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Abstract

Adverse early-life experiences, including various forms of early-life stress, have consistently been 

linked with vulnerability to cognitive and emotional disorders later in life. Understanding the 

mechanisms underlying the enduring consequences of early-life stress is an active area of research, 

because this knowledge is critical for developing potential interventions. Animal models of early-

life stress typically rely on manipulating maternal/parental presence and care, because these are 

the major source of early-life experiences in humans. Diverse models have been created, and have 

resulted in a wealth of behavioral outcomes. Here we focus on recent findings highlighting early-

life stress-induced behavioral disturbances, ranging from hippocampus-dependent memory deficits 

to problems with experiencing pleasure (anhedonia). The use of naturalistic animal models of 

chronic early-life stress provides insight into the spectrum of cognitive and emotional outcomes 

and enables probing the underlying mechanisms using molecular-, cellular-, and network-level 

approaches.

Introduction

Mental illnesses and cognitive disorders commence predominantly early in life [1,2], 

suggesting the need to explore events early on that predispose and contribute to disease 

onset. Epidemiological data indicate that various forms of early-life stress in humans can 

have life-long impacts, ranging from memory deficits and poor executive functioning [3–5] 

to more explicitly stress-related disorders such as depression, anxiety, and post-traumatic 

stress disorders [6–11]. Adverse early-life conditions, including poverty, loss of a parent, 

substance abuse by the mother or maternal depression, are consistently associated with 

vulnerability to various psychopathologies later in life [12–15]. Understanding the 

mechanisms for the enduring consequences of early-life stress on brain function has been an 

active area of neuroscience research, as this knowledge is critical for identifying clinically 

plausible therapeutic strategies. This review will focus on the behavioral outcomes of early-
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life stress, with a particular emphasis on new findings emerging within the past few years, 

and conclude with a unifying theory for how these profound changes may occur.

What is early-life stress?

The type and severity of the perturbations that cause early-life stress seem to govern its 

consequences. In humans, chronic early-life stress has both physical and emotional 

components, but the emotional aspects are dominant. Among the most influential studies of 

the effects of early-life stress are those of institutionally raised children, where chronic 

impoverished care was associated with cognitive and emotional problems [4,16]. Notably, 

the associated consequences were partially reversed by fostering, thus highlighting the 

importance of early-life care per se [4,16–19]. In large part, human early-life stress stems 

from abnormal patterns of maternal care, ranging from neglect to inconsistency and lack of 

sensitivity [18,20–22]. In order to study early-life stress, animal models have aimed to 

recapitulate these conditions by manipulating maternal interactions with offspring.

Modeling early-life stress

In mammals, including humans, monkeys and rodents, maternal input has perhaps the most 

significant influence on the environment experienced during development [20,22–25]. Thus, 

most animal models of early-life stress have manipulated maternal interaction, disrupting 

either the quantity or quality of maternal care early in life (see [26,27] for recent reviews). 

Non-human primates, whose brains and sociality most closely resemble those of humans, 

have provided useful insights into the development of complex psychiatric disorders. The 

seminal work of Harlow and colleagues using maternally-isolated rhesus monkeys as a 

model was the first to demonstrate that maternal-infant interactions are required for normal 

cognitive and emotional development [23,28,29]. More recently, using a model of maternal 

maltreatment in rhesus monkeys, Sanchez and colleagues suggested that this adverse early-

life experience affects the development of brain systems involved in stress responses, 

resulting in emotional reactivity and abusive parenting in adulthood [30,31]. Although 

primate models of early-life stress continue to provide important insights, the many practical 

and ethical concerns associated with the use of primates preclude their widespread use. The 

majority of early-life stress models, including the ones discussed here, employ rodents. 

Rodents are obviously incapable of reproducing the rich repertoire of human development 

and cognitive and emotional outcomes. Nevertheless, the major similarities in the role of 

maternal care, in the stress system, and the ready availability of cognitive and emotional 

tasks to probe behavior have rendered rodents a tractable model for studying the behavioral 

outcomes of early-life stress.

