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Abstract

Cilia and eukaryotic flagella are threadlike cell extensions with motile and sensory functions. 

Their assembly requires intraflagellar transport (IFT), a bidirectional motor-driven transport of 

protein carriers along the axonemal microtubules. IFT moves ample amounts of structural proteins 

including tubulin into growing cilia likely explaining its critical role for assembly. IFT continues 

in non-growing cilia contributing to a variety of processes ranging from axonemal maintenance 

and the export of non-ciliary proteins to cell locomotion and ciliary signaling. Here, we discuss 

recent data on cues regulating the type, amount, and timing of cargo transported by IFT. A 

regulation of IFT-cargo interactions is critical to establish, maintain, and adjust ciliary length, 

protein composition, and function.
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Introduction

Compartmentalization is a key feature of eukaryotic cells. Besides membrane-enclosed 

entities such as the mitochondria or Golgi, regions of the cytoplasm itself are often 

specialized by possessing a particular complement of proteins (and lipids and nucleic acids) 

enabling them to perform exclusive tasks. Examples include the leading edge of crawling 

cells, the mitotic spindle, and various cellular extensions such as microvilli and axons. Such 

cytoplasmic domains are established and maintained by self-assembly or self-organization, 

intracellular transport locally concentrating components, and barriers limiting the free flux 

of proteins. Here, we will focus on cilia and flagella (interchangeable terms), thin 

projections with a diameter of 200 nm that extend for several microns from the cell surface 

(Fig. 1A). While not membrane-bound organelles, cilia are partitioned from the cell body by 

the transition zone, a region at the base of the cilium which functions as a diffusion barrier.1 

Proteomic studies indicate that of the ∼20,000 nuclear-encoded proteins ∼1,000 are present 

in cilia; many of them are highly enriched within the organelle.2 Since ribosomes are absent 

from cilia, all proteins required in the organelle have to be imported from the cell body.3 

Most cilia are not assembled in the cell body and extruded, instead the axoneme, the 
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microtubular scaffold of all cilia, grows by addition of subunits to its distal end.4,5 

Intraflagellar transport (IFT) plays a major role in this process by picking up ciliary 

precursors in the cell body and delivering them via molecular motors into cilia and to the 

ciliary tip.6 Here, we will evaluate the role of IFT in establishing and maintaining the 

specialized protein content of cilia.

A briefing on cilia

Cilia are organized by basal bodies, barrel-shaped microtubule-based structures also termed 

centrioles (Fig. 1B). The A- and B-tubules of the centriolar triplets are continuous with the 

doublet microtubules of the axoneme (Fig. 1B-E). During ciliogenesis, basal bodies dock to 

the plasma membrane via the distal appendages or transitional fibers (TF) positioned at the 

distal end of the basal bodies (Fig. 1C).7 Between the basal body and the axoneme proper 

resides the transition zone (TZ), an ultrastructurally and biochemically specialized segment 

of the flagellum that functions as a diffusion barrier between the cell body and the cilium 

(Fig. 1D).8 However, large protein complexes such as the multimegadalton IFT trains move 

through the transition zone indicating that the TZ possesses a gating mechanism. In many 

IFT loss-of-function mutants, cilia terminate above the structurally intact transition zone 

indicating that the elongation of protruding cilia is IFT dependent.9 IFT-independent 

assembly of flagella has been described as well: Plasmodium (and other apicomplexa), for 

example, rapidly (∼10 min) assembles 12- 15 μm long axonemes within the cytoplasm 

which later will be surrounded by a membrane during exflagellation and remain active for 

∼1 hour once protruding from the cell.10,11 Thus, IFT is not per se needed for cilia 

formation but standard cilia assembly in protrusions requires IFT.

