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Obesity is a highly prevalent, chronic disorder that has been increasing in incidence in young patients. Both epigenetic and 
genetic aberrations may play a role in the pathogenesis of obesity. Therefore, in-depth epigenomic and genomic analyses will 
advance our understanding of the detailed molecular mechanisms underlying obesity and aid in the selection of potential 
biomarkers for obesity in youth. Here, we performed microarray-based DNA methylation and gene expression profiling of 
peripheral white blood cells obtained from six young, obese individuals and six healthy controls. We observed that the 
hierarchical clustering of DNA methylation, but not gene expression, clearly segregates the obese individuals from the 
controls, suggesting that the metabolic disturbance that occurs as a result of obesity at a young age may affect the DNA 
methylation of peripheral blood cells without accompanying transcriptional changes. To examine the genome-wide 
differences in the DNA methylation profiles of young obese and control individuals, we identified differentially methylated 
CpG sites and investigated their genomic and epigenomic contexts. The aberrant DNA methylation patterns in obese 
individuals can be summarized as relative gains and losses of DNA methylation in gene promoters and gene bodies, 
respectively. We also observed that the CpG islands of obese individuals are more susceptible to DNA methylation compared 
to controls. Our pilot study suggests that the genome-wide aberrant DNA methylation patterns of obese individuals may 
advance not only our understanding of the epigenomic pathogenesis but also early screening of obesity in youth. 
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Introduction

Obesity is a disorder defined by excessive adiposity. Given 
that approximately 3 million people die due to complications 
from being overweight each year worldwide, the steadily 
increasing number of overweight individuals will pose a 
major threat to public health [1]. Notably, the prevalence of 
obesity in children has increased in recent years, and 
addressing childhood obesity has become one of the major 
challenges in the field of public health.

In addition to a number of modifiable risk factors, in-
cluding the social and cultural environment of an individual, 
certain genetic factors can contribute to an increased 
susceptibility to obesity. Genome-wide association studies 

have identified several candidate genomic variants on the 
LEP (leptin), IGF2, and POMC genes [2, 3]. However, such 
variants are observed in only a minority of obese individuals, 
leaving a majority of obese people without the identification 
of causal genomic factors [4]. Moreover, some studies failed 
to identify a strong association between the development of 
obesity in children and in their parents [5, 6]. Thus, the 
causal role of genetics in the etiology of childhood obesity is 
unclear, suggesting that non-genetic factors, including 
behavioral or environmental ones, should be taken into 
account. 

Recently, the role of epigenetic regulation in the 
pathogenesis of multifactorial disorders, including obesity, 
has been recognized [7]. With the advent of high- 
throughput DNA methylation profiling technologies, it is 
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Table 1. Clinical information for the 12 individuals

Variable Normal (n=6) Obese (n=6)

Male 6 6 
Age (y) 12.33 (12–13) 12
Height (cm) 154.2 (143–164.6) 160.8 (152.5–172.4)
Weight (kg) 47.3 (34.6–55.5) 74.8 (68.5–84.5)
BMI (kg/m2) 19.8 (16.9–22.5) 29.0 (26.9–31.0)
Waist (cm) 67.2 (61.4–77.4) 92.9 (90.0–96.3)
Body fat 13.7 (7.9–20.3) 30.2 (27.7–32.9)
Total cholesterol (mg/dL) 143.8 (108–172) 167.3 (116–245)
HDL cholesterol (mg/dL) 50.7 (38–60) 45.7 (31–74)
LDL cholesterol (mg/dL) 80.5 (48–109) 98.0 (62–133)
Fasting insulin (uIU/mL) 12.6 (10.2–18.0) 29.8 (4.8–82.7)
Fasting blood sugar (mg/dL) 87.5 (80–95) 86.8 (79–96)

Values are presented as mean (range).
BMI, body mass index; HDL, high-density lipoprotein; LDL, low-density lipoprotein.

now possible to discover novel genes and markers for the 
early screening and accurate diagnosis of obesity on a 
genome-wide scale. For example, Wang et al. [8] compared 
the DNA methylation profiles obtained from the peripheral 
blood cells of seven young obese and seven normal in-
dividuals using the Illumina HumanMethylation27 BeadChip 
Kit, with a resolution of ∼27,000 CpG sites. They identified 
a number of potential markers (e.g., CpG sites located at the 
promoters of UBASH3A and TRIM3) that showed differential 
methylation between obese and control individuals and 
subsequently validated the loci with pyrosequencing. Almen 
et al. [9] used the same chip to identify DNA methylation 
markers associated with both age and obesity. Since these 
genome-wide studies have mainly focused on marker dis-
covery, in-depth genomic analyses (e.g., exploration of the 
relationship between differentially methylated CpG sites 
and other genomic features or gene expression) are still 
largely uninvestigated.

