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Abstract

Significant interest in recent years has focused on gut microbiota-host interaction because 

accumulating evidence has revealed that intestinal microbiota play an important role in human 

health and disease, including cardiovascular diseases. Changes in the composition of gut 

microbiota associated with disease, referred to as dysbiosis, have been linked to pathologies such 

as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity and type 2 diabetes 

mellitus. In addition to alterations in gut microbiota composition, the metabolic potential of gut 

microbiota has been identified as a contributing factor in the development of diseases. Recent 

studies revealed that gut microbiota can elicit a variety of effects on the host. Indeed, the gut 

microbiome functions like an endocrine organ, generating bioactive metabolites, that can impact 

host physiology. Microbiota interact with the host through a number of pathways, including the 

trimethylamine (TMA)/ trimethylamine N-oxide (TMAO) pathway, short-chain fatty acids 

pathway, and primary and secondary bile acids pathways. In addition to these “metabolism 

dependent” pathways, metabolism independent processes are suggested to also potentially 

contribute to CVD pathogenesis. For example, heart failure associated splanchnic circulation 

congestion, bowel wall edema and impaired intestinal barrier function are thought to result in 

bacterial translocation, the presence of bacterial products in the systemic circulation and 

heightened inflammatory state. These are believed to also contribute to further progression of heart 

failure and atherosclerosis. The purpose of the current review is to highlight the complex interplay 

between microbiota, their metabolites and the development and progression of cardiovascular 

diseases. We will also discuss the roles of gut microbiota in normal physiology and the potential of 

modulating intestinal microbial inhabitants as novel therapeutic targets.
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INTRODUCTION

Cardiovascular disease (CVD) remains the leading cause of death and disability in 

developed countries. CVD is responsible for approximately one of every three deaths in the 

United States and one of every four deaths in Europe.1 Further, the steady increase of 

common risk factors for CVD, such as obesity, type 2 diabetes (T2DM) and the metabolic 

syndrome, compels the search for more effective strategies to prevent and modify the course 

of these cardiometabolic disorders.2

Significant interest has recently focused on the role of human gut microbiota in CVD and 

metabolic disorders. Microbial sequencing analysis has provided a wealth of information 

about the presence of characteristic gut microbiota associated with CVD.3–5 Also, a growing 

body of evidence shows that manipulation of the composition of gut microbiota affects host 

metabolism.6, 7 Furthermore, recent studies suggest that gut microbiota produce numerous 

metabolites, some of which are absorbed into the systemic circulation and are biologically 

active, whereas others are further metabolized by host enzymes, and then serve as a mediator 

of microbial influence on the host.8–13 Thus, the gut microbiome, functioning as a virtual 

endocrine system, communicates with distal organs through metabolism-dependent 

pathways.8–11, 14–22 This review will discuss the roles of gut microbiota in normal 

physiology, their associations with disease settings, and the potential of modulating gut 

microbiota as novel therapeutic targets with particular emphasis on the complex interplay 

between microbiota, their metabolites and CVD.

THE ROLE OF GUT MICROBIOTA IN HOST PHYSIOLOGY

The human body is inhabited by a huge number of bacteria, archaea, viruses, and unicellular 

eukaryotes.23 The collection of microorganisms that live in coexistence with their hosts has 

been referred to as the microbiota. The microbiota colonize mainly in the gastrointestinal 

tract, especially in the colon, that is primarily anaerobic, and has a rich nutrient environment 

serving as a preferred site for intestinal microbial colonization.

Gut microbiota participate in food digestion through two main catabolic pathways 

categorized as saccharolytic or proteolytic.24 In the saccharolytic pathway, gut microbiota 

break down sugars and are responsible for the majority of short-chain fatty acid (SCFA) 

production. The second catabolic pathway is represented by protein fermentation, which also 

induces SCFA formation, but leads to other co-metabolites such as ammonia, various 

amines, thiols, phenols, and indoles. Some of these metabolites are potentially toxic, and 

because they are predominantly renally cleared, their accumulation are often considered 

microbial uremic toxins.25

Gut microbiota perform multiple functions and interact with the host beyond its role in 

supporting physiological functions in food digestion. Gut microbiota constitute and regulate 
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the intestinal mucosal barriers, control nutrient uptake and metabolism, assist with 