Cilia have been long known as motile organelles which function in the locomotion of 

protists and spermatozoa or the transport of fluid across ciliated epithelia (Fig. 1A, E). The 

microtubules of motile cilia are densely decorated with protein complexes such as dynein 

arms and radial spokes (Fig. 1E). Many metazoans also possess non-motile cilia which 

function in sensing of the external and internal environment; sensing of light and odor, for 

example, involves receptors located inside ciliary membranes. Cilia are essential to 

mammalian development as the complete loss of cilia is embryonic lethal.12,13 A plethora of 

diseases, termed ciliopathies, are associated with defects in ciliary motility and sensation.14 

Some of these conditions are caused by mutations impairing a cell- or tissue-specific 

function of cilia: The loss of an axonemal dynein, for example, will cause cilia paralysis but 

will not affect the sensory functions of non-motile cilia.15 In contrast, defects in general cilia 

assembly, length control, composition, or maintenance often result in multiorgan phenotypes 

because cilia are widely distributed in the mammalian body. Genes encoding TZ proteins are 

hotspots for disease-causing mutations in humans: TZ defects affect ciliary protein entry and 

retention typically affecting cilia performance in many cell types, tissues, and organs.16,17 

Similarly, many IFT defects alter ciliary length and protein content affecting their sensory 

and signaling functions. In mammals, more or less subtle defects in IFT cause a wide range 

of diseases and developmental defects ranging from blindness and kidney anomalies to 

severe skeletal malformations and obesity.14 After a brief introduction to the IFT pathway, 

we will review data on protein transport by IFT and its regulation.
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IFT – the protein shuttle of the cilium

IFT is the bidirectional movement of large protein arrays (= IFT trains) along the axonemal 

microtubules (Fig. 2).18 The trains are strings of IFT particles, each consisting of at least 22 

distinct proteins organized into IFT-A, IFT-B1, and IFT-B2 subcomplexes (Fig. 2A, C).19-22 

IFT train assembly occurs near the TFs (Fig. 1C).23-25 In the first part of the journey, 

anterograde trains move from the ciliary base to the tip along the B-tubule of the doublets 

using the molecular motor kinesin-2 and carrying inactive IFT dynein, the retrograde motor, 

as a cargo (Fig. 2B, D).26,27 At the ciliary tip, anterograde IFT trains are remodeled for 

retrograde traffic and trains return to the cell body pulled by IFT dynein along the A-

tubules.26,28 IFT trains function as protein carriers allowing non-IFT proteins such as 

axonemal precursors to hitch a ride into the cilium. Cell fusion experiments using 

Chlamydomonas mutants with defective axonemes and wild-type cells provided initial 

evidence for protein delivery into cilia by IFT: During the repair of the mutant cilia, the 

missing axonemal proteins or substructures introduced by the wild-type cell are first added 

at the tip (instead of near the base where the proteins will enter cilia). Assembly then 

progresses toward the base of the cilium; a pattern indicative for transport of these 

components via IFT to the ciliary tip.5,29,30 Direct imaging revealed that proteins of the 

ciliary matrix, membrane, and axoneme including tubulin, the major structural protein of 

cilia, move via IFT (Fig. 2E).31 In selected cases, unloading of cargoes from IFT and 

subsequent incorporation into the axoneme have been observed directly.32 The data confirm 

the role of IFT as the predominant protein transport pathway of cilia and flagella.

Post balance point: regulated loading of IFT trains contributes to ciliary 

length control

Ciliary length is typically tightly regulated in a cell type-specific manner and mutations that 

affect ciliary length reduce the swimming speed in protists and cause disease in 

mammals.33,34 Numerous factors have been shown to participate in ciliary length control.35 

The supply of ciliary building blocks via the IFT pathway is likely to contribute to 

establishing and maintaining cilia of a defined length: Conceivably, reduced protein supply 

could result in shorter cilia; conversely, too much material might cause cilia to exceed their 

set length. A simple option to regulate the amount of protein transported into cilia would be 

an on demand system where IFT trains are only present or moving while cilia are assembled 