In this study, we performed genome-wide DNA methy-
lation and transcriptome profiling of young obese indivi-
duals compared with healthy controls (n = 6 for both groups) 
to examine whether changes in DNA methylation or gene 
expression in peripheral blood cells could distinguish obese 
individuals from controls. For methylation profiling, we 
used the methylation microarray with the highest resolution 
currently available—the Illumina HumanMethylation450 
platform, with a resolution of ∼485,000 CpG sites—to 
ensure proper genomic correlative analyses. Recognizing 
that DNA methylation can be used as a predictive marker for 
obesity, we next performed genomic correlative analyses of 
the DNA methylation patterns obtained during profiling to 
identify enrichment patterns of CpG sites that were differen-
tially methylated between obese and control individuals 
with respect to genes, CpG islands (CGIs), and epigenomic 

compartments. The putative functions of those genes 
harboring the differentially methylated CpGs were also 
investigated. 

Methods
Patient and control samples

The subjects in this study were selected from a cohort that 
was part of a community-based prevention and management 
program of childhood obesity in a rural area of Korea 
(Chungju, Chungcheongbuk-do). Twelve participants, six 
obese children with a high body mass index and six children 
with a normal body weight, were randomly selected for this 
pilot study (Table 1). All individuals were 12–13 years old, 
male and had an East Asian ancestry. Since the subjects of 
this study were minors, informed consent for all individuals 
was obtained in written format both from the participants 
and their parents. This study, including the consent pro-
cedure, has been approved by the Institutional Review Board 
(KIRB-00524-010) at The Catholic University of Korea, 
College of Medicine.

DNA methylation and expression profiling

The samples for DNA methylation and gene expression 
profiling experiments were prepared as follows. Blood from 
each individual was collected into two EDTA tubes (3 mL). 
After the contents had been sufficiently mixed for 5 min, the 
tubes were stored in a refrigerator. The genomic DNA and 
total RNA were extracted using DNeasy and RNeasy Blood 
and Tissue Kits (Qiagen, Hilden, Germany) according to the 
manufacturer’s protocol. Bisulfite conversion of genomic 
DNA was carried out using an EZ DNA methylation kit from 
Zymo Research (Irvine, CA, USA), and DNA methylation 
profiles were generated using the Illumina Human-
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Methylation450 platform (Illumina Inc., San Diego, CA, 
USA). Background correction and dye bias equalization were 
conducted using methylumi and lumi packages in R, 
respectively. Then, the data was normalized using the beta 
mixture quantile method [10]. The methylation levels of 
individual CpG sites were estimated as beta-values, which 
are the ratio of intensities between locus-specific methylated 
and unmethylated bead-bound probes. For statistical analysis, 
the DNA methylation level at each CpG site was converted to 
an M-value using the logit transformation as recommended 
by Du et al. [11] and Marabita et al. [12]. The probes 
annotated as NCBI’s reference SNP ID (rs ID) numbers were 
removed, then the methylation status of a total of 485,512 
CpG sites were used for the analysis. 

Genome-wide gene expression levels were measured 
using an Illumina Human HT-12 v4 Expression BeadChip 
Kit, with 47,318 probes. The extraction of raw data and the 
subsequent preprocessing were performed using the 
Illumina GenomeStudio software according to the manu-
facturer’s instructions. The obtained expression profiles 
were then quantile normalized using the R preprocessCore 
package. The DNA methylation and DNA expression profile 
datasets were submitted to ArrayExpress (accession numbers 
E-MTAB-3757 and E-MTAB-3753, respectively). DNA and 
RNA from 12 subjects were loaded onto a single 12-well chip 
for methylation and gene expression analyses, respectively, 
so that batch effect adjustment did not need to be con-
sidered. 

