For applications
such as carbon monitoring, the omission of forest disturbance types
Table 3. Monthly distribution of sample pixels identified as fire disturbance, 2000–2013. “End of year—uncertain date” indicates that the fire scar was
observed in the first 16-day composite of the year and there were no cloud-free 16-day composites at the end of the previous year; in this case, fire was
attributed to the end of the previous year.
Jan
 Feb
 Mar
 Apr
 May
 June
 July
 Aug
 Sep
 Oct
 Nov
 Dec
 End of year—uncertain date
Number of pixels
 2
 2
 5
 3
 5
 1
 6
 45
 93
 18
 31
 9
 15
Table 4. Comparison between types of human clearing in primary forests (2001–2013) identified from the sample and postdeforestation land-use
types from TerraClass. Cell entries of the confusion matrix denote the number of sample pixels in each category (a mixed loss pixel was recorded as 0.5). The
113.5 sample pixels with TerraClass showing later loss date than the current analysis (for example, 2004 instead of 2001–2003) were excluded from the analysis
and are not displayed in the table.
Human clearing
of primary forests
(current study) P
TerraClass
8 o
asture

Annual

agriculture
(cropland)

M
osaic of land
uses
Secondary
regrowth and
reforestation

F
orest

Nonforested

areas
W
ater
No
data

M
ining

Urban
areas

T
otal
Agroindustrial
clearing C
Pasture
 944
 11.5
 35
 129
 250
 56
 1.5
 80.5
 0
 0 1
507.5
rops
 52
 86
 0
 6
 10
 17.5
 0
 4.5
 0
 0
 176
Trees
 4
 3
 1
 8
 2
 2
 0
 0
 0
 0
 20
Small-scale clearing
 73.5
 0
 13.5
 43.5
 130
 10
 3
 7.5
 0
 0
 281
Construction
R
oads
 5.5
 0
 0.5
 2.5
 15.5
 3
 0
 0
 0
 0
 27
Other
 2.5
 0
 1
 0.5
 1
 0.5
 0
 0
 0
 0
 5.5
Dam construction
 3
 0
 0
 0
 4
 2
 0
 0
 0
 0
 9
Mining
 2
 0
 0
 0
 0.5
 0
 0
 0
 0
 0
 2.5
Total 1
086.5
 100.5
 51
 189.5
 413
 91
 4.5
 92.5
 0
 0 2
028.5
f 15
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other than large-scale clearingmay lead to inaccurate emission estima-
tion. To address this issue, national forest monitoring systems could
produce wall-to-wall characterizations of forest type, loss, and gain.
Such maps could then be used to construct strata for the allocation
of a probability sample, resulting in unbiased, precise estimators of
forest cover loss dynamics and associated carbon losses and gains
(17, 36, 37).
MATERIALS AND METHODS
Study area
The study area is the BLA; Brazilian states of Acre, Amapá, Amazonas,
MatoGrosso, Pará, Rondônia, Roraima, andTocantins; and thewestern
Tyukavina et al., Sci. Adv. 2017;3 : e1601047 12 April 2017
part of the state of Maranhão (Fig. 4). The boundaries of BLA were ob-
tained from the database of the Woods Hole Research Center (http://
whrc.org/publications-data/datasets/large-scale-biosphere-atmosphere-
experiment/) and modified to exclude the east of Maranhão in accord-
ance with the PRODES study area.

Most of the BLA (81.2%) lies within the tropical moist broadleaf
forest biome (Fig. 4); 16.3% within tropical grasslands, savannas, and
shrublands, including Guianan savanna in the north of the region and
Cerrado woodlands in the south; 1.2% within Chiquitano tropical dry
broadleaf forests; 1.0% within Pantanal flooded savannas; and 0.3%
within coastal mangroves (38). Although most states in the BLA are
dominated by humid tropical forests, significant parts of Tocantins,
Maranhão, and Mato Grosso are occupied by Cerrado woodlands.
Table 5. Comparison between types of human clearing in natural woodlands (2001–2012) identified from the sample and 2013 land use according to
TerraClass Cerrado. Cell entries of the confusion matrix denote the number of sample pixels (1 and 0.5 loss) in each category.
Human clearing of
natural woodlands
(current study)
TerraClass Cerrado
Pasture