As is the case in humans, maternal care plays a critical role in rodent development. The 

rodent dam is vital for not only providing nutrition and safety in the nest, but also providing 

important sensory signals and relaying environmental cues to the pups [32–35]. Simply 

removing the dam for extended periods of time would lead to hypothermia and starvation; 

thus, many models of early-life stress have used intermittent maternal separation (MS). This 

paradigm decreases the quantity of maternal care and results in intermittent stress [36,37]. 

Although MS models have provided a wealth of data on the effects of decreased maternal 
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interaction on pup development, some of the outcomes of this manipulation have been less 

consistent [38–42]. In addition, the paradigm may differ from relevant human conditions: 

When infants and children grow up in adverse conditions such as severe poverty, famine, 

war or with drug-abusing mothers, the stress is typically chronic rather than intermittent, and 

the mother is typically present and her behavior may be stress-provoking to the child [22,43–

45].

A more recently emerging model involves provoking chronic changes in the quality of 

maternal care by the use of cages with limited nesting and bedding material (LBN) during 

postnatal days (P)2–9 [26,46,47]. This ‘simulated poverty’ induces stress in the dams [48], 

and profoundly alters maternal behaviors, such that they are fragmented and unpredictable 

[49,50]. Notably, the overall duration of maternal nurturing behaviors as well as their 

general quality (e.g., arched-back nursing) are little changed [24,48–50]. This approach has 

provoked chronic, unpredictable and uncontrollable “emotional stress” in the pups [26,46–

49,51–53]. There is little evidence of physical stress in the pups, with no hypothermia and 

modest weight changes [26]. Thus, the early-life stress that is generated seems to be a direct 

effect of the fragmented, unpredictable sensory signals from the mothers [22,26,50,51], 

resulting in persistent elevation of plasma corticosterone and adrenal hypertrophy 

[46,49,54]. All of these signs of stress disappear after dams and pups are returned to routine 

cages on P10. Still, the experience in the LBN cages during this critical window results in 

long-lasting consequences on cognitive and emotional function. The LBN model has been 

found to provoke robust and generally reproducible cognitive and emotional outcomes, 

leading to its adoption by dozens of laboratories around the world [51–53,55–63]. Thus, this 

review will focus primarily on the LBN model and its behavioral outcomes. Notably, an 

obvious challenge for both human and animal-model studies of early-life stress and its life-

long consequences is the presence of additional factors that might influence these outcomes, 

including genetics and individual differences in resilience/vulnerability. These are likely 

some of the factors promoting ambiguous or contradictory results in both human and 

animal-model studies.

Modeling the behavioral outcomes of early-life stress

The specific later-life consequences of early-life stress in humans are modeled in rodents 

using standardized cognitive and emotional tests that have been designed to optimize 

translation to the human condition. For example, rodent tests of depressive-like behavior, 

such as the forced-swim test (FST), have been validated to show improvement with human 

antidepressants [64]. Human cognitive function, though much more complex than in rodents, 

is subserved by areas of the brain that are homologous in the rodent: e.g., the Morris water 

maze memory task in rodents is analogous to spatial navigation and memory in humans and 

both are hippocampus-dependent [65]. Much research employing animal models has focused 

on hippocampus-dependent memory, because of the availability of standardized tests and 

well-characterized neural substrates, molecules and mechanisms. We describe some of these 

findings, and regret that space limitations prevent us from discussing executive functions and 

other prefrontal cortex-dependent behaviors in the context of early-life stress [66–68].
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For any model of early-life stress, the detection of a behavioral outcome depends on several 

variables. The first set of variables pertains to the timing, nature and severity of the stress. 

Secondly, the age at which animals are tested, whether during adolescence, adulthood, or 

aging, can determine outcome. Third, the type and difficulty of the test that is used to 

measure behavioral outcomes is important. For example, a rigorous test such as object 

location memory (OL) might uncover subtle deficits not apparent in a less challenging test, 

such as object recognition memory (OR) [69]. These caveats are illustrated below.