Unsupervised clustering

Hierarchical clustering for both gene expression and DNA 
methylation was carried out using the R package. Euclidean 
distance was used as a distance metric, and single-linkage 
clustering was adopted. For gene expression profiles, highly 
variable genes were selected using the mean absolute 
deviation, and clustering analyses were conducted using 
these 1,000 selected genes.

Statistical analysis 

Hypermethylated and hypomethylated CpG sites iden-
tified in each sample were partitioned using a Gaussian 
mixture model [13], based on the distribution of the 
M-values in each sample. For each sample, the Expectation- 
Maximization algorithm was run 100 times with different 
seed values, and the model with the largest likelihood value 
was chosen as the best-fit model within the 100 ex-
periments. Then, the hyper methylated and hypomethylated 
CpG sites in each sample were assigned by selecting the 
component with the bigger corresponding posterior proba-
bility. The analyses were performed using the R mixtools 
package [14]. The differentially methylated CpG sites and 

the differentially expressed genes were identified using the 
empirical Bayes model implemented in the limma package 
[15]. 

Chromatic region identification

Chromatin statuses were obtained from ChromHMM 
results [16], coordinated using human genome build 37 
(hg19), which was downloaded from the University of 
California, Santa Cruz (UCSC) Encyclopedia of DNA 
Elements (ENCODE) as a Browser Extensible Data (BED) 
format. The chromatin state at the differentially methylated 
CpG sites was determined by finding overlaps with the 
regions defined in the dataset given in the software.

Results
Differences in DNA methylation and gene 
expression patterns between obese and normal 
individuals

We first investigated whether gene expression levels 
and/or DNA methylation profiles can distinguish obese 
individuals from control individuals with normal body 
weights (n = 6 in each group). To this end, we performed 
unsupervised hierarchical clustering analyses using gene 
expression profiles. No clear segregation was observed 
between the obese and control individuals using the gene 
expression profiles (Fig. 1A). In contrast to gene expression, 
hierarchical clustering using DNA methylation profiling 
revealed a unique cluster of obese individuals that was 
segregated from the controls (Fig. 1B), suggesting that the 
obese individuals may harbor characteristic epigenetic 
marks in their blood cells. We next investigated the global 
distribution of DNA methylation levels of all CpG sites 
examined across the 12 individuals. The distribution of 
beta-values (Fig. 1C) showed a bimodal distribution whose 
two peaks correspond to the hypomethylated and hyper-
methylated CpG sites. After transforming the beta-values to 
M-values (Fig. 1D), we divided the DNA methylation sites 
into hypomethylated and hypermethylated CpG sites using 
the Gaussian mixture model. Boxplots of M-values cor-
responding to hypomethylated and hypermethylated CpG 
sites are shown for each sample in Fig. 1E and 1F, 
respectively. Of note, when sorted by median value, a clear 
segregation of obese individuals from controls was observed 
in both profiles. M-values representing hypomethylated 
CpG sites skewed higher for obese individuals compared 
with controls, and the resulting shift in median values was 
responsible for the segregation of obese and control 
individuals (p ≈ 0.0 for all normal vs. all obese; one-tailed t 
test) (Fig. 1E). In addition, the hypermethylated CpG sites of 
obese individuals tended to have lower M-values compared 
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Fig. 1. Distribution of DNA methyla-
tion profiles. Hierarchical clustering 
was performed using the expression 
of genes (A) and the DNA methylation
patterns (B) in obese (Obese 1–6) and 
control individuals (Normal 1–6). (C) 
The distribution of beta-values is shown
across 12 individuals (red and blue for
obese and control individuals, respec-
tively). Left and right insets are mag-
nified as views of peaks representing
hypomethylated and hypermethy-
lated CpG sites, respectively. (D) The
distribution of M-values represented in
a similar manner to that shown in panel
C. (E) Boxplot of hypomethylated CpG 
sites shown across 12 individuals. The
cases are sorted in order of the median
of M-values. (F) Hypermethylated CpG 
sites are represented in a similar 
manner to that shown in panel E.

to controls (p ≈ 0.0 for all obese vs. all normal; one-tailed t 
test) (Fig. 1F). The overall M-value distribution between 
obese and control individuals suggests that the difference in 

methylation between two groups may be subtle, but our 
analyses revealed the CpG sites in obese individuals may 
have less frequent hypomethylation and hypermethylation 
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Fig. 2. Distribution of hypermethylated and hypomethylated CpG sites with respect to nearby genes and CpG islands (CGIs). (A) The
numbers of hypermethylated and hypomethylated CpG sites are shown for six gene-based CpG categories. (B) CGI-based CpG categories
are represented in a similar manner to that shown in panel A. The y-axis is the summation of the CpG sites across all individuals. TSS1500,
1,500 bp regions upstream of the transcription start site; TSS200, 200 bp regions upstream of the transcription start site; UTR, untranslated
region; CGI, CpG island. 

compared to controls. 