Agriculture
(annual and
perennial)
Mosaic of
land uses
Forestry

Natural

vegetation

Water
 No data
 Total
Agroindustrial
clearing
Pasture
 115
 3
 0
 1
 41
 0
 0
 160
Crops
 25.5
 73.5
 0
 3
 9.5
 0
 1
 112.5
Trees
 2
 0
 0
 2
 1
 0
 0
 5
Small-scale clearing
 3.5
 0
 0
 0
 3.5
 0
 0
 7
Construction

Roads
 0
 0.5
 1
 0
 4
 0
 0
 5.5
Other
 0
 0
 1
 0
 1
 0
 0
 2
Dam construction
 0
 0
 0
 0
 1
 4
 0
 5
Mining
 0
 0
 0
 0
 0
 0
 0
 0
Total
 146
 77
 2
 6
 61
 4
 1
 297
Table 6. Comparison between types of human clearing in all forest types (2001–2013) identified from the sample and land cover/land use according
to MapBiomas. Cell entries of the confusion matrix denote the number of sample pixels (1 and 0.5 loss) in each category.
Human clearing of
all forest types
(current study)
MapBiomas
Pasture
 Agriculture
 Forest

Planted
forest
Coastal
forest
Water
 Other
 No data
 Total
Agroindustrial
clearing
Pasture
 997.5
 73.5
 536
 0
 0
 1
 717
 0
 2325
Crops
 87.5
 132.5
 28.5
 0
 0
 0
 101
 0
 349.5
Trees
 3
 1
 30
 0
 0
 0
 20
 0
 54
Small-scale clearing
 61.5
 0
 271.5
 0
 0
 0
 121
 1
 455
Construction

Roads
 9.5
 1
 15
 0
 0
 0
 13
 0
 38.5
Other
 4
 0
 1
 0
 0
 0
 10
 0
 15
Dam construction
 0
 0
 0
 0
 0
 18
 4
 0
 22
Mining
 1.5
 0
 0
 0
 0
 1
 6
 0
 8.5
Total
 1164.5
 208
 882
 0
 0
 20
 992
 1
 3267.5
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PRODES and UMD data sets
PRODES is a deforestation monitoring system operated by INPE.
PRODES maps deforestation within an ever-decreasing “nominally in-
tact” forest mask (Fig. 9) (39); clearing of secondary forest regrowth is
notmapped. The PRODES forestmask includes primarily dense humid
tropical forests; Cerrado woodlands are mostly considered nonforest
(Fig. 9). The PRODES methodology is a scene-based semiautomated
classification, involving (i) generation of fractional images using linear
spectral mixture modeling, (ii) image segmentation, (iii) unsupervised
classification of segments, and (iv) visual interpretation and correction
of mapping results (39). Scene-based approaches are more affected by
cloud artifacts, which are labeled as no data areas in PRODES (Fig. 9).
Theminimum size of the image segment in PRODESmappingmethod
(minimum mapping unit) is 6.25 ha (1), which likely introduces omis-
sion of deforestation associated with clearing of smaller forest patches.

The UMD global tree cover loss product (10) maps the loss of any
woody vegetation taller than 5m (with % canopy cover of >0), regard-
less of it being natural intact vegetation or secondary regrowth. Hence,
the UMD product characterizes tree cover dynamics both within and
outside of the PRODES forest mask (Fig. 9). The UMD mapping
method is a more data-intensive pixel-based approach that uses all
available cloud-free pixels (40), allowing it tomap tree cover loss with-
in PRODES no-data (cloudy) areas (Fig. 9).

Sampling design
We aggregated all forest loss areas detected by PRODES and UMD
products from 2001 to 2013 as “combined forest loss” to define the
region of interest. Combined forest loss was buffered by 120 m (four
Landsat pixels) to include areas with likely forest loss omission in both
products. The population from which the sample was selected con-
sisted of the combined PRODES and UMD forest loss and associated
buffer (Fig. 10). A total of 10,000 sample pixels (30 m × 30 m) were
selected from this region via simple random sampling. Sample-based
estimates of forest loss area were produced for the entire BLA and for
Tyukavina et al., Sci. Adv. 2017;3 : e1601047 12 April 2017
each state separately (Table 7). The SE of the estimated area depends
on the absolute size of the sample (see Eq. 2) and not on the percent of
the population sampled (41). For example, the sample size of 10,000
yielded an SE of 1.3% for the total 2001–2013 forest cover loss estimate
in BLA (table S1), which we consider to be sufficiently precise.