(Fig. 3A). While IFT is often abolished in mature sperm flagella, it continues in fully grown 

cilia in the vast majority of cells.36 When IFT is switched-off using conditional mutants, 

cilia shorten and tubulin exchange at the ciliary tip is reduced.37 These observations are the 

basis of the influential balance-point model which proposes that the capacity of IFT is 

restricting the length of cilia: As cilia elongate IFT trains will spend more and more time in 

transit and the frequency by which IFT trains reach the ciliary tip and drop off their cargoes 

will progressively decrease as the distance between the ciliary base and tip increases.37-40 At 

one point, the balance point, assembly fueled by IFT-dependent cargo delivery and the 

assumed length-independent disassembly of cilia will balance each other establishing the 

steady-state length (Fig. 3B).37 According to this model, cells could build cilia of a given 

length simply by limiting the number the IFT trains employed during assembly without 
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invoking complex mechanisms to measure cilia length or regulate the size of the precursor 

pool. A prerequisite of this model is that the cargo load of IFT trains is constant and length-

independent. IFT-cargo complexes are transient in nature largely impeding their isolation 

and biochemical analysis, and, for the longest time, it was unclear whether the amount of 

protein transported by an IFT train was regulated or not. Recent advances in direct imaging 

of protein flux inside cilia revealed that IFT trains are highly loaded with tubulin and other 

axonemal precursors while cilia grow but are largely devoid of these cargoes once cilia reach 

their set length.32,41 Thus, cells modulate the volume of structural proteins moved by IFT 

into cilia raising the question how IFT-cargo interactions are regulated.

The load on the IFT trains could simply reflect the availability of ciliary precursors in the 

cell body and ciliary elongation will cease once the precursor pool has been drained (Fig. 

3C).42 Classic experiments, however, revealed that even cells with full-length cilia still 

maintain a sizable precursor pool sufficient to rebuild half-length cilia in the absence of de 
novo protein synthesis.43,44 Thus, IFT does not simply shuttle all available precursors into 

the cilium but other factors control how much of the axonemal proteins present in the cell 

body will be transported and used for ciliary assembly. The study of so called long-short 

cells provided crucial insights into the regulation of cargo loading: Mechanical shear can be 

used to remove just one of the two flagella from Chlamydomonas. The cells will regenerate 

the missing flagellum while shortening the remaining flagellum allowing for the analysis of 

cargo transport when growing and non-growing cilia are present on the same cell body.44,45 

While IFT traffic continues in both cilia, only those trains entering the growing cilium are 

highly loaded with tubulin.41 This suggests that cells regulate IFT loading in a cilium-

autonomous and length-dependent manner. Cells apparently possess a system to recognize 

cilia of insufficient length and respond by increasing the cargo load of just those IFT trains 

entering short cilia (Fig. 3D). Once cilia approach full length, loading of IFT trains with 

structural proteins tapers off and, in cilia exceeding their desired length, shortening is 

triggered.46,47 These two feedback loops - increased cargo delivery with suppressed 

disassembly when cilia are too short, and suppressed IFT loading with increased 

disassembly when cilia are too long - could establish cilia of a defined length.

How to measure cilia length?

The molecular mechanisms by which cells measure the length of their cilia and respond to 

aberrant length by adjusting cargo influx into cilia via IFT remain essentially unknown. 

Mutations in several CDK-like and MAP kinases result in abnormally long cilia.48-50 Some 

of these length-regulating protein kinases have been shown to be present inside cilia and to 

move by IFT.51,52 Several such kinases phosphorylate the anterograde IFT motor kinesin-2 

and phosphorylation of the Kif3b motor subunit by CAMK prevents the motor from 

associating with IFT particles and entry into the cilium.52,53 Some of these length-regulating 

protein kinases including the aurora-like kinase CALK reside exclusively or predominately 

in the cell body.50,54 The pattern of CALK phosphorylation changes in response to ciliary 

length and growth state (elongating, resorbing, or steady-state) providing evidence that cells 

register the condition of their cilia.55,56 Tubulin transport is dysregulated in lf2, a 