maturation of immunological tissues, and prevent propagation of pathogenic 

microorganisms.26–30 Under physiological conditions, gut microbiota continue to stimulate 

the immune system, which is a rapid and effective mechanism for defending against 

pathogens.31 Collectively, the microbiota exert a fundamental influence on systemic 

immunity and metabolism, and healthy gut microbiota are largely responsible for the overall 

health of the host.23

PATHOGENIC MECHANISM OF GUT MICROBIOTA AND METABOLITES IN 

CARDIOMETABOLIC DISEASES

Altered composition of gut microbiota

The majority of the gut microbial community is composed of only five phyla (Bacteroidetes, 
Firmicutes, Actinobacteria, Proteobacteria and Cerrucomicrobia).32 However, there is 

considerable diversity on the species level and their relative abundance. In the healthy gut, 

anaerobic Bacteroidetes and Firmicutes contribute more than 90 % of the total bacterial 

species.32 However, the ratio of the Firmicutes to Bacteroidetes is not the same in all 

individuals. Inter-individual variation in bacterial diversity is caused by differences in host 

genomes and also by environmental factors, such as antibiotic use, lifestyle, hygiene, and 

diet. 33, 34 Recently, as developments in genome sequencing technologies and bioinformatics 

have enabled us to identify and characterize in detail these microorganisms, the composition 

and potential roles of the bacteria in the pathogenesis of cardiometabolic disorders have 

been intensely studied.35–38

Gut microbiota-derived signaling molecules

Gut microbiota can elicit effects on the host through a variety of processes. To communicate 

with distant organs, gut microbial signals first need to be transmitted across the intestinal 

epithelium. In some cases, these signalling molecules are a structural component of 

microbiota such as lipopolysaccharide (LPS) and peptidoglycans that interact with host 

mucosal surface cells, often through so called pattern recognition receptors (PRR).39 PRR 

recognize pathogen-associated molecular patterns (PAMPs), which stimulate and instruct 

host immune response.40 Thus, LPS and peptidoglycans can trigger numerous downstream 

signalling processes with host receptors both at the epithelial cell border, as well as within 

vasculature, particularly under conditions when gut wall barrier function is impaired.41, 42 

Gut microbiota can also impact host processes via bioactive metabolites that can affect distal 

organs directly or indirectly.43 Gut microbiota interact with the host through a number of 

pathways, including the trimethylamine (TMA)/ trimethylamine N-oxide (TMAO) pathway, 

SCFAs pathway, and primary and secondary bile acid (BAs) pathways.8–11, 14–22 Some of 

these molecules have been shown to functionally interact with other endocrine hormones, 

including ghrelin, leptin, glucagon-like peptide 1 (GLP-1), and peptide YY (PYY).44, 45 

Others have been reported to stimulate the parasympathetic nervous system, thereby 

impacting glucose homeostasis and other metabolic processes linked to development of 

metabolic syndrome.46
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Atherosclerosis, Coronary Artery Disease and Myocardial Infarction

Atherosclerotic plaques contain bacterial DNA, and the bacterial taxa observed in 

atherosclerotic plaques were also present in the gut of the same individuals.3, 38 These 

observations suggest the possibility that the microbial communities at these sites may be a 

source of bacteria in the plaque, which may impact plaque stability and development of 

CVD. In addition to gut microbiota, taxa characteristics of oral microbiota have also been 

detected in atherosclerotic plaque in humans.3 Given the many epidemiological links 

between periodontal disease and CVD,47–49 a role for oral microbiota in the 

pathophysiology of CVD has also been studied.3, 49, 50 Metagenomic sequencing of stool 

microbiota revealed that the microbial composition is altered in patients with unstable versus 

stable plaques, with unstable plaque associated with reduced fecal levels of the genus 

Roseburiam and both increased theoretical capacity of the microbiome to produce pro-

inflammatory peptidoglycans and reduced production of anti-inflammatory carotenes.4 The 

gut microbiome of patients with CVD may thus be fostering inflammation by producing 

more pro-inflammatory molecules.