A direct estimator of area for simple random sampling (16)was used
to estimate the area of tree cover loss based on the sample reference
values. These area estimates are based on the reference data and sample
labeling protocol described in the following subsection. For each
sampled pixel, the proportion of area of tree cover loss was recorded
as 0, 0.5, or 1. The estimated area of tree cover loss type iwithin a region
of interest was computed as

Âi ¼ Atot�yi ð1Þ

where�yi is the sample mean proportion of tree cover loss of type i (that
is, mean of the n sample pixel values of 0, 0.5, or 1),Atot is the area of the
region of interest, and n is the number of sample pixels in the region of
interest.

Area estimates can be produced for the full population or regions
of interest such as states. For the full population, the sample size is n =
10,000. Sample sizes for each state are listed in Table 7. The SE of the
estimated area is

SE Âi
� � ¼ Atot

siffiffiffi
n

p ð2Þ

where si is the sample SD of tree cover loss type i in the region of
interest (that is, the SD of the tree cover loss values of 0, 0.5, and
1 for the n pixels sampled in that region). The estimates for regions
of interest such as states are considered “domain” or “subpopulation”
estimates, and the estimators implemented are those recommended
by Cochran [(41), section 2.12].
Fig. 9. PRODES forest mask and 2001–2013 forest cover loss and UMD 2001–
2013 tree cover loss within BLA.
 Fig. 10. Population from which the simple random sample of 10,000 pixels

was selected.
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Reference data and sample labeling protocol
Reference values for each sampled pixel were derived via visual interpre-
tation of annual Landsat composite images for 1999–2013 and, when
available, high-resolution imagery from Google Earth. Reference data
and final interpretation results for each sampled pixel are available at
glad.umd.edu/brazil. Landsat annual composites represent median nor-
malized reflectance values from all available cloud/shadow-free pixels for
a given year.Methods for cloud screening, imagenormalization, andper-
pixel compositing are described by Potapov et al. (40). In addition to an-
nual Landsat composites, 16-day composite images from 1999–2013
were examined for sampled pixels identified as having experienced forest
degradation (from fire and selective logging) in the initial sample
screening. This was done to get a more precise estimate of the timing
of these events: Low-intensity disturbances such as fires occur in local
dry seasons and during droughts. If these disturbances occurred late in
the year, their annual allocation might be incorrectly assigned to the
following year using median annual composites.

Each sampled pixel was initially visually assessed independently by
two experts. Sample pixels with disagreement between experts were
subsequently revisited until a consensuswas reached. All sampled pixels
were identified as yes/no tree cover loss. Pixels with tree cover loss were
further attributed with (i) loss year (2001–2013), (ii) likely disturbance
type, and (iii) predisturbance forest type. Mixed sample pixels, located
on the boundary of tree cover loss patches, were marked as edge pixels
and treated as “0.5 loss” in area calculations, with 404 of 10,000 sample
pixels (4%) identified as boundary pixels. We identified only the first
stand-replacement forest disturbance event during the study period
(2000–2013) and the associated land-cover transition. For example, if
a forested sample pixel was initially converted to pasture, and later
transformed to cropland, our analysis would assign it as a forest-to-
pasture conversion. If a sample pixel experienced tree cover loss at the
beginning of the study period followed by tree-cover regrowth and a
second tree cover loss event, we would record only the first loss event
and ignore the subsequent dynamics. However, this example case
would be labeled as a forestry land use, that is, the clearing of trees
to be replaced by tree cover in the management of a plantation.