Chlamydomonas flagellar length mutant defective in a CDK-like kinase.41 These data 

establish a connection between length-regulating kinases, IFT, and cargo transport but how 
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precisely cilia length is sensed and how such a ‘length signal’ is transmitted to the cell body 

and the IFT machinery has not yet been established. In a speculative ‘time-of-flight’ model 

the activity of a length-regulating kinase could change as it transits via IFT through the 

cilium. Because IFT trains move with an essentially constant velocity, the time a kinase 

requires to cycle through a cilium would be proportional to ciliary length and the activity of 

the kinase as it returns to the ciliary base provides a biochemical read-out reflecting cilia 

length. If correct, changes in IFT velocity should affect ciliary length. A mechanistically 

distinct model assumes that protein import into cilia depends on the presence of an ‘active’ 

import factor allowing ciliary proteins and loaded IFT trains to pass through the TZ. If the 

activation of such a freely diffusible factor occurs at the ciliary tip and its inactivation is 

time-dependent, a tip-to-base gradient of active factor will be established which could adjust 

ciliary protein influx in response to changes in organelle length.57 Several alternative models 

of how cells could sense ciliary length have been described.58 Real-time measurements of 

ciliary length fluctuations in steady-state could help to pinpoint the length-regulating 

pathway. At the molecular level, the identification of the substrates of length-regulating 

kinases is required.

Understanding IFT loading and protein entry into cilia

How cells regulate the import of structural proteins via IFT in a ciliary length-dependent 

manner is currently unknown. Several mechanisms could be involved including the 

regulation of IFT-cargo interactions, of the passage of loaded IFT trains through the TZ, and 

of cargo availability in the area of IFT train assembly and loading.

Our knowledge of how cargoes and IFT proteins interact is still rudimentary and only a few 

such binding sites have been identified including those for tubulin and the outer dynein 

arms. Tubulin dimers, for example, are bound by the N-terminal domains of IFT81 and 

IFT74.59-62 While many IFT proteins are phosphorylated, it is unknown whether 

posttranslational modifications or other structural changes in the trains modulate the binding 

capacity for tubulin and other cargoes.63

Protein entry into cilia is regulated at the TZ, which functions as a diffusion barrier and 

ciliary gate. Small soluble proteins (< 50kDa) and certain transmembrane proteins can move 

freely into cilia by diffusion64-66; such proteins could still require IFT to be enriched inside 

the ciliary compartment above cell body concentrations as we suggested for tubulin.41 For 

proteins with larger diameters ciliary entry by diffusion is largely prevented.65,67 In TZ 

mutants, some non-ciliary proteins are present in cilia while a subset of resident ciliary 

proteins are lost supporting its role as a bidirectional barrier.16,17,68 How large protein 

complexes such as outer dynein arms (>1.5 MDa) or IFT trains pass through the TZ remains 

to be determined. Certain nuclear pore proteins (NUPs) have been localized in the TZ which 

has led to the controversial model that the TZ functions similarly to the nuclear pore 

complex.69,70

Passage through the TZ could depend directly on features of the ciliary proteins themselves 

such as targeting sequences which open up the TZ. Ciliary localization sequences (CLS) that 

are required and sufficient for ciliary import have been identified for certain transmembrane 
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and membrane-associated proteins.71-73 CLS are variable in position and frequently 

encompass residues that are modified by acylation. Proteins predicted to be myristoylated 

and dual fatty acid modified are enriched in the C. reinhardtii flagellar proteome and 

evidence from various systems indicates that fatty acid modifications function in ciliary 

targeting.2,74 Compared to the nuclear localization sequences (NLS), ciliary localization 

sequences are not conserved and more variable and many structural and soluble ciliary 

proteins lack recognizable import signals. Such proteins might bind to more universal import 

carriers. At least some cargoes require the activity of small G-proteins including Ran and 

Arl3 to enter cilia.75-77 IFT trains pass with apparent ease through the TZ and binding of 

proteins to IFT trains could be the entry ticket for proteins, which are unable to enter the 

cilia on their own. Then, the cargo selectivity of IFT would decisively control the protein 

composition of cilia at the posttranslational level.

