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Understanding complex relationships among heterogeneous biological data is one of the fundamental goals in biology. In 
most cases, diverse biological data are stored in relational databases, such as MySQL and Oracle, which store data in multiple 
tables and then infer relationships by multiple-join statements. Recently, a new type of database, called the graph-based 
database, was developed to natively represent various kinds of complex relationships, and it is widely used among computer 
science communities and IT industries. Here, we demonstrate the feasibility of using a graph-based database for complex 
biological relationships by comparing the performance between MySQL and Neo4j, one of the most widely used graph 
databases. We collected various biological data (protein-protein interaction, drug-target, gene-disease, etc.) from several 
existing sources, removed duplicate and redundant data, and finally constructed a graph database containing 114,550 
nodes and 82,674,321 relationships. When we tested the query execution performance of MySQL versus Neo4j, we found 
that Neo4j outperformed MySQL in all cases. While Neo4j exhibited a very fast response for various queries, MySQL exhibited 
latent or unfinished responses for complex queries with multiple-join statements. These results show that using graph-based 
databases, such as Neo4j, is an efficient way to store complex biological relationships. Moreover, querying a graph database 
in diverse ways has the potential to reveal novel relationships among heterogeneous biological data.
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Introduction

The rapid development of experimental and analytical 
techniques has provided various kinds of information on 
biological components (cell, tissue, disease, gene, protein, 
drug response, and pathway, etc.) and their functions. 
Although information on individual biological components 
has important meaning, biological characteristics result 
mainly from complex interactions among various biological 
components [1-6]. So, one of the fundamental aims in 
biology is to understand complex relationships among 
heterogeneous biological data that contribute to the 
functions of a living cell. However, finding these interactions 
among heterogeneous biological data is very difficult due to 
the complex relationships between them. For example, 
many disorders are caused by multiple genetic variants, 
which may affect pleiotropic genes, and are influenced by 

various environmental factors. 
To overcome this hurdle, various approaches have been 

developed to reveal the fundamental mechanisms that 
control dynamic cell organization by analyzing biological 
networks [7-9]. However, for efficient biological network 
analyses, traditional relational database systems, such as 
MySQL and Oracle, may be limited, because traditional 
relational databases store data in multiple tables and then 
infer relationships by applying multiple-join statements. 
Although biological network data can be stored in a 
traditional relational database, join queries, which connect 
tables linked by various relationships, become too com-
putationally expensive and complex to design as more 
complex join operations are performed [10].

A graph database is a database that uses a graph structure. 
This database uses nodes (biological entities) and edges 
(relationships) to represent and store data. Each node 
represents an entity (such as a biological entity), and each 
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Table 1. List of parameters for optimization [16]

Type Parameter Description

OS memory sizing dbms.memory.pagecache.size The amount of memory to use for mapping the store files
Unsupported dbms.report_configuration Current configuration settings written to the default system
dbms.memory.heap.initial_size Initial heap size (in MB)
dbms.memory.heap.max_size Maximum heap size (in MB)
dbms.jvm.additional Additional literal JVM parameter

Transaction logs dbms.tx_log.rotation.size Specifies at which file size the logical log will auto-rotate
dbms.tx_log.rotation.retention_policy Keeps logical transaction logs for backup of the database
dbms.transaction.timeout The maximum time interval of a transaction

OS, operating system.

edge represents a connection or relationship between two 
nodes. The key concept of this system is a graph structure 
(organized by nodes and edges) for connections among the 
stored data. The graph database is more expressive and 
significantly simpler than traditional relational databases 
and other NoSQL databases and is very useful for situations 
with heavily interconnected data [11]. Especially, the graph 
database is specialized to represent all of the relationships 
among large-scale data and is useful for managing deeply 
linked data. Nowadays, graph databases are widely used in 
many fields, including computer science and social and 
technological network analyses. 

In the biological community, several researchers have 
begun to adopt the graph database for biological network 
analyses. For example, Lysenko et al. [10] showed that the 
graph database can effectively store and represent disease 
networks and is a suitable structure to establish for various 
hypotheses. Henkel et al. [12] showed that the graph 
database is a useful tool for effectively storing heterogeneous 
data and establishing various models. Mullen et al. [13] 
showed that the graph database can find novel usage (that is, 
drug repositioning) through the traversing of various 
relationships between a gene and disease. Balaur et al. [14] 
showed that the graph database is effective in investigating 
correlation between genetic and epigenetic factors in genetic 
and epigenetic data of colon cancer.