Types of forest disturbance were subdivided into stand-replacement
(human forest clearing and natural forest disturbances) and non–stand-
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replacement (degradation), which consists of fire and selective logging
(Table 8). For stand-replacement disturbances, a sample pixel was
considered “loss” if the entire pixel or half of the pixel (in case of mixed
boundary pixels) experienced complete tree cover loss. Human forest
clearing includes large-scale agroindustrial clearing for nonwoody
crops, tree plantations, and pasture; small-scale clearing; clearing for
mining, road construction, and other construction; and flooding of
forests after the construction of dams (Table 8). Agroindustrial forest
clearing is reliably distinguished from all other clearing types at Landsat
resolution based on the size, shape, and spatial pattern of a clearing.
However, distinguishing agroindustrial clearing for row crops from
Table 8. Types of forest disturbance. Images are subsets of pre- and
postdisturbance (top and bottom, respectively) for annual Landsat
composites (band combination, 5-4-3). Small red rectangles represent
sampled pixels.
Table 7. Sample size (number of pixels) and area of target region by
state in BLA.
State
 Sample size, n
 Area of target region, Atot (Mha)
Acre
 310
 2.74
Amapá
 151
 1.29
Amazonas
 877
 7.15
Maranhão
 1,278
 11.50
Mato Grosso
 2,550
 22.75
Pará
 3,030
 26.37
Rondônia
 909
 7.81
Roraima
 210
 1.88
Tocantins
 685
 5.88
BLA total
 10,000
 87.36
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newly established pastures may be challenging in the absence of high-
resolution imagery on Google Earth. Georeferenced ground images
from Panoramio provide additional information for interpreters in
these cases. Small-scale clearing was identified by its size and postclear-
ing land use (combination of cropland, pasture, orchards, and resi-
dences) for older clearings and by size only for the fresh clearings.
Median area of loss patches identified as small-scale clearing is 5 ha.
Only 24% of small-scale clearing sample pixels fall within the most
recent INCRA (National Institute of Colonization and Agrarian Re-
form) settlement map, which indicates that these small-scale clearings
are created not only by smallholders (rural settlers) but also by agro-
industrial enterprises. Natural forest disturbances include windfalls,
river meandering, and other natural disturbances. The latter category
is very rare and implies that the type of natural disturbance could not
be identified reliably (for example, it was not clear whether tree cover
was lost due to a windfall or as an after-effect of a drought).

For non–stand-replacement disturbances, which included forest
degradation due to fire and selective logging, a sample pixel was
marked as affected by forest disturbance if it experienced canopy dam-
age or was located within a 120-m buffer around visible fire or logging
damage. The 120-m buffer (four Landsat pixels) is theminimumnum-
ber of 30-m Landsat pixels, containing a 100-m buffer, corresponding
to the area initially affected by felling of individual trees in conventional
selective logging (42) and containing the most edge effects associated
with increased tree mortality and altered forest structure (43). If a sam-
ple pixel experienced degradation (due to fire or logging) before being
cleared within a study period, we considered clearing to be the major
type of forest disturbance and recorded only clearing to avoid double-
counting. Tropical forest fires have a distinct pattern of concentric
circles (Table 8) because of diurnal variation in precipitation and hu-
midity (44), which enables their identification on Landsat imagery. Se-
lective logging is marked by the presence of logging roads and a
semiregular pattern of gaps caused by tree extraction (Table 8).

Major predisturbance forest types were defined as dense (>60%
canopy cover) tropical forests (both humid and dry), woodlands and
parklands (10 to 60% canopy cover), and tree plantations (Table 9).
Dense tropical forests were further subdivided into primary and
secondary, which in Landsat imagery have different spectral responses
(primary forests are usually characterized by low spectral reflectance in
the shortwave infrared range) and texture (primary forests have larger
crowns creating a recognizable texture, whereas secondary forests look
comparatively uniform). Primary and secondary forests can be unam-
biguously distinguished in submeter imagery when available from
Google Earth by the size of tree crowns. Primary forests identified this
way using satellite imagery include primary intact and primary degrad-
ed (for example, previously selectively logged) and may include some
old-growth secondary forests (for example, cleared during the rubber
boom of 1879–1912). Field data show that tropical secondary forests
regain the density, basal area, aboveground biomass (AGB), and spe-
cies richness similar to those of primary forests after 40 years (45),
and selectively logged primary forests fully restore their AGB in about
25 years (46). This evidence suggests that primary degraded and old-
growth secondary forests, indistinguishable in circa 2000 satellite
imagery from primary intact forests, have carbon storage and bio-
diversity value analogous to those of primary intact forests, and that
possible inclusion of such forests into our “primary forest” category
will not affect the main conclusions of the study.

Woodlands and parklands were also subdivided into natural
(primary) and secondary. Natural woodlands and parklands corre-
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spond to the uniformwoody vegetation patches in the “Tropical grass-
lands, savannas, and shrublands” biome (38). The biome map also
helped distinguish between dense secondary forests in the tropical for-
est biome and natural woodlands. Secondary woodlands and park-
lands represent sparse secondary regrowth in both tropical forests
and savannas. Tree plantations are characterized by regular patch
shapes, high reflectance in the shortwave infrared range and uniform
texture in Landsat imagery, and systematic planting recognizable in
high-resolution imagery.