To regulate protein influx into cilia, cells could also regulate the space and time available for 

IFT trains and cargoes to interact in the cell: IFT trains exposed to cargoes for extended 

periods of time might pick-up more cargo than IFT trains passing rapidly by. IFT proteins 

and axonemal proteins have been detected on intracellular vesicles suggesting that they 

might already interact well before reaching the basal bodies.78 In line with these 

observations, IFT20 is located at the Golgi in mammalian cells and aids in Golgi-to-cilium 

trafficking of certain membrane proteins.79 Our work using long-short cells of 

Chlamydomonas showed that the loading of IFT trains can differ considerably between the 

cilia of a given cell even while the cilia emerge from adjacent basal bodies. This suggests 

that the mechanism that determines how much cargo enters cilia by IFT is likely to be 

locally confined to the basal body region.

Protein transport in full-length cilia

In nearly all cell types, IFT continues as long as cilia are present. After the initial rapid 

phase of assembly, many cilia continue to elongated somewhat which is likely to require 

IFT.80 Further, IFT in steady-state cilia has diverse functions ranging from ciliary 

maintenance to cell locomotion and signaling. Most of these processes are likely to 

commence already during ciliary assembly and no principal difference between IFT in 

growing and full-length cilia is known, qualified by the observation that the transport of 

axonemal proteins is strongly reduced in the latter. In the following we will discuss IFT-

based processes beyond cilia assembly.

Cilia maintenance

It has been reasoned that cilia and axonemes are intrinsically unstable and therefore require 

an ongoing supply of building materials to maintain their steady-state length.37 Indeed, pulse 

labeling experiments suggest a continuous exchange of certain proteins in steady-state 

cilia.81,82 Motile and primary cilia also lose material via the shedding of vesicles.83,84 The 

outer segment (a structurally specialized sensory cilium) of rod cells in the eye continuously 

releases membranous discs at the distal end and new discs are formed at the proximal end.85 

This treadmilling of ciliary membranes requires a massive IFT-dependent transport of 

proteins such as opsin through the connecting cilium.86,87 Treadmilling has not been 
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observed for axonemal microtubules in Chlamydomonas flagella37,88 and the exchange of 

tubulin subunits at the tip of steady-state cilia is rather slow suggesting that the axonemes 

are relatively durable.37,64

The degree to which ciliary maintenance depends on IFT varies considerably between 

species and cell types. In Chlamydomonas and Tetrahymena, cilia and flagella shorten 

slowly when anterograde IFT is abolished indicating a continual demand of an essential 

component or a failure of ciliary length regulation, which could hinge on IFT (Fig. 3E).89,90 

Trypanosoma flagella maintain their length in the absence of IFT, but flagellar motility and 

protein distribution are increasingly affected.91 At the other end of the spectrum are sperm 

flagella that once assembled lack IFT but nevertheless maintain their length and 

functionality for extended periods of time.36 Apparently, the need for replacement proteins 

differs considerably between distinct types of cilia. More generally, IFT remains active in 

fully grown cilia of cycling cells, cells with sensory cilia etc., all of which require ongoing 

motor-based protein exchange between cilia and the cell-body.

Counteracting diffusional equilibration

Conceivably, the maintenance of cilia is unlikely to require the full-sized IFT system used 

for their assembly. Nevertheless, the size of the IFT machinery appears to be largely 

independent of the ciliary growth state.92,93 Motor proteins are often autoinhibited in the 

absence of cargoes preventing wasteful ATP consumption.94 However, the primary cargoes 

of the IFT motors are the IFT particles themselves. Thus, the IFT motors can be considered 

to be permanently engaged with “cargo” or “cargo adapters” while moving along cilia; it is 

unclear whether IFT trains also require a load of non-IFT proteins in order to enter and move 

along cilia.