The extent of DNA methylation varies across the 
genome

To investigate the level of CpG methylation with respect 
to nearby genes or CGIs, we categorized the CpG sites into 
six regional categories: the 3' untranslated region (UTR), 5' 
UTR, first exon, gene body, TSS200, and TSS1500. TSS200 
and TSS1500 represent the 200 bp and 1,500 bp regions 
upstream of the transcription start site (TSS), respectively. 
We also categorized CpG sites as follows: CGIs (i.e., those 
belonging to CGIs), CGI shore and shelf (i.e., those located 
in the ＜2 kb flanking a CGI and the ＜2 kb flanking outward 
from a CpG shore, respectively), and ‘other.’ North (N) and 
south (S) indicate upstream and downstream of the CGI, 
respectively. Fig. 2A and 2B show the number of hyper-
methylated and hypomethylated CpG sites, as distinguished 
by M-values, in six gene-based and five CGI-based CpG 
categories. 

We calculated the ratio of hypermethylated to hypome-
thylated CpG sites, which was defined as the number of 
hypermethylated CpG sites divided by the number of 
hypomethylated CpG sites (Supplementary Fig. 1). It should 
be noted that the ratio of hypermethylated to hypo-
methylated CpG sties varied markedly in all individuals with 
respect to the genomic contexts, i.e., the previously des-
cribed gene-based (0.20–5.54) and CGI-based (0.23–8.66) 
regional categories. The genomic regions near TSSs, inclu-
ding the 5' UTR, first exon, and TSS200, were mainly 
dominated by hypomethylated CpG sites (the ratios were 
0.51, 0.24, and 0.20, respectively). By contrast, the CpG sites 
at the gene body and 3' UTR regions were usually 

hypermethylated (the ratios were 2.47 and 5.54, 
respectively). Moreover, CGIs were usually hypomethylated 
(the ratio was 0.23), but the 5' and 3' CGI shelf regions were 
hypermethylated (the ratios were 7.87 and 8.66, 
respectively). The observed overall pattern of DNA 
methylation with respect to nearby genes or CGIs agrees well 
with previous reports: CpG sites at promoters with active 
transcription have less DNA methylation compared to 
downstream compartments such as the gene body, and CpG 
sites at CGIs are relatively free from methylation. 

The genomic and epigenomic landscape of 
differentially methylated CpG sites in obesity

We next identified the CpG sites differentially methylated 
between obese and control individuals. A total of 6,041 
differentially methylated CpG sites were identified to have a 
significance level of p ＜ 0.001. The false discovery rate 
(FDR) was 0.08 when the Benjamini-Hochberg method was 
applied to adjust the p-values. Supplementary Fig. 2 shows a 
Manhattan plot for the log-transformed significance levels of 
all CpG sites investigated.

Fig. 3A shows an uneven distribution of differentially 
methylated CpG sites with respect to the six gene-based 
CpG categories. The over- and under-representation of 
differentially methylated CpG sites was observed in gene 
body, TSS200, and TSS1500 regions (p = 4.6 × 10-50, p = 
4.33 × 10-12, and p = 4.33 × 10-19, respectively). When the 
genomic context of CGIs was taken into account (Fig. 3B), a 
relative deficit of differentially methylated CpG sites in the 
nearby TSS regions was observed in CGIs, while the 
enrichment of differentially methylated CpG sites in the 
gene body was observed at regions distant from CGI (i.e., 
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Fig. 3. Genomic contexts for the 
differentially methylated CpG sites. 
(A) A plot showing the proportions of
the differentially methylated CpG sites
across gene-based categories. The 
p-value was estimated using Fisher's 
exact tests. Red and blue colors re-
present the relative over- and under- 
representation of differentially methy-
lated CpG sites in each of the genomic
regions. (B) Shown in relation to the 
CpG islands (CGIs) in each genomic 
region. (C) The numbers of obese- 
hypermethylated and obese-hypo-
methylated CpG sites identified from 
the differentially methylated sites are 
shown. (D) The proportions of obese-
hypermethylated and obese- hypome-
thylated CpG sites are shown with 
respect to nearby genes. (E) The same 
proportions are shown with respect to 
CGI-based categories. TSS1500, 1,500
bp regions upstream of the transcri-
ption start site; TSS200, 200 bp 
regions upstream of the transcription 
start site; UTR, untranslated region.