In this work, we set up a graph database and tested its 
performance in storing and retrieving heterogeneous and 
complex biological networks. We used Neo4j (http://neo4j. 
com/), one of the most frequently used graph databases, and 
compared its performance with MySQL (https://www. 
mysql.com/) in diverse situations. We found that Neo4j is 
superior to MySQL in querying complex relationships 
among heterogeneous data. 

Methods
Selection of graph database engine

Among the many graph databases available, we chose 
Neo4j, an open-source graph database based on Java, for our 
primary graph database, owing to several advantages. Its 
major advantages include (1) the use of a graph model of 
relationships for intuitive information searches; (2) stability 
by providing full ACID (Access, Create, Insert, Delete) 
transaction; (3) flexible extension above billions of nodes, 
relationships, and properties; (4) use of Java, which is easy to 
maintain and is applicable to diverse operating systems 
(OSs); and (5) easy-to-use API based on the REST interface 
and Java API [15].

Hardware setup and optimization of the Neo4j 
graph DB

We set up a high-performance computer server (80 CPUs 
and 1 TB RAM) for the graph database to support the storage 
and analysis of billions of different biological networks and 
relationships. Also, we optimized the server by performance 
tuning of the installed Neo4j (Table 1) following the Neo4j 
operations manual [16]. The performance tuning included 
the following three steps (Fig. 1).

Memory configuration
The performance of Neo4j for a data search depends on 

the available memory to hold the entire graph database [17]. 
If less memory is used than what the constructed graph 
database requires, a swap between the memory and hard 
disk should occur, but frequent swaps between memory and 
hard disk inevitably slow down the search speed. Thus, large 
memory is needed and should also be set up for Neo4j for full 
usage of the system memory. The memory configuration 
includes three steps: (1) OS memory sizing, (2) page cache 
memory sizing, and (3) heap memory sizing.



www.genominfo.org 21

Genomics & Informatics Vol. 15, No. 1, 2017

Fig. 1. Diagram for optimization of the performance of the Neo4j 
graph database. Bottom layer: file open limit optimization; Neo4j 
often produces many small and random reads when querying data.
Middle layer: page cache sizing; if all, or at least most, of the graph 
data files from a hard disk are cached into memory, it will reduce
disk access and result in optimal performance. Top layer: heap 
sizing; it is beneficial to set a large heap space to support various
query operations. OS, operating system; JVM, Java Virtual Machine.

OS memory sizing
The OS memory size is as follows:
OS memory = 1 GB + (Size of graph.db/index) + (Size of 

graph.db/schema).
Thus, we allocated 768 GB of memory to page cache 

memory and heap memory according to the DB file size. 
According to the Neo4j document:

Actual OS allocation = Available RAM − (Page cache + 
Heap size).

We allocated 100 GB for system memory and the rest to 
page cache and heap size.

Page cache sizing
Page cache is used when accessing Neo4j data stored on a 

hard disk. When the size of the entire data is larger than the 
page cache memory, a swap occurs, frequently resulting in 
high disk access cost and reduced performance. A basic 
option is to allocate 4 GB of memory based on the size of the 
graph DB data directory size (NEO4J_HOME/data/graph. 
db/neostore.\*.db). However, as our current data are larger 
than 10 GB, we resized the dbms.memory.pagecache.size 
parameter to above 200 GB.

Heap sizing
Based on Java, Neo4j can use more memory as heap 

memory in a Java Virtual Machine (JVM) is increased. 

Because more heap memory increases the performance 
greatly, we allocated 300 GB of memory to heap sizing. Thus, 
we set the dbms.memory.heap.initial_size parameter from 8 
GB to 300 GB and the dbms.memory.heap.max_size para-
meter from 8 GB to 300 GB.

Disk access configuration
Logical transaction logs can occur in system and data 

recovery after an unexpected system shutdown. They are 
also used for backup at online status. These transaction log 
files are renewed when their size exceeds a pre-defined size 
(default 25 MB). Because these processes also affect system 
performance, we optimized the parameters. The open file 
limit of most LINUX servers is 1,024. However, because 
Neo4j stores data as numerous index files, it frequently 
accesses many files. Thus, we changed the open file limit to 
400,000.

Hardware setup and optimization of the MySQL DB

We optimized the server through performance tuning of 
the installed MySQL following the MySQL operations 
manual. The performance tuning included the following two 
steps: (1) storage engine and (2) parameters of the MySQL 
environment.