Quality of reference data
The quality of sample visual interpretation depends on multiple
factors, such as the availability of reference satellite data, distin-
guishability of various classes with the available satellite data (dis-
cussed in the previous subsection), image interpretation experience
of validation experts, and usability of validation interface. Here, we
Table 9. Predisturbance forest types. Images are subsets of pre- and
postdisturbance (top and bottom, respectively) for annual Landsat com-
posites on the left (band combination, 5-4-3) and Google Earth imagery
on the right. Small red rectangles represent sampled pixels.
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will discuss several indicators of the quality of the reference sample
data, which is a basis of the current analysis.

The primary source of reference data to identify the presence or ab-
sence of forest loss in each sampled pixel was annual Landsat cloud-
free composites, produced using the entire archive of Landsat ETM+
data for the study period. Eighty-one percent of the sampled pixels had
at least one cloud-free observation in each year (2000–2013), 9% had
onemissing annual observation, 4% had twomissing observations, 2%
had three missing observations, 3% had four missing observations,
and 2% had five or more missing observations. Additionally, 44% of
all sample pixels had at least one very high resolution (VHR; resolu-
tion, <1m) image onGoogle Earth, 34% had SPOT image (resolution,
2.5 m), and 22% had only Landsat. These higher-resolution imagery
sources (VHR and SPOT) facilitated identification of forest loss cause
and predisturbance forest type. Sampled pixels with detected forest
loss had higher availability of high-resolution imagery on Google
Earth (58% VHR, 38% SPOT, and 4% Landsat only), which is prob-
ably due to the fact that high-resolution imaging systems target settle-
ments and areas of human development more often than undisturbed
forested areas.

Visual interpretation of each sample pixel was first performed by
each of the two experts independently; initial agreement between the
interpreters on the sampled pixel belonging to the yes/no/boundary
forest loss category was 87%. The remaining 13% of sampled pixels
were iteratively reinterpreted until consensus was reached. From the
sampled pixels with initial forest loss agreement, 80% had loss year
agreement and another 12% had a 1-year difference in loss date be-
tween the two interpreters. Sampled pixels with initial forest loss
agreement had 78% agreement for loss type and 82% agreement for
predisturbance forest type. High rates of initial interpretation agree-
ment illustrate that interpretation criteria, described in the previous
subsection, were applied by the experts consistently.

Auxiliary data: DEGRAD
DEGRAD is a forest degradationmonitoring systemoperated by INPE
(www.obt.inpe.br/degrad/). DEGRAD data for the BLA exist for
2007–2013 and identify three types of degradation: mild (small gaps
from selective logging), moderate (later stages of selective logging, skid
trails, and other logging infrastructure are visible in the imagery, but
large trees and the structure of canopy are still preserved), and inten-
sive (significant loss of large trees and understory due to heavy selec-
tive logging, often accompanied by recurring fires). The DEGRAD
methodology is based on visual interpretation of a single good image
during the year. Hand-drawn polygons of forest degradation outline
the forest area in which degradation events were observed. Of the deg-
radation area mapped by DEGRAD, 49% is outside of our sampling
region,which includes forest canopy damages, detectable in Landsat im-
agery and mapped by PRODES and UMD, and a surrounding 120-m
buffer. To ensure an adequate comparison of our sample-based fire and
logging estimates with DEGRAD, we analyzed DEGRAD only within
our sampling region.

Auxiliary data: TerraClass and TerraClass Cerrado
TerraClass is another project operated by INPE (www.inpe.br/cra/
projetos_pesquisas/dados_terraclass.php) with the objective of map-
ping land uses following deforestation in primary forests of the BLA
(26). TerraClass is currently available for the years 2004, 2008, 2010,
2012, and 2014. Each year’s map assigns the type of land use to all
areas that were deforested by that year according to PRODES using
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single-date Landsat imagery. Current year’s deforestation does not
have an assigned postdeforestation land use (for example, year 2004
TerraClass has “Deforestation 2004” class). Therefore, to compare our
sample-based disturbance types (which reflect only the first transition of
forested vegetation to other land covers) toTerraClass postdeforestation
land uses (which may change over time), we overlaid sample pixels
identified in our study as 2001–2003 forest loss with 2004 TerraClass;
2004–2007 loss sample pixels with 2008 TerraClass; and 2008–2009
with 2010, 2010–2011with 2012, and 2012–2013 loss sample pixelswith
2014 TerraClass. Only the sample pixels identified as human clearing
of primary forests were used in the comparison to ensure the best
match with deforestation as mapped by PRODES. All TerraClass pas-
ture categories (pastures, pastures with shrubs, pastures with bare soil,
and pastures with tree regeneration) were combined into one pasture
category to facilitate the comparison; secondary vegetation and refor-
estation classes were also combined (Table 4). Combining pasture
categories into one class was reported to decrease confusion between
TerraClass postdeforestation land-use classes from23 to 10%based on
a sample validation using SPOT reference data (26).