CGI shelves and others).
Next, we divided the differentially methylated CpG sites 

into hypermethylated and hypomethylated sites in obese 
children. We annotated them as ‘obese-hypermethylated and 
obese-hypomethylated CpGs’ to distinguish them from the 
hypomethylated/hypermethylated CpG sites identified in 
individual M-value profiles. We observed a dominance of 
obese-hypomethylated CpG sites (79.1%; 4,779 sites) over 
obese-hypermethylated CpG sites among all of the 
differentially methylated CpG sites (Fig. 3C). We then 
investigated the relative ratio of obese-hypermethylated to 
obese- hypomethylated CpG sites in gene-based and 
CGI-based regional categories (Fig. 3D and 3E). The majority 
of differentially methylated CpG sites in the gene body and 3' 
UTR regions were obese-hypomethylated CpG sites (the 
ratios of obese-hypermethylated/obese-hypomethylated CpG 
sites in these regions were 0.13 and 0.03, respectively) (Fig. 
3D). On the other hand, the differentially methylated sites in 
the genomic regions near the TSS, such as the TSS200 and 
first exon regions, were mainly composed of obese-hyper-
methylated CpG sites (the ratios were 2.14 and 1.52, 
respectively) (Fig. 3D). A dominance of obese-hypermethy-
lated CpG sites was also noted in CGI regions (the ratio was 
1.64), whereas CpG sites in CGI-shelf regions were largely 

obese-hypomethylated (the ratio was 0.02) (Fig. 3E). Of 
note, 70.8% of obese-hypermethylated CpG sites were found 
in CGIs. 

Next, we categorized the differentially methylated CpG 
sites according to 15 different chromatin states, as described 
in the ChromHMM software [16]. Given the tissue-specific 
epigenetic configurations, we elected to use the annotation 
dataset of lymphoid origin (from the GM12878 lymphoblas-
toid cell line) as the profile that best matched ours. We first 
observed that the differentially methylated CpG sites were 
overrepresented mainly on transcribed regions (Fig. 4A). 
The p-values were 2.91 × 10-3, 1.63 × 10-11, and 8.31 × 10-16 
for the 9_Txn_Transition (transcription transition), 10_ 
Txn_elongation (transcription elongation) and 11_Weak_ 
Txn (weak transcription) regions, respectively (Fisher’s 
exact test). It was also observed that promoter and enhancer 
regions were largely depleted of differentially methylated 
CpG sites. In particular, all promoter-related states re-
presented in the first three state categories (1_Active_ 
Promoter, 2_Weak_Promoter, and 3_Poised_Promoter) 
showed underrepresentation for the differentially methyla-
ted CpG sites (Fig. 4A). That is, as we observed in the 
genomic regional abundance analysis, the differentially 
methylated CpG sites were mainly found at the genomic 
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Fig. 4. Chromatin state enrichment at
the differentially methylated regions. 
(A) The proportions of chromatin states
for the differentially methylated CpG 
sites compared to all CpG sites. The 
value was calculated as the ratio of 
the number of CpGs on the chromatin
states among the total differentially 
methylated CpGs divided by the ratio
of chromatin states among all CpGs. 
p-values from Fisher's exact tests are 
shown at the upper side on each bar. 
(B) Proportions of obese-hypermethly-
lated and obese-hypomethylated CpG
sites are shown across 15 chromHMM-
annotated chromatin states.

regions marked for active transcription. When the differen-
tially methylated CpG sites were categorized into obese- 
hypermethylated and obese-hypomethylated CpG sites (Fig. 
4B), a majority of the differentially methylated CpG sites in 
transcribed and promoter-related regions were obese-hyper- 
and obese-hypomethylated CpG sites, respectively. For 
instance, 96.6% of CpG sites in active promoter regions, as 
well as 95.7% and 62.4% of CpG sites at poised promoter and 
weak promoter, respectively, were obese-hypermethylated 
CpG sites. In contrast to the promoter regions, 95.7% of the 
differentially methylated CpG sites in transcriptional regions, 
annotated in ChromHMM as transcriptional transition, 
elongation, or weak transcription, showed lower DNA 
methylation levels in obese children.