What are the possible benefits offsetting the energy costs of continuously running IFT? 

Recent data link IFT-dependent protein transport in fully-assembled cilia to processes 

beyond structural maintenance. An example is the export of proteins from cilia. Just as 

certain proteins are highly concentrated inside cilia, many cytoplasmic proteins are 

efficiently excluded from the ciliary compartment. Small to midsize cell body proteins, 

however, are likely to diffuse across the transition zone continuously leaking into the 

cilium.65 The membrane-associated protein phospholipase D can enter C. reinhardtii cilia in 

an IFT-independent manner but depends on IFT and the BBSome, an IFT-associated eight-

subunit protein complex (Fig. 2), to be removed from cilia.95,96 In mammals, loss of 

BBSome function causes an accumulation of cell body proteins in the outer segment of rod 

cells supporting the notion that the BBS/IFT system functions as a scavenger to export non-

ciliary proteins from cilia.97 Similarly, abundant soluble ciliary proteins could escape by 

diffusion. Thus, IFT counteracts diffusional equilibration between the cell body and the 

cilium (Fig. 3F).

Surface motility

IFT also drives flagellar surface and gliding motility, which are best studied in 

Chlamydomonas and other protists (Fig. 3G).98,99 These on-and-off motilities are driven by 

transient interactions between IFT trains and ciliary transmembrane proteins. In contrast to 
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IFT itself, the binding of the involved transmembrane proteins to IFT depend on 

extracellular calcium.100,101 In gliding motility, flagellar transmembrane proteins will 

adhere to a substrate immobilizing the associated IFT trains or capturing them after 

adhesion. Comparable to a filament gliding assay, the microtubule minus-end directed 

activity of IFT dynein will then pull on the axoneme dragging the entire cell in the direction 

of the cilium containing the adhesion.101 In surface motility, extracellular particles move up 

and down the cilium. In hindsight, the back-and-forth movement of particles adhered to the 

flagellar membrane provided early evidence for the existence of a bidirectional transport 

system inside flagella.99 Certain protists use their flagella to select and gather food probably 

involving this mechanism to move the pray to the ciliary base for endocytosis.102,103 Cilia 

could function as receivers for extracellular vesicles.104 In mammalian cilia, certain 

transmembrane proteins transiently associate with IFT while others appear to move 

essentially by diffusion once inside cilia.105,106 While primary cilia are likely to display 

surface motility, it is not yet known whether it has any functional relevance, e.g., during cell 

migration.

IFT and ectosomes (… and the cell cycle)

Cilia shed vesicles or ectosomes (50-200 nm in diameter) containing IFT and ciliary 

membrane proteins. Components of the ESRCT complex are present in cilia-derived vesicles 

and the topology of ectosome formation from cilia recapitulates other ESCRT-based 

events.107 Vesicle formation also involves the actin-based cytoskeleton.108,109 The role of 

IFT in vesicle formation is unclear but it could delivery vesicle-specific proteins to the 

ciliary tip.108 Due to their specific protein content, cilia-derived ectosomes possess 

biological functions in Chlamydomonas (during daughter cell release from sporangia and 

during mating) and likely elsewhere.83,110 GPCRs and other proteins are shed in vesicles 

from the ciliary tip either as their natural route of exit or because protein export via the 

BBS/IFT system is impaired.108,110 Further, IFT and other proteins are released from 

primary cilia prior to mitosis by shedding of the distal ciliary segment, a process termed 

decapitation.109 Decapitation precedes cilia resorption and entry into the cell cycle 

emphasizing the tight coordination of cilia growth and disassembly with the cell cycle. In 

many cell types, ciliary disassembly promotes G1-S transition (mammals) or entry into 

mitosis (Chlamydomonas). Evidence implying IFT in the export of proteins liberated by 

axonemal disassembly during cilia shortening is weak.111 IFT proteins reside at the mitotic 

spindle poles and loss of cilia or defects in IFT result in misoriented spindles and cell 

division planes.12,112 In other systems, cilia loss is the only known phenotype of IFT 

mutants and mitosis and cell growth appear to be normal.113 Clearly, the connections 

between IFT, cilia, ectosomes, and the cell cycle deserve further attention.