A spectrum of cognitive consequences of chronic early-life stress

Diverse cognitive effects of early-life stress have been reported. For example, MS stress on 

postnatal day 9 has led to improved memory in the active avoidance test [70], whereas the 

same manipulation on postnatal day 4 has led to impaired memory in the same test [70]. 

This latter finding is more in line with the majority of the MS literature, which includes 

reports of impairments in the Morris Water maze test and OR [40,71]. There may be several 

possible bases for these divergent outcomes, including the potential that mild or predictable 

stress might be a positive experience [72]. More likely, these diverse results derive from 

mechanisms depending on the developmental timing of the separation [36].

Memory impairments have been the common outcome in rodents exposed to chronic early-

life stress in the LBN paradigm. For example, in a rigorous and hippocampus-dependent test 

of OL memory, an overt impairment in spatial memory was found as early as adolescence in 

LBN rats [69]. A less rigorous memory task for OR found comparable performance in LBN 

vs. Control adolescent rats. However, an acute-stress “challenge” imposed 24 hours prior to 

the test led to memory problems only in the LBN rats, thus unmasking a latent cognitive 

vulnerability [69]. The memory deficits after chronic early-life stress also progressed over 

the lifespan of LBN rats, so that deficits in OR memory emerged by middle-age [69]. At this 

age, hippocampus-dependent memory deficits were also present using the Morris water 

maze task [54,73]. Timing of testing is thus an important factor in determining the cognitive 

outcomes of early-life stress.

Recent findings for emotional consequences of chronic early-life stress

A variety of emotional problems, based on rodent tasks considered indicative of depression 

or anxiety, have been reported after early-life stress [26,74–76]. More recently, anhedonia, a 

reduced capacity to experience pleasure which commonly heralds depression or 

schizophrenia in humans [77], has been identified following early-life stress. Already during 

adolescence, anhedonia, apparent both as a significant reduction in sucrose preference and a 

reduction of peer-play, was found in late-adolescent LBN rats [50]. This anhedonia was not 

accompanied in adolescent rats by overt anxiety-like behavior or depressive-like behavior. 

Increased anxiety-like behaviors in the elevated-plus maze test were found later in adulthood 

[55], but these were no longer found during middle-age (i.e., 12 months of age in rats) [78]. 

These effects of age on anxiety and other emotional outcomes are not surprising, because in 

humans, the emergence and waning of anxiety and depression are highly age-dependent 

[79,80].

Bolton et al. Page 4

Curr Opin Behav Sci. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Adolescent anhedonia after early-life stress has since been confirmed in a separate LBN 

cohort in a different laboratory, as indicated by decreased M&M consumption as well as 

reduced lever pressing for cocaine (S. Mahler, personal communication). Adolescent 

anhedonia after early-life MS has also been found by some authors [38,40], including one 

report of decreased cocaine self-administration [81], in accord with the attenuated drug-

seeking in the LBN model. However, others reported increased or unchanged sucrose 

preference following MS [38–42].

The anxiety- and depression-like behaviors resulting from MS have been variable, ranging 

from increased anxiety in the elevated-plus maze test [55] and increased immobility in the 

FST [40] to no changes in either test [82,83]. For further details, the reader is referred to a 

recent review summarizing the emotional consequences of MS imposed at different 

developmental ages [26].

These differing results may be due to variation in the timing of the MS during development 

[84], as well as differences in the age of testing. The timing of the stress is important for 

emotional outcomes: Indeed for the LBN model, when it was imposed later during 

development, on P8–P12, increased immobility in the FST was reported during adolescence 

[60]. Furthermore, for all experimental models, the procedures employed for emotional 

testing (e.g., lighting during the elevated-plus maze test [85]) can affect the outcome. 