Functional relationships between DNA methylation 
markers and obesity

We next identified 21 genes with significant enrichment of 
differentially methylated CpG sites in the obese children 
(Fisher’s exact test; p ＜ 0.001) (Supplementary Fig. 3). The 
CpG sites in the enriched genes were mainly obese-hypo-
methylated and located mostly in the gene body region, 
which was expected given the overall distribution of 
differentially methylated CpG sites. We further investigated 
the extent of differential expression of these genes between 
the obese and control individuals using the same statistical 
method as was used for the identification of the differentially 
methylated CpG sites (R limma package; see Methods). 
However, none of these 21 genes showed significantly 
differential expression (unadjusted p ＜ 0.001). Supplemen-
tary Table 1 lists the significance level for the differential 
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expression of 18 of the 21 genes; excluded are MIR1185-2, 
FLJ39609, and CELA2A, with no expression values available. 
Although one gene, ZNF154, with obese-hypermethylation 
at TSS200 showed a slight downregulation in expression 
(unadjusted p ＜ 0.05), most cases showed no clear relation-
ship between gene expression and CpG methylation. One 
possible explanation for this observation is that the differen-
tially methylated CpG sites at the enriched genes were 
mainly located in the gene body, the methylation of which is 
not always associated with the expression of the genes, in 
contrast to the methylation of regulatory regions such as 
gene promoters. In this exploratory study, we focused on the 
identification of differentially methylated CpG sites that may 
be able to distinguish young obese individuals from young 
normal individuals; the association between gene expression 
and CpG methylation, as well as their early diagnostic 
potential, requires further investigation.

Lastly, we investigated the potential relationship between 
the observed genes with significant enrichment of differen-
tially methylated CpG sites and the pathogenesis of obesity 
based on previously published studies. Among the genes 
with differentially methylated CpG sites, ZNF154 encodes a 
member of the zinc finger protein family, which are trans-
criptional regulators of adipogenesis [17]. POLR3E encodes 
DNA-directed RNA polymerase III subunit RPC5, and it is 
known that the loss of MAF, which is a repressor of RNA 
polymerase III, affects resistance to obesity [18]. Although 
the direct effects of SDK1, which encodes sidekick cell 
adhesion molecule 1, on obesity are unknown, some studies 
have investigated the relationships between cellular adhesion 
molecules and obesity [19]. KIAA0146 is a scaffolding 
protein involved in DNA repair, and it has been reported that 
DNA damage or DNA repair deficiency may be associated 
with obesity [20]. GPR125 encodes a membrane protein that 
belongs to the G protein-coupled receptor superfamily. 
Previous studies have revealed that G protein-coupled 
receptors may serve as therapeutic targets for obesity and 
type 2 diabetes [21]. CAPS2 encodes a calcium-binding 
protein and may function in the regulation of the secretion of 
insulin [22]. RNF213 encodes a ring finger protein, which is 
a specialized type of zinc finger protein. A study found the 
depletion of RNF213 increased glucose tolerance in mice 
[23]. CELA2A belongs to the chymotrypsin-like elastase 
family, and a relationship between neutrophil elastase and 
insulin resistance has been previously reported [24]. Given 
that some of the genes harbor more frequent than expected 
differentially methylated CpG sites have been previously 
implicated in the metabolic disorders, further investigation 
of these genes and their role in childhood obesity is required.

Discussion

In this study, we carried out the microarray-based pro-
filing of DNA methylation and gene expression in peripheral 
white blood cells obtained from obese and normal children. 
We investigated whether the DNA methylation or gene 
expression profiles (1) are distinct between the young obese 
individuals and controls, (2) show unique enrichment 
patterns of hyper-vs-hypomethylated CpG sites with respect 
to nearby genes or CGIs, and (3) whether such enrichment 
patterns are also observed for CpG sites that are differen-
tially methylated between young obese individuals and 
controls. 