Adaptation and signaling

Cilia often undergo changes of composition or length in response to developmental or 

environmental cues (Fig. 3H). Examples include the import of cell adhesion molecules and 

the calcium channel PKD2 into Chlamydomonas flagella during gametic differentiation, the 

removal of certain GPCRs from cilia upon ligand binding, cyclic or pharmacologically 

induced changes in cilia length, light-dark adaptation of the outer segments, or the 

recruitment of Lis1-like into flagella to support axonemal dyneins under high-load 
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conditions.114-120 Some of these changes are probably driven by diffusional entry and 

capture of proteins inside cilia.64,121 However, IFT could provide the means to rapidly 

execute such changes.

IFT not only installs and maintains the ciliary signaling machinery but evidence suggests 

that it also participates directly in signaling cascades. In Chlamydomonas, cilium-to-cilium 

contacts between gametes initiate fertilization signals and active IFT is required for 

successful cell fusion.122 The role of IFT is particularly well studied in the Hedgehog (Hh) 

pathway, which regulates a plethora of developmental processes.123-125 In vertebrates, Hh 

signaling involves the controlled translocation of signaling proteins in and out of cilia. After 

binding of the Hh ligand, its receptor Patched exits the cilium and Smoothened translocates 

into the cilium; when IFT is defective, both proteins are mislocalized compromising Hh 

signaling.123,126,127 Further down the cascade, Smoothened recruits β-arrestin in a process 

that depends on and might involve IFT.128 Then, β-arrestin binds activated Gpr161, an 

orphan GPCR suppressing Hh signaling, and mediates its removal from cilia probably by 

facilitating loading onto retrograde IFT trains.114,128 Evidence suggests further that Gli 

proteins, the transcription factors for Hh-responsive genes, are translocated from the cilium 

to the cell body in an IFT-dependent manner.129-131 While IFT27 is expendable for cilia 

assembly and IFT itself in mice, Ift27-/- animals display features typical of defective Hh 

signaling emphasizing that IFT might transport Hh signaling proteins.132 IFT-dependent 

transport of signaling proteins is likely to participate in other cilia-based signaling 

pathways.133 It is intriguing to consider that signals received by the cilium could modify a 

receptor or effector enabling them to associate with IFT trains, translocate to the cell body, 

and transmit a signal (Fig. 3I). Then, a perpetually running IFT system would keep the cilia 

on high alert ensuring that signals are rapidly transmitted to the cell body and vice versa.

Summary

IFT trains are versatile with respect to the range of possible cargo proteins and the quantity 

of cargo bound to the carriers. While some aspects of the cellular circuits regulating the 

amount of structural proteins moved via IFT into cilia are emerging, it remains unclear how 

cells measure the length of their cilia and process this information to adjust the amount of 

cargo on the IFT trains. IFT also contributes in multiple ways to the maintenance and 

function of steady-state cilia. The ability of the cells to regulate when, which and how much 

protein is transported via IFT into cilia is likely to be a major determinant of cilia size, 

composition, and function and a major mechanism to adjust them in a controlled manner.
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Synopsis

Cilia and flagella are widely distributed cell organelles with motile and sensory functions. 

The intraflagellar transport (IFT) pathway moves proteins in and out of cilia and is 

required for ciliary assembly, maintenance, and signaling. Here, we discuss recent data 

revealing a complex regulation of IFT-cargo interactions. Continuously running IFT may 

prevent diffusional equilibration between the cell body and the cilium establishing and 

maintaining the specific protein content of cilia.
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Figure 1. The structure of cilia and flagella
A) Scanning micrograph showing the ciliated epithelium lining the ventricular system of the 

brain in mouse.