Recently, a mechanistic link between the gut microbiota and the severity of myocardial 

infarction has been reported in rats.51, 52 Use of broad-spectrum antibiotics was shown to 

affect levels of leptin and analytes produced during aromatic amino acid catabolism, with 

associated reduced myocardial infarct size.51, 52 In addition, in rodent model studies, 

administration of Lactobacillus plantarum was associated with significant reduction in 

infarct size and improved left ventricular function after myocardial infarction.51 Another 

animal model study showed that administration of the Lactobacillus rhamnosus GR-1 

attenuated left ventricular hypertrophy and heart failure after experimental myocardial 

infarction.53 These observations may suggest that probiotics use, in combination with 

standard medication, could offer additional benefits in heat failure patients, such as reducing 

the severity of heart failure after myocardial infarction.

In addition to the alterations in gut microbiota composition, the metabolic potential of gut 

microbiota has been identified as a contributing factor in CVD development. In particular, 

TMAO, the hepatic oxidation product of the microbial metabolite TMA, has gained 

considerable attention as a potential promoter of atherosclerosis and cardiometabolic 

diseases.40, 54 TMA is an organic compound that is generated by the gut microbiota. 

Specifically, microbial metabolism of dietary nutrients that possess a TMA moiety (such as 

choline, phosphatidylcholine, and L-carnitine) is focused primarily on obtaining carbon duel 

source for the microbe. TMA is then produced as a waste product by a variety of microbial 

enzymes (TMA lyases).55–57 TMA is rapidly oxidized into TMAO by flavin 

monooxygenase enzymes in the liver and then released into the circulation.58 TMAO is 

mainly cleared from circulation by the kidneys, and thus, renal function is also important to 

consider when looking at levels of TMAO in the systemic circulation.59

We recently showed the proatherogenic contribution of microbial-host TMA/TMAO 

generation from metabolism of dietary nutrients by using germ-free mice or short-term 

antibiotics for eliminating intestinal microbiota.8 ApoE−/− C57BL/6J mice, only when fed 

with a choline-rich diet and intact gut microbiota, led to an increase in plasma TMAO levels, 

macrophage foam cell formation, and enhanced aortic atherosclerotic plaque. In contrast, 
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germ-free mice and short-term antibiotic suppression of gut microbiota eliminated TMAO 

generating capacity, and the latter reduced atherosclerotic burden.8 These effects were not 

unique to choline or phosphatidylcholine, but have similarly been observed with other 

dietary nutrients that can generate TMAO downstream, including L-carnitine and gamma 

butyrobetaine.9, 55 Comparison of both intestinal microbiota composition and function 

between omnivores and vegans/vegetarians revealed stark differences in gut microbial 

capacity to produce TMA and TMAO from dietary L-carnitine, with vegetarians and vegans 

having minimal capacity to form TMA from carnitine.9 Further, studies using poorly orally 

absorbed antibiotics coupled with the use of dietary intake of isotope-labelled 

phosphatidylcholine have showed a direct demonstration of an obligatory role for gut 

microbes in TMAO generation in humans.22

The association of TMAO levels and adverse clinical consequences has been shown in 

numerous independent cohorts.8, 22, 54, 59–62 The original human studies of more than 1,800 

stable cardiac patients undergoing elective coronary angiography demonstrated that all 

TMAO-associated metabolites—choline, betaine, and L-carnitine—had a positive 

association with prevalent CVDs and incident cardiovascular events.8 Of these 3 

compounds, circulating TMAO levels exhibited a positive correlation with atherosclerotic 

plaque size, whereas triglyceride, lipoproteins, fasting glucose, and hepatic triglycerides did 

not.8 In a subsequent study of over 4,000 subjects undergoing elective coronary 

angiography, elevated TMAO levels were associated with increased risk of incident major 

adverse cardiovascular events (MACE), including death, myocardial infarction and stroke 

over a 3-year follow-up period.22 Specifically, patients in the highest quartile of circulating 