We first examined whether the gene expression or DNA 
methylation profiles could be used to distinguish the obese 
individuals from the normal control individuals. Unsuper-
vised clustering of the DNA methylation profiles segregated 
the obese individuals from controls, suggesting that the 
young obese individuals harbor epigenetic marks in their 
peripheral blood cells that are distinct from those of normal 
controls. For marker selection, we further performed leave- 
one-out-cross-validation, k-nearest neighborhood (k-NN) 
method-based marker selection, and predictive modeling. 
For 12 rounds of iterations, we selected the top 100 differen-
tially methylated sites using the empirical Bayes approach 
and predicted the phenotypes of the selected cases. However, 
we did not achieve a good classification accuracy using 
jackknife approaches for cross-validation for the gene 
expression datasets or the DNA methylation profiles. The 
results imply that obesity cannot be completely predicted by 
a small number of candidate biomarkers. Instead, our 
genome-wide analyses showed that there are aberrant DNA 
methylation patterns in obese children compared to normal 
children.

Abnormal DNA methylation patterns have been observed 
in wide variety of human diseases. Certain studies suggest 
that abnormal DNA methylation patterns in some of these 
diseases include the loss of DNA methylation on gene bodies 
and the gain of DNA methylation on gene promoter CGIs, 
which is by and large the opposite of the normal physio-
logical methylation pattern found in the human genome [25, 
26]. Our analyses revealed that the majority of the 
differentially methylated CpG sites are those with relative 
hypomethylation in obese children. Such obese-hypomethy-
lated CpG sites were overrepresented in gene body regions 
and represented one of the major epigenetic alterations in 
the blood cells of young obese individuals. In addition, our 
results implied that regulatory CpG sites near TSS in obese 
individuals tended to be relatively hypermethylated com-
pared to controls. This observation was further validated by 
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the evaluation of chromatin status using chromHMM data, 
where the combined analyses showed relative hypermethy-
lation of regulatory regions (active, weak, and poised promo-
ters) but hypomethylation of transcribed regions (those 
annotated as transcription transition, elongation, or weak 
transcription) in obese individuals compared to controls.

When we searched for differentially expressed genes 
using the same criteria as those used for the differentially 
methylated CpG sites, a relatively small number of genes 
with a p ＜ 0.001 and a corresponding FDR of 0.91 were 
identified (Supplementary Table 2). Given the fact that the 
expression-based k-NN predictive model failed to identify 
obese individuals, the gene expression profiles may not serve 
as appropriate biomarkers of obesity in youth. However, we 
found that some of the top-ranked genes were also related to 
epigenetic regulation. For example, histone deacetylases 
(HDACs) are related to insulin sensitivity, and HDAC in-
hibition can be a treatment for diabetes. Moreover, since 
HDAC2 can directly bind to DNMT1, a widely expressed 
DNA methyltransferase that plays a role in maintaining 
DNA methylation patterns [27], the change in HDAC2 
expression may be related to the aberrant DNA methylation 
patterns we observed in obese individuals.

Our pilot study provides a line of evidence for the 
importance of epigenomic characteristics in investigating 
childhood obesity and also the potential utility of such 
markers for the early diagnosis of obese children. Blood 
represents a mixture of multiple types of cells, the composi-
tion of which has been reported to vary between obese and 
lean individuals. For example, through analysis of blood cell 
fractions, a study verified that DNA methylation in B cell and 
natural killer lymphocytes is altered in obese subjects [28]; 
other studies have reported similar results [29, 30]. The 
cellular heterogeneity and the differing number of blood cell 
counts between individuals could affects DNA methylation 
analysis [31]. Thus, further investigation of the DNA 
methylation profiles, with consideration of the cell 
heterogeneity in blood, may lead to a clearer understanding 
of the epigenomic differences in obese children.