B-D) Thin sections showing the proximal region of the basal body (B) with the attached 

basal foot (bf), a more distal section with the paddle-wheel like transitional fibers (C, 

arrowheads), and the transition zone (D) in cross-sections. In D, note the Y-shaped 

connectors (arrows) linking the doublet microtubules to the ciliary membrane.

E) Micrograph showing airway cilia with typical 9+2 axonemes in cross-section. Bars = 10 

μm (A) and 250 nm (E).
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Figure 2. The intraflagellar transport machinery
A) Composition of IFT particles, IFT motors, and the BBSome. For the motors, the 

mammalian protein names are shown; the Chlamydomonas protein names are listed in the 

brackets.

B) Schematic presentation of IFT. Ax, axoneme, TZ, transition zone, TF, transition fibers, 

BB, basal body.

C) Schematic presentation and electron micrograph depicting IFT trains (open arrows). Bar 

= 200 nm.

D) Still image (left) and kymogram (right) showing IFT54-NG inside a Chlamydomonas 
flagellum. In the kymogram, anterograde trains are indicated by trajectories running from 

the bottom left to the top tight (blue arrow); trajectories running from the top left to the 

bottom right represent retrograde trains (red arrow). Bars = 2s 2 μm.

E) Kymograms depicting transport by IFT and unloading of the axonemal protein DRC4-

GFP. IFT20-mCherry was expressed to visualize IFT. IFT trajectories are marked by open 

arrowheads. DRC4-GFP initially co-migrates with an IFT train but is then unloaded (white 

arrowhead) as indicated by the transition of the trajectory from a linear diagonal to a back-

and-forth motion indicative for diffusion. Note that most cargoes are unloaded in the vicinity 

of the ciliary tip. Bar = 1s 2 μm.
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Figure 3. Cargo transport by IFT during ciliary assembly and maintenance
A-D) Models for ciliary length control.

A) The transport-limitation model suggests that cells will employ many IFT trains while 

cilia grow and reduce the number of trains in fully grown cilia. The cargo load per train is 

constant.

B) In the balance-point model, the ciliary assembly rate will decrease with increasing ciliary 

length because the time the trains spend in transit will increase. Neither the number of IFT 

trains nor the cargo load/train are regulated. Chlamydomonas flagella grow at a rate of up to 

350 nm/min. In addition to delivering the building blocks accounting for this gain in length, 

IFT would have to provide those lost by ongoing ciliary disassembly. Our simulations 

showed that it is not possible to assemble cilia of 10 - 12 μm length in ∼60 min when 

assuming that the continuous length-independent disassembly of cilia is large enough to 

balance the large amount of building blocks provided ceaselessly by anterograde IFT32; 

rather cilia would need hours of slow growth to reach steady-state length.

C) The supply-limitation model predicts that cilia will grow until the cell body pool of 

precursors is exhausted. IFT cargo load is regulated passively by the availability of cargoes.

D) The differential-loading model suggests that cells alter the amount of cargo per IFT train 

in response to changes in ciliary length. The length of the arrows near the flagellar tip 

indicate the rates of material delivery and cilia disassembly.

E-I) Models of IFT function in fully assembled cilia.

E) Material delivery for cilia maintenance via a low but steady influx of ciliary proteins.
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F) Removal of non-ciliary proteins entering cilia via diffusion from the cell body.

G) Back-and-forth movement of extracellular objects on the ciliary surface (left). In gliding 

motility, IFT dynein, immobilized via IFT particles and transmembrane proteins to the 

substrate, pulls the cell by moving toward the minus-end of the axonemal microtubules.

H) Import and export of proteins to change ciliary protein composition; e.g. during 

adaptation.

I) Conditional transport of activated signaling proteins. Signals such as ligand binding 

change the properties of a protein allowing it to adhere to IFT trains.
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