Storage engine
MySQL has a variety of storage engines, each with its own 

characteristics. We chose InnoDB among them. MyISAM, a 
simple and fast feature, was a strong candidate, but MyISAM 
does not guarantee data integrity. In addition, table locking 
occurs frequently when more than 5 million data are 
processed in the indexed state, thereby deteriorating the 
retrieval performance. Although InnoDB is slightly slower 
than MyISAM, InnoDB guarantees data integrity by 
supporting transactions. InnoDB loads indexes and data into 
memory for retrieval processing, so allocating more memory 
improves performance. 

Parameters of MySQL server
Optimization of Disk I/O
Disk searching is a huge performance bottleneck. This 

problem becomes more apparent when the amount of data 
becomes too large to effectively cache it. To overcome this 
problem, use disks with low seek times. Table data are 
cached in the InnoDB buffer pool, and we optimized the 
innodb_buffer_pool_size parameter from default to 800 Gb 
(50% to 75% of system memory). To optimize the maximum 
size of internal in-memory temporary tables, we set the 
tmp_table_size and max_heap_ table_size parameter from 
default to 64 Gb. To avoid degradation in the performance of 
InnoDB, use direct I/O for InnoDB-related files (innodb_ 
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Table 2. A list of collected public databases for building graph databases

Name Description URL Reference

BeFree Relations between genes and diseases from text and 
large-scale data analysis

http://ibi.imim.es/befree [18]

BioGRID An interaction repository with data compiled through 
comprehensive curation efforts

https://thebiogrid.org/ [19]

CGD Clinical-genomic database https://research.nhgri.nih.gov/CGD/ [20]
ChEMBL Drug-protein interaction database https://www.ebi.ac.uk/chembl/ [21]
CTD Comparative Toxico-Genomics Database, drug-disease, 

drug-gene interactions
http://ctdbase.org/ [22]

Disease
Connect

Disease-disease connections http://disease-connect.org/ [23]

DrugBank Drug-protein interaction database https://www.drugbank.ca [24]
GWAS 

Catalogue
A curated collection of published genomewide association 

studies
https://www.ebi.ac.uk/gwas/ [25]

MeSH Medical Subject Headings https://www.nlm.nih.gov/mesh [26]
MGD The Mouse Genomics Database http://www.informatics.jax.org/ [27]
MINT The Molecular Interaction Database http://mint.bio.uniroma2.it/ [28]
NDFRT Drug interactions https://rxnav.nlm.nih.gov/NdfrtAPIs.html# [29]
OMIM Online Mendelian Inheritance in Man https://www.omim.org/ [30]
ORDO Orphanet Rare Disease Ontology http://www.orphadata.org/cgi-bin/inc/ordo_orp

hanet.inc.php
[31]

Orphanet Focuses primarily on rare diseases and orphan drugs http://www.orpha.net/consor/cgi-bin/index.php [32]
PREDICT A method for inferring novel drug interactions with 

applications to personalized medicine
- [33]

RGD The Rat Genomics Database http://rgd.mcw.edu/ [34]
SemRep Associations extracted directly from the literature, using 

text-mining approaches
https://semrep.nlm.nih.gov/ [35]

SIDER A side effect resource to capture phenotypic effects of drugs http://sideeffects.embl.de/about/ [36]
TTD Drug target database http://bidd.nus.edu.sg/group/cjttd/ [37]
UniProtKB Collection of functional information on proteins http://www.uniprot.org/ [38]

Table 3. A layer to distinguish the relationships among various 
biological data

Layer Description

Layer I Genetic variation-gene interaction
Layer II Gene-protein interaction (molecular mechanisms)
Layer III Molecule (gene, protein)-GO, pathway interaction
Layer IV Drug-protein, drug-disease interaction
Layer V Meta database, network, and pathway interaction

GO, gene ontology.

flush_method = O_DIRECT). To optimize the log file I/O, 
we set the innodb_log_file_size parameter from default to 
120 Gb (15% of innodb_b uffer_pool_size).

Optimization of memory use
MySQL allocates buffers and cache to improve the 

performance of database operations. The default setting is 
designed to start the MySQL server on a virtual machine with 
approximately 512 MB of RAM. So, we improved the 
performance of MySQL by optimizing the values of certain 
cache- and buffer-related system variables. To optimize the 
size of the buffer used for index blocks, we set the 
key_buffer_size parameter from default to 250 Gb (25% of 
system memory). The table_open_cache parameter is the 
number of open tables for all threads. We set this parameter 
from default to 524,288 (maximum allowed value). The 
join_buffer_size and sort_buffer_size parameters were set 
from default to 4 Gb. The read_buffer_size, max_heap_ 
table_size, and thread cache parameters were set from 
default to the maximum allowed value.