To date, a number of genome-wide studies have presented 
associations between inherited germline variants and 
metabolic disorders, such as type 2 diabetes and obesity. 
However, a majority of patients still lack clarity on the causal, 
heritable factors underlying their disease, suggesting that 
there are still many limitations to overcome for these 
germline markers to be practically used for diagnostic and 
prognostic purposes. Measuring the alterations in DNA 
methylation profiles detectable in blood as a minimally 
invasive biological resource may be useful not only in 
understanding the epigenomic effects on obesity, but also in 
providing critical insight and clinical applications for the 

early detection of obesity. However, our findings were 
obtained from a relatively small cohort (n = 6), so the 
statistical power was limited. Thus, the interpretation of the 
results from our pilot study requires caution. Further in-
vestigation to ascertain the clinical impact of our results is 
needed in a larger, independent cohort of young obese 
individuals. Additional studies integrating genetic and 
epigenetic information could unveil clues that deepen our 
understanding of the pathogenesis of obesity and that help 
to improve the diagnostic and prognostic markers for use in 
the clinic.

Supplementary materials

Supplementary data including two tables and three 
figures can be found with this article online at http:// 
www.genominfo.org/src/sm/gni-15-28-s001.pdf.
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Supplementary Table 1. Expression comparison of genes with significant enrichment of 

differentially methylated CpGs 

Symbol p-value FDR
C21orf56 0.030503 0.957686
ZNF154 0.040895 0.957686
SDK1 0.23544 0.965175
KIAA0146 0.289321 0.965318
SKIV2L 0.094446 0.957686
GPR125 0.819418 0.99262
SORBS2 0.885967 0.997319
C14orf70 0.816179 0.992498
POLR3E 0.765737 0.989988
CTBP2 0.080374 0.957686
DLGAP2 0.224745 0.962153
CAPS2 0.588693 0.986149
GIMAP1 0.140035 0.957686
RNF213 0.547384 0.982494
MND1 0.954998 0.999836
SRM 0.070763 0.957686
TGM6 0.506865 0.977098
WDR27 0.124784 0.957686

FDR, false discovery rate. 

 



Supplementary Table 2. Differentially expressed genes 

Symbol p-value FDR 
GNG7 5.43E-05 0.913233955
LOC400890 0.00010231 0.913233955
RTN4 0.000123827 0.913233955
HDAC2 0.000151315 0.913233955
REEP5 0.000164331 0.913233955
MIR30A 0.000236918 0.913233955
TMOD1 0.000237557 0.913233955
XPR1 0.000252695 0.913233955
COL4A1 0.000261597 0.913233955
MSX2 0.000294059 0.923903924
UTP23 0.000345272 0.957686345
BCL9 0.000440861 0.957686345
MAP1LC3C 0.000461436 0.957686345
LOC644682 0.000461498 0.957686345
BTF3L4 0.000476407 0.957686345
MTPN 0.00050862 0.957686345
LOC646278 0.000588438 0.957686345
PTPN12 0.000598659 0.957686345
LOC284023 0.000614055 0.957686345
LOC729510 0.000618711 0.957686345
HIST1H3G 0.000654751 0.957686345
TRIM69 0.000700616 0.957686345
STON1 0.000764487 0.957686345
LOC652579 0.000808139 0.957686345
DTL 0.000815974 0.957686345
LOC652127 0.000847992 0.957686345
LOC647850 0.000904861 0.957686345
DYRK1A 0.000942617 0.957686345
DECR2 0.000947844 0.957686345
LOC100132964 0.000992485 0.957686345

FDR, false discovery rate. 

 



 

Supplementary Fig. 1. Hyper-vs.-hypomethylated CpGs ratio with respect to nearby genes and 

CGIs. (A) The hyper-vs.-hypo-methylated CpGs are shown for six gene-based CpG categories. 

(B) Similarly shown for CGI-based CpG categories. The y-axis is calculated as the number of the 

hypermethylated CpGs divided by the number of hypomethylated CpGs. TSS1500, 1,500 bp 

regions upstream of the transcription start site; TSS200, 200 bp regions upstream of the 

transcription start site; UTR, untranslated region; CGI, CpG island.



 

Supplementary Fig. 2. Manhattan plot for the significance of the differentially methylated 

CpG sites. Blue line represents the significance level or p-value of 0.001.



 

Supplementary Fig. 3. Genes significantly enriched with CpGs differentially methylated 

between obese and control individuals. The number in each cell is the number of the 

differentially methylated CpGs in the corresponding genomic region. Red and blue represent 

obese-hypermethylated and obese-hypomethylated CpGs, respectively. TSS1500, 1,500 bp 

regions upstream of the transcription start site; TSS200, 200 bp regions upstream of the 

transcription start site; UTR, untranslated region. 