TMAO levels had a 2.5-fold increased risk of having a MACE compared to those in the 

lowest quartile.22 Such prognostic value was independent of traditional cardiac risk factors, 

lipid parameters, C-reactive protein, and even renal function, and the hazard ratio for TMAO 

was much higher than for traditional risk factors such as LDL cholesterol. 22 Since these 

initial studies, numerous additional reports have shown associations between TMAO levels 

and incident CVD risks.22, 59–62 Circulating TMAO was associated with the presence of 

vulnerable coronary plaque, plaque rupture, and long-term risks of incident cardiovascular 

events in patients with acute coronary syndrome.63, 64 Mechanistic studies in animal model 

studies also reveal TMAO alters platelet calcium signalling, and elicits a pro-thrombotic 

effect in vivo.10 These observations suggest that TMAO could be a marker for coronary 

plaque vulnerability and progression, and a direct participant in enhanced risk for 

myocardial infarction. Recently, we observed that higher fasting plasma TMAO levels were 

associated with higher all-cause mortality over five years among 821 consecutive patients 

with adjudicated peripheral artery disease.62 However, although these observations highlight 

that plasma levels of TMAO correlate with CVD risk, there are still some questions 

regarding the causative effects of TMAO and the underlying mechanistic link that explains 

how TMAO might directly or indirectly promote CVD. In recent studies use of a small 

molecule inhibitor of microbial choline TMA lyase activity was shown to suppress microbial 

TMA and TMAO formation, macrophage foam cell formation, and atherosclerosis in vivo.65 

Whether targeting this pathway elicits parallel reductions in CVD risks in humans remains 

unknown, but is an important area of future research.
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Hypertension

Hypertension is the most prevalent modifiable risk factor for CVD. Though few studies have 

linked gut microbial signatures to hypertension in humans, recently, early studies showed 

germ-free rats have an elevated blood pressure, implicating a role for gut microbiota in 

blood pressure regulation.66 More recently, a limited number of studies indicate a direct 

association between gut microbiota and blood pressure control in animal models.67–70 Yang 

et al. compared alterations in the fecal microbiota in the spontaneously hypertensive rat and 

chronic angiotensin II infusion rat models of hypertension.67 They observed a significant 

dysbiosis as a result of decreases in microbial richness, diversity, evenness, and increased 

Firmicutes/Bacteroidetes ratio in hypertensive animals.67 Mell et al. demonstrated 

significant differences in cecal microbiota comparing salt-sensitive and salt-resistant strains 

by using Dahl rats.68 Studies employing angiotensin II-infused germ-free mice showed that 

gut microbiota participate in angiotensin II-induced vascular dysfunction and 

hypertension.71 Recent study showed a blood pressure-lowering effect in a patient with 

treatment-resistant hypertension when treated with a combination of antibiotics. 69 Higher 

abundance of the butyrate-producing genus Odoribacter was associated with lower blood 

pressure in overweight and obese pregnant women.72 These data suggest a strong 

association between gut microbial dysbiosis and hypertension pathology.

SCFAs, which are other important signals generated by the gut microbiota, have been 

recently shown to modulate blood pressure.11 SCFAs are a major product from the microbial 

fermentative activity in the gut, and are likely to have broad impacts on various aspects of 

host physiology, as well as to impact disease susceptibility.73 SCFAs can function to 

stimulate host G-protein coupled receptor (GPR) pathways that impact renin secretion and 

blood pressure regulation.11 A series of studies using the renal and vascular olfactory 

receptor (Olfr) 78 and GPR41 knockout mice further supports involvement of these 

receptors in blood pressure control. For example, stimulation of Olfr78 was observed to 

elevate blood pressure, whereas stimulation of GPR41 lowered blood pressure.74 

Communication between the gut enteric nervous system and the central nervous system has 

similarly emerged as a potential link to blood pressure. 75, 76 Gut microbial products have 

been implicated in sympathetic activation, and maintenance of an influx of lymphocytes to 

intestinal tissue. 77, 7879

Thus, gut microbiota are potentially intertwined functionally to control blood pressure, and 

their dysfunctions could be associated with hypertension. In fact, a beneficial role for 

Lactobacillus probiotics in blood pressure regulation has been reported. 80–82 Furthermore, a 

meta-analysis demonstrated a significant decrease in blood pressure in patients treated with 

probiotics. 83

Heart failure

There is a growing literature to support a role of the gut in the pathogenesis of heart failure - 

the so-called “gut hypothesis of heart failure.” The gut hypothesis implies that decreased 

cardiac output and elevated systemic congestion can lead to intestinal muscosal ischemia 

and/or edema, leading to increased bacterial translocation and increased circulating 

endotoxins that can contribute to the underlying inflammation seen in patients with heart 
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failure.84, 85 Niebauer et al. found that heart failure patients with peripheral edema had 