Accordingly, an effort should be made in the field to standardize behavioral testing 

procedures as much as possible, and recognize the importance of timing of developmental 

stress and of testing age when interpreting results.

Although the majority of emotional consequences of chronic early-life stress have been 

negative, there is some evidence for positive outcomes following stressful experiences that 

are challenging but not overwhelming, so-called “stress inoculation” [72]. For example, 

Lyons and colleagues have demonstrated that exposure of newly weaned squirrel monkeys to 

brief intermittent maternal separations decreased subsequent anxiety and stress-responsivity. 

This resilience to later stress did not seem to be maternally mediated or related to changes in 

maternal care, unlike the rodent models discussed above [86].

Conclusions

Stress has profound effects on the brain, manifesting as altered behavioral outcomes. This is 

especially true when the stress occurs during vulnerable developmental periods. Brain 

maturation involves multiple dynamic processes that are regulated both by genetic factors 

and environmental input [87–90]. Many of these processes continue during postnatal life. 

Although it is impossible to directly compare rodent and human brain development and their 

trajectories, there is excellent information about comparative development of specific brain 

regions across species. For example, hippocampal development in the full-term human 

neonate is similar to that of a P5–P7 rat [91], providing common context to studies targeting 

early-life stress and other manipulations.

The transducing mechanisms that convert the experience of early-life stress to overt 

behavioral changes remain unclear. Abnormal maturation [54,92–94] or rewiring of neuronal 
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connectivity in the underlying brain networks [95] have been proposed. For example, 

abnormal maternal care and chronic early-life stress have been shown to result in increased 

number and function of excitatory synapses to stress-sensitive neurons in the hypothalamus 

[57], promoting vulnerability to future stress signals. In contrast, reduced excitatory synapse 

number and function has been reported after ‘optimal’ early-life experiences, such as 

augmented maternal care [96]. These changes in synaptic activity are sufficient to program 

long-term changes in neuronal gene expression, maintained via epigenetic alterations of the 

chromatin [97,98]. Thus, increased excitatory input early in life may sensitize the central 

components of the neuroendocrine stress system to subsequent stress, predisposing to stress-

related emotional disorders. Other structural changes, including stunting, atrophy or 

hypertrophy of dendritic structure, and altered connectivity, might take place in the 

amygdala and hippocampus [73], as well as pleasure centers of the brain, contributing to 

widespread circuit-level dysfunction (Figure 1).

Recognizing the complexity of early-life stress and its long-term consequences allows for 

the generation of meaningful, novel approaches aiming to improve the human condition. 

Future work in the field must move beyond the traditional focus on the HPA axis to fully 

appreciate the vast array of behavioral outcomes and their network and mechanistic 

underpinnings [13,50,59,99–101]. Comprehensive approaches with multiple levels of 

analysis and integration of human and animal-model studies are required to probe the 

consequences of early-life adversity: understanding the underlying processes is a 

prerequisite for precise, individualized interventions to improve the outcomes of the world’s 

current and future children.
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Highlights

• Early-life stress is linked with vulnerability to cognitive and emotional 

disorders.

• Naturalistic animal models of early-life stress are critical to identify 

mechanisms.

• Recent studies report outcomes ranging from hippocampus-dependent 

memory deficits to emotional consequences such as anhedonia and 

depression.
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Figure 1. 
A unifying theoretical framework for how early-life stress can induce long-term changes in 

behavior. The inciting event is the experience of early-life stress, represented in the first 

concentric circle. Early-life stress causes a cascade of changes acutely during the perinatal 

period that results in abnormal neuronal development and changes in gene expression, which 

are maintained long-term via epigenetic modifications of the chromatin (represented in the 

second concentric circle)[95,98,102]. These molecular- and cellular-level changes build 

upon each other to create altered synaptic connectivity and circuit development at the level 

of the network, ultimately resulting in the observed alterations in cognition, emotion, and 

pleasure/reward (represented by the 3 nodes within the third concentric circle)

[78,93,103,104].
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