TerraClass Cerrado is a similar Landsat-based system mapping
land uses following the conversion of natural vegetation into other land
uses in the woodland region of Cerrado (www.dpi.inpe.br/tccerrado/).
TerraClass Cerrado is available only for the year 2013. We compared
the 2013 TerraClass Cerrado land-use map with the sample pixels
labeled as human clearing of natural woodlands in 2001–2012 of our
current study (Table 5); year 2013was eliminated from the comparison
due to the possible omission of late 2013 forest loss in TerraClass,
which uses single-date Landsat imagery.

Auxiliary data: MapBiomas
MapBiomas is a nongovernmental land-cover and land-use mapping
project, operated by a consortium of nongovernmental organizations,
universities, and geospatial companies in Brazil (http://mapbiomas.
org/), using modern cloud computing and data storage technologies.
Currently, the project is still under development. Collection 1 annual
land-cover and land-use maps are available for the years 2008 to 2015;
accuracy assessment information is not yet available. Maps are
produced frommultitemporal Landsat image composites using a com-
bination of spectral mixture analysis (to map forests) and supervised
Random Forest classification (to map pasture, cropland, and planted
forests) and a set of priority rules to combine individual thematic layers.

Because in the current study we identified only the first land-cover
transition after stand-replacement forest disturbance, we compared our
forest loss sample pixels with the temporally closest MapBiomas map:
2001–2007 forest loss samples were compared with 2008 MapBiomas
classes; 2008 loss with 2009 MapBiomas; 2009 with 2010; 2010 with
2011; 2011with 2012; 2012with 2013; and 2013 forest loss samples with
2014MapBiomas land-cover and land-use classes. MapBiomas is avail-
able for all biomes, and therefore, we were able to compare it with
sampled pixels identified in the current study as human clearing of all
forest types (primary and secondary dense humid tropical forests,
natural and secondary woodlands, and planted forests).

Auxiliary data: AGC density
To estimate the contribution of different types of forest disturbances to
gross carbon loss, we used circa year 2000 biomass maps, rather than
maps of “premodern” (circa 1970s) biomass (47), because we do not
estimate pre-2000 forest disturbance rates in the present study. The
following circa year 2000 AGB/AGC density maps were intersected
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with our sample pixels: (i) the new 30-m Baccini et al. (48) data set,
obtained from the Global Forest Watch website (www.climate.
globalforestwatch.org), of a continuous 30-m resolution layer of AGB
density estimates, produced using Landsat imagery and Geoscience La-
ser Altimeter System (GLAS)–estimated biomass following an ap-
proach for MODIS-based mapping (49); (ii) Saatchi et al. (50) 1-km
resolution AGB density map, derived using a combination of lidar,
optical, and microwave remotely sensed data; and (iii) Avitabile et al.
(51) 1-km resolution AGB densitymap, integrating Saatchi’s and Baccini’s
maps (49, 50) and correcting for biases present in thesemaps (52, 53) by
using an independent set of reference data.

Predisturbance (year 2000) carbon densities for each forest type
(Table 1)werederivedby averaging values fromeachmap corresponding
to all tree cover loss sample pixels of this forest type. Estimates of AGB
density from Baccini’s, Saatchi’s, and Avitabile’s maps (Mg/ha) were
converted to AGC density (MgC/ha) using a 0.5 coefficient. The range
ofmean AGC densities from all threemap sources was further used to
compare annual proportions of AGC loss from human clearing of
primary forests and from other forest disturbances (Fig. 6).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/4/e1601047/DC1
table S1. Total 2001–2013 forest cover loss in BLA by disturbance type and forest type
(Mha ± SE).
table S2A. Annual forest cover loss in BLA by disturbance type in all forests (Mha ± SE).
table S2B. Annual tree cover loss in BLA by forest type (Mha ± SE), all disturbance types.
table S3. Annual tree cover loss in BLA by major disturbance types and types of forest cover
(Mha ± SE).
table S4. Disturbance types by state and forest type (Mha ± SE), corresponding to Fig. 3.
table S5. Annual human forest clearing by state and forest type (Mha ± SE), corresponding
to Fig. 5.
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