higher plasma concentrations of endotoxin and inflammatory cytokines compared to those 

without edema.86 After short-term diuretic treatment, serum concentrations of endotoxin, but 

not cytokines decreased.86 In another study, heart failure patients with lower intestinal blood 

flow were shown to have higher serum concentrations of immunoglobulin A–

antilipopolysaccharide, which in turn was correlated with increased growth of bacteria 

obtained from biopsies of colonic mucosa but not stool bacteria.87 The nature of the 

bacterial flora in these subjects also appeared to be different from that in the control 

subjects.87 Recently, Pacini et al. reported a corresponding increase in the amount of fecal 

intestinal bacteria and fungi with increased intestinal permeability in patients with chronic 

heart failure when compared to healthy controls.88 These data imply that an assessment of 

intestinal barrier function may lead to greater mechanistic understanding of the impact of 

gut-directed heart failure therapy.

In addition to the clear link between TMAO and atherosclerotic CVD risk, TMAO levels 

have also more recently been linked to heart failure development and poor prognosis in heart 

failure patients.8, 22, 60, 89 We recently observed that circulating TMAO levels are higher in 

patients with heart failure compared with age- and gender-matched subjects without heart 

failure.60 Moreover, we observed a remarkably strong adverse prognostic value associated 

with elevated plasma TMAO levels among a cohort of stable patients with heart failure that 

was incremental to traditional risk factors, cardio-renal indices and markers of systemic 

inflammation.60 However, the mechanism explaining why patients with heart failure have 

increased levels of TMAO remains to be determined.

Recent animal model studies suggest beyond association studies and adverse prognosis data 

in humans, the TMAO pathway may directly contribute to the development of adverse 

ventricular remodeling and heart failure phenotype.90 For example, using a trans-aortic 

constriction model of heart failure, mice fed a high choline diet had both higher TMAO 

levels and accelerated adverse ventricular remodeling compared to mice on a chemically 

defined low but sufficient choline diet.90 In addition to enhanced chamber dilation, wall 

thinning and reduced shortening fraction, marked increase in fibrosis was observed in mice 

on the high choline diet. Moreover, the pro-fibrotic TGF-B phosphor-SMAD3 pathway was 

shown to be enhanced in the choline diet-fed mice.59 Whether manipulation of the gut 

microbial TMAO pathway such as through inhibition of microbial TMA production can 

attenuate heart failure like phenotype from developing, or reduction in TMAO levels in 

subjects with heart failure improves long term outcomes, remain to be determined.

Obesity and type 2 diabetes mellitus (T2DM)

Obesity has increased worldwide and is attributed to increased energy intake and reduced 

energy expenditure. Obesity increases the risk of multifactorial diseases such as T2DM. 

Initial animal and human studies supported associations between obesity and the higher ratio 

of Firmicutes to Bacteroidetes.36, 91 In an intervention of calorie-restricted diets, weight loss 

was associated with decreases in Firmicutes to Bacteroidetes ratio both in low fat and low 

carbohydrate diets.36 Metagenomic analysis has revealed increased harvest of energy from 
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indigestible carbohydrates in the microbiome of obese mice, further supporting an 

association of altered microbiota composition in obesity and T2DM.6, 37, 92, 93

T2DM was associated with a reduced abundance of butyrate-producing bacteria and an 

increased abundance of Lactobacillus spp.37, 93, 94 SCFAs, in particular butyrate, serve as 

energy substrates for epithelial cells of the gut. 95, 96 Microbial pathways that generate 

SCFAs were found to be enriched in metagenomic studies of feces recovered from obese 

subjects, and levels of SCFAs were elevated in overweight or obese people and animal 

models, consistent with these products of microbial fermentation providing extra calories to 

the host.6, 97, 98 Moreover, computational models based on the gut metagenome were able to 

predict T2DM-associated phenotype in patients with impaired glucose tolerance.93 

Furthermore, vancomycin treatment in patients with metabolic syndrome reduced the 

abundance of butyrate-producing bacteria, leading to reduced insulin sensitivity. 99 