Collection of diverse information for graph DB

We collected diverse biological network information 
(genetic variation-gene, protein-protein, drug-gene, drug- 
disease, gene-disease, transcription factor-target genes) from 
the web and classified them into five layers (Tables 2 and 3). 

Data processing and modeling

After data collection, we first classified each data into 
nodes (i.e., gene, protein, disease, drug, etc.) and relation-
ships (i.e., gene-disease, disease-drug, or SNP-gene) and 
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Fig. 3. Construction of graph model 
of biological relationships. Each node
represents a biological element, and 
nodes are connected by various types 
of relationships. Each node can define
various properties. Relationships can 
be defined by various types, and each
relationship has various properties. 
This allows a detailed search through
the property when retrieving nodes 
and relationships.

Fig. 2. Preprocessing for data structure modeling of graph database:
(1) data set download using CSV or TSV format; (2) standardized 
representation of each node: gene, protein, disease, etc; (3) integra-
tion of node-node (e.g., gene-protein, gene-disease, drug-disease, 
etc.) associations from multiple data sources; and (4) filtering of
unconnected and redundant entities. The final graph database 
contains 114,550 nodes and 82,674,321 relationships.

Fig. 4. Schematic of an integrated graph model, showing the node
types and the relationship types used in the integrated biological 
dataset and how nodes interact with one another. GO, gene 
ontology; SNP, single nucleotide polymorphism; CNV, copy number
variant.

removed redundant and ambiguous nodes and relationships 
(Fig. 2). Then, we integrated and expanded all nodes and 
relationships (Fig. 3). Next, we created data models for each 
type of node and relationship (Figs. 4 and 5).

Results
Comparison of Neo4j after optimization

We tested how the optimization of the Neo4j system 
improved its performance. We compared two servers: 
optimized versus non-optimized servers. The non-optimized 
servers had default settings for OS memory and environment. 
The optimized server had several modified settings in (1) 
page cache sizing, (2) OS memory, (3) heap memory of the 
JVM, and (4) the number of open file limits.

We performed the same query on each server to compare 
the query performance of non-optimized and optimized 
servers. We measured the time to return results by perform-
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Fig. 5. Procedure for importing integrated relationship data into a
graph database. ‘DataManager.java’ defines the relationship between
each raw data to be input and performs preprocessing steps, such 
as removing duplicates. ‘Parsers.java’ reads raw data from a text 
file and stores them in the graph database. ‘Mapping.java’ classifies
nodes and relationships from the parsed raw data. ‘Filter.java’
removes duplicate or ambiguous nodes and relationships among 
created nodes and relationships. ‘BuildManager.java’ structures the
filtered nodes and relationships information according to the 
previously defined graph database model structure. ‘DataStructure.
java’ and ‘Integrate.java’ build a graph database by allocating nodes
and relationships according to the modeled database structure.

Fig. 6. Comparison of the performance of query execution between
optimized and non-optimized servers. Two servers were queried 
using the same search operation; the optimized server took 138
ms, whereas the non-optimized server took 316 ms.

Fig. 7. Comparison of the performance of query execution between
relational and graph databases. MySQL and Neo4j were compared
by searching relationships on 3 and 4 layers. The search for 3 layers
is a search for gene-disease-drugs associated with a particular 
disease. The search for 4 layers is a search for gene-protein-drug- 
pathway associated with a particular protein.

ing a query to retrieve all data that traverse the relationships 
among genes, drugs, and diseases that increased the 
expression of the BRCA1 gene (Supplementary Fig. 1). 
When the two servers were queried using the same search 
term, the optimized server returned results in 138 ms, while 
the non-optimized server returned results in 316 ms for the 
same query (Fig. 6).

Comparison of search speed between two databases

Traditionally, most biological data have been stored in 
relational database systems. While relational database 
systems are useful for hierarchical and structural storage and 
search of various data, they may be less well suited for the 
storage and search of data with heavy relationships. While 
relational database systems can use multiple ‘joins’ to infer 
relationships among different tables, multiple-join opera-
tions lead to significant execution times for a query. When 
we compared MySQL, one of the most famous relational 
database systems, with Neo4j for the same kinds of data, we 
found that Neo4j outperformed MySQL in all tested cases. 
We performed a query in MySQL and Neo4j to retrieve all 
data belonging to a particular gene-related path in a gene, 
disease, and drug relationship through a 3-layer search. For 

the same task, we performed a MySQL query to search for 
the relationship between proteins that are homologous to a 
particular protein in a gene, protein, drug, and pathway 
relationship and the various nodes that traverse that protein 
(Supplementary Fig. 2). When the two databases (MySQL 
and Neo4j) were queried using the same search term, Neo4j 
took 2.128 s, while MySQL took 58.325 sec for a 3-layer 
search. For the 4-layer search, Neo4j took 20.128 s, while 
MySQL was unable to return a result (Fig. 7).
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Fig. 8. Examples of using a graph database to find biologically meaningful information. Comparison of the nodes in the shortest path
and the nodes in the other path (A) and flexible extension of the existing graph database with a new type of information (B). 