Moreover, a study using fecal microbiota transplantation from lean donors to insulin 

resistant patients with metabolic syndrome demonstrated that feces from lean subjects, but 

not autologous transplantation, improved insulin sensitivity and was associated with 

enhanced numbers of butyrate-producing bacteria.100

SCFA can directly activate G-protein-coupled receptors such as GPR41 and GPR43, which 

affect several important processes that include inflammation and enteroendocrine 

regulation.101, 102 Binding of SCFAs to GPR41 induces expression of the enteroendocrine 

hormone PYY in gut epithelial L-cells via GPR41, leading to increase in energy harvest 

from the diet.102 By contrast, SCFAs can suppress insulin-mediated fat accumulation and 

stimulate energy expenditure in liver and muscle through the GPR43 in mouse white adipose 

tissue.14 SCFAs can also trigger secretion of GLP-1 by intestinal L-cells via both GPR41 

and GPR43, which has a substantial impact on pancreatic function and insulin release, as 

well as central effects regulating appetite.103, 104 In fact, in a recent study propionate 

significantly increased postprandial GLP-1 and PYY while reducing calorie intake at a 

buffet meal, resulting in a significant reduction in weight gain after a long-term 

supplementation.105 Furthermore, rectal and intravenous administration of acetate was 

associated with increased plasma concentration of PYY and GLP-1 in humans.106 The role 

of SCFAs, their receptors, and their targets requires further investigation.

Bile acids (BAs) are another group of metabolites with a profound effect on human health. 

Secondary BAs are metabolized by the microbiota in the lower part of the small intestine 

and the colon.107, 108 BAs facilitate the absorption of dietary fat and fat-soluble molecules. 

There is an astonishing chemical diversity to the BA pool, and while the heterogeneity and 

function of numerous BAs are just beginning to become dissected, several species are now 

recognized as regulators of energy metabolism through activation of nuclear receptors such 

as G-protein-coupled bile acid receptor 1 (TGR5) and farnesoid X receptor (FXR).109–111

For example, gut microbiota can regulate TGR5 signalling by producing agonists and FXR 

signalling by metabolizing antagonists, such as tauro-β-muricholic acid (TβMCA), which is 

an abundant primary BA. 112, 113 Microbial metabolism of this BA relieves FXR inhibition 

and increases signaling.112 FXR activation in the intestine induces fibroblast growth factor 

15 expression, which suppresses the expression of cholesterol 7 α-hydroxylase in the liver, 
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an important hepatic enzyme impacting BA pool size and composition. Thus, the capacity to 

metabolize TβMCA has been associated with microbiota links to obesity and insulin 

resistance.113, 114 BAs have also been described to affect the cecal microbiota composition 

of rats, and a direct antimicrobial effect of BAs has been described in vitro.115, 116 Thus, a 

reciprocal and complex interrelationship exists between gut microbial metabolism of BAs, 

and BAs impact on microbial composition and function. It will be essential to identify the 

microbial enzymatic participants, specific BAs, and the host receptors and signaling 

molecules involved in the complex metaorganismal signaling pathways coordinating gut 

microbiota participation in human physiological processes and disease susceptibilities.

One intervention that has significant impact on microbial community structure and function 

is bariatric surgery. Bariatric surgery is associated with an altered microbiota and increased 

circulating levels of primary and secondary BAs have been observed after bariatric 

surgery.117–119 Increased GLP-1 and reduced glucose and triglyceride levels have also been 

linked to bariatric surgery.120–122 Although the underlying mechanisms have not been fully 

elucidated, release of satiety-promoting gut hormones such as GLP-1 and PYY, and a shift in 

BA metabolism together with an increased signaling through FXR have been suggested to 

play a role. 44, 45, 123, 124 Similarly, TGR5 is required for improved metabolism of glucose 

that is observed following bariatric surgery. Germ-free mice that received a fecal transplant 

from people who had undergone bariatric surgery 10 years earlier gained less fat than did 

mice that were colonized by microbiota from obese people.45 Some of the beneficial effects 

of bariatric surgery might therefore be mediated by the altered microbial metabolism of 

BAs, which affects their capacity for signalling. Although a direct antimicrobial effect of 

BAs has been described in vitro,116 it is still unclear whether BA–mediated microbiota 

alterations are a direct effect of BAs on the bacteria or whether cross-talk with the intestinal 

mucosa is involved.