Examples of graph database usage

The graph database provides a flexible search for complex 
relationships, as well as a fast search for relationships among 
multiple nodes. We show here two examples of using a graph 
database. The first is a search for the shortest paths travers-
ing various relationships among connected nodes. For 

example, exploring the relationship between biological 
entities that are involved in two biological mechanisms can 
identify new potential targets for disease treatment and 
provide better insights into drug administration. The first 
example is a graph that identifies the shortest path among 
protein interactions or homologous proteins within three 
levels of the protein subsets associated with a nuclear 
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receptor (Fig. 8A). It can be seen that the two distinct 
subsets of proteins belong to a common pathway.

The second example includes flexible extensions and 
searches of the constructed graph database. When adding a 
new relationship in the constructed graph database, it is 
possible to flexibly define and add the relationship, regard-
less of the structure of the existing graph database. Fig. 8B 
shows an example of adding a result of a new genetic analysis 
to the existing graph database and using it for a search. The 
added information can be easily defined and added without 
restrictions from the existing graph database structure. In 
this example, the added information is a node, named 
‘classifier,’ which is related to the existing graph database. In 
contrast, the relational database system is quite inflexible in 
adding new types of information, because it sometimes 
requires the redesign of existing tables.

Discussion

Most biological databases have used relational database 
systems for data storage, retrieval, and searches. The 
relational database system is a useful system for the storage 
of well-structured data with pre-defined columns. However, 
even though it is termed relational, the relational database 
system does not store relationships among heterogeneous 
data by themselves. Rather, it infers relationships among 
different data during a query by using the ‘join’ operation. 
Thus, paradoxically, the relational database system itself is 
not relational and is inefficient in the storage and retrieval of 
diverse relationships among data. As more and more 
biological data accumulate, it is becoming evident that the 
relational database system is limited in dealing with multi-
tudes of complex networks and relationships among various 
kinds of biological data. 

To overcome the current limits of the relational database 
system in dealing with complex biological networks and 
relationships, we employed and tested the graph database 
system, one of the NoSQL databases that are actively being 
developed to deal with various kinds of large data. We used 
Neo4j, one of the most actively developed, open-source 
graph databases with property graph models. We first 
optimized various parameters of a graph database server for 
maximum performance, as suggested by the Neo4j com-
munity, and achieved more than 40% improvement in 
performance. During the optimization, we found that Neo4j 
creates many index files for the storage of many relationships 
and depends heavily on system memory to read and write 
those index files. Thus, as the size of data increases and as 
more complex queries are executed, the performance of a 
graph database depends more on memory than the CPU. 
Thus, to achieve better performance from a given hardware 

system, the system memory should first be optimized.
When we compared the performance of Neo4j with 

MySQL for several queries on diverse relationships, we 
found that Neo4j always outperformed MySQL in terms of 
execution time−the more complex the relationships that 
were queried, the larger the difference in time between the 
two systems. For very complex relationships−for example, 
tens of millions of relationships or relationships with more 
than five steps (or five join operations)−MySQL was unable 
to finish the query. In this regard, we found that for the study 
of complex relationships among heterogeneous biological 
data, the graph database is more promising than the 
relational database system. 

In real life, various kinds of graph databases have changed 
our lives in many ways. Facebook, LinkedIn, and online 
airplane booking service companies are examples of com-
panies that utilize graph databases extensively. In the field of 
biological research, the graph database also has enough 
potential to find various unknown novel relationships 
among various heterogeneous biological data. 

Supplementary materials

Supplementary data including two figures can be found 
with this article online at http://www.genominfo.org/src/ 
sm/gni-15-19-s001.pdf.
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Supplementary Fig. 1 

Supplementary Figure 1. Cypher query to retrieve the relationships among genes, drugs, and diseases that increased the 

expression of the BRCA1 gene. 



Supplementary Fig. 2 

Supplementary Figure 2. Cypher queries and MySQL queries to compare the search speed of Graph database and MySQL database. 