Dyslipidemia

Recent studies suggest that the gut microbiota can mechanistically impact host lipid 

levels.8, 9, 125–127 Independent of body mass index and other metabolic disturbances, 

associations between levels of circulating triglycerides and high density lipoprotein 

cholesterol with gut microbiota have been reported.125 Although the underlying biological 

mechanisms through which gut microbiota or their metabolites can impact host lipid 

metabolism has not been enumerated, secondary bile acids, which are produced by gut 

microbiota, have been suggested to modulate both hepatic and/or systemic lipid metabolism, 

as well as glucose metabolism, through FXR and GPR131.17, 18, 44 In addition, some of the 

proatherogenic effects of TMAO are linked to reduction in reverse cholesterol transport, 

alteration in tissue cholesterol and sterol metabolism, and changes in bile acid composition, 

pool size and transport in both the liver and intestines.9 Furthermore, genetic manipulation 

of the expression of host hepatic FMO3 has been shown to elicit alterations in plasma lipid 

levels and hepatic lipid metabolism,126, 127 suggesting a major role for FMO3 in modulating 

lipid homeostasis.
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Chronic kidney disease (CKD)

Cardiovascular and kidney diseases are closely interrelated, and the so-called cardiorenal 

syndrome is associated with poor clinical outcomes.128 People with chronic kidney disease 

(CKD) have a greater risk of CVD-related mortality.129 The increased CVD risk is only 

partially explained by traditional cardiovascular risk factors, and there is increasing evidence 

that non-traditional risk factors such as inflammation, oxidative stress, and endothelial 

dysfunction play a key role. 130

It is well known that the composition of gut microbiota is markedly altered in CKD patients, 

leading to an influx of circulating urea and other uremic toxins into the gut lumen.131, 132 

Within the intestinal tract, urea is hydrolyzed by microbial urease to form large quantities of 

ammonia, which is then converted to ammonium hydroxide. Ammonia and ammonium 

hydroxide disrupt the intestinal epithelial tight junctions.131 This is thought to be a major 

cause of intestinal epithelial barrier dysfunction in CKD that allows the translocation of gut 

bacterial DNA and uremic toxins into systemic circulation, resulting in systemic 

inflammation.133 Recently, the DNA of gut microbiota has been detected in the plasma of 

CKD patients on chronic hemodialysis sing bacterial 16S rDNA amplification and DNA 

pyrosequencing.134 Moreover, levels of the bacterial DNA correlated with increased plasma 

inflammatory marker levels. Poorly dialyzable protein-bound uremic toxins such as indoxyl 

sulfate and p-cresyl sulfate are associated with poor cardiovascular outcomes in patients 

with uremia, and p-cresyl sulfate is also associated with insulin resistance.135–137 Both of 

these sulfates are derived from gut microbiotic metabolism of dietary amino acids and are 

ineffectively cleared from the circulation in cases of renal dysfunction. In a recent study, a 

widely distributed family of tryptophanases in the gut commensal Bacteroides was identified 

as a primary and rate limiting source of indoxyl sulfate in human gut bacteria; moreover, 

modulating the content of the gut microbes harboring the tryptophanases was shown to 

substantially impact indoxyl sulfate levels in vivo.138 In clinical studies, levels of this and 

other uremic toxins have been shown to be associated with angiographic coronary 

atherosclerosis severity.139 Collectively, there is significant evidence suggesting the gut 

could be a target of treatment of CKD in conjunction with efforts to improve dialysis 

techniques to better remove microbially generated uremic toxins.

TMAO has been known to accumulate in the plasma of patients with CKD, and higher 

TMAO levels were associated with higher mortality and progressive loss of kidney 

function.59–61 Data from the Framingham Heart Study indicated that TMAO was one of the 

few metabolites in the plasma of healthy subjects whose levels predicted incident 

development of CKD.140 In addition, we observed enhanced renal fibrosis and decreased 

renal function with choline rich diet supplementation.59 It is clear that further studies 

exploring the physiology of TMAO generation and metabolism are warranted to more 

thoroughly define the etiology of TMAO elevations in CKD.

THERAPEUTIC INTERVENTION

The many links between the altered gut microbial community, metabolites, and 

susceptibility for CVD and metabolic diseases has placed a spotlight on the gut microbiome 

as a potential novel target for therapeutics. Currently diet modulation is the major 
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therapeutic tool utilized in clinical practice to impact chronic metabolic diseases, and while 

this lifestyle interaction can clearly impact gut microbial community structure and function, 

there are few studies that explore the impact of dietary interventions on the gut microbiome 

in humans. Additional approaches to manipulate the gut microbiome that hold promise, 

though have yet to be realized for metabolic disorders, include prebiotics, probiotics and 

small molecule inhibitors of defined microbial enzyme pathways.

Fecal microbiota transplantation

Gut microbial modulation by fecal microbiota transplantation (FMT) is a possible 

therapeutic intervention designed to displace intestinal pathogens by introducing fecal 

contents from healthy subjects into the gastrointestinal tract of patients. This therapeutic 

approach has been growing and has caught much attention specifically in its utility to treat 

intestinal diseases.141 FMT is demonstrated to be effective in the treatment of antibiotic 

resistant Clostridium difficile infection in humans, where fecal transplantation induces an 

80% remission rate. 142, 143

Recently, FMT has also been tested as an emerging therapy to manage cardiometabolic 

disorders.144, 145 Overweight patients with metabolic syndrome were transferred microbiota 

from either their own feces (autologous transfer) or from lean healthy controls (allogeneic 

transfer). After 6 weeks of follow-up, the allogeneic fecal transfer had improved hepatic and 

peripheral insulin sensitivity by 119% and 176%, respectively, as shown by a euglycemic–

hyperinsulinemic clamp technique.144 This metabolic improvement was independent of any 

weight variations. The allogeneic fecal transfer induced an increase in overall gut microbial 

richness, and more specifically, increased the abundance of butyrate-producing bacteria, 

such as Roseburia, confirming previous results that showed an association between 

Roseburia and glucose homeostasis.37, 93

However, the use of FMT is currently limited due its associated risks including possible 

transfer of endotoxins or infectious agents that could cause new GI complications.146, 147 

Further studies are needed to test if FMT could be extended to other facets of 

cardiometabolic disorders. Instead of fecal contents, the transplantation of only a defined 

group of bacteria may be a rational alternative to FMT.148

Diet intervention

A dietary approach to nutritional interventions in CVD had proved to be an effective strategy 

in reducing cardiovascular risk.149, 150 In a comprehensive study involving more than 900 

participants, diet-dependent postprandial blood glucose levels were correlated with 

individual gut microbiota composition.151 Although the composition of the microbiota is 

quite resilient over an individual’s life span,152, 153 dietary interventions that induce rapid 

changes in certain nutrients can modify the microbiota composition.154, 155 Changes in 

Roseburia and E. rectale have been observed with changes in the proportion of carbohydrate 

content in the diet.156, 157 Fiber-rich diets promote the growth of beneficial commensal 

bacteria and limit the growth of known opportunistic pathogens.158 A high fiber diet was 

reported to increase acetate-producing microbiota, lower blood pressure and decrease 

cardiac hypertrophy and fibrosis.159 A recent study has shown that dietary intervention with 
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whole grains, traditional Chinese medicinal foods and prebiotics, resulted in improvement in 

insulin sensitivity and lipid profile with concomitant reduction of opportunistic pathogen of 

the Enterobacteriaceae family and increase in the family Bifidobacteriaceae, a taxa generally 

regarded as gut barrier-protecting.160 In addition, bacterial fermentation of prebiotic soluble 

fiber generates SCFA, which is thought to exert several beneficial effects including potential 

amelioration of CVD risk factors.12, 161, 162

Given that an alteration in gut microbiota composition has been linked to different diseases, 

modulation of gut microbiota composition through dietary intervention represents a 

promising therapeutic target. However, little is known about the mechanistic interplay 

between the diet intervention and the relevant gut microbial metabolism. By using 

metagenomic sequence analysis, representative species from the dominant phyla can be 

extracted and an algorithm (known as CASINO53) was reported to be able to predict 

metabolite production that reflects the interaction between the gut microbiota composition 

and the consumed diet of the individual. In one study, this algorithm was validated with a 

diet intervention study coupled with metabolomic analyses of fecal and blood samples. 163

Probiotic, Prebiotic and Antibiotic intervention

Probiotics are live “beneficial” bacteria administered to re-establish an appropriate intestinal 

balance. Probiotics may potentially act through different mechanisms including pH 

modulation, antibacterial compound production, and competition with pathogens. 164

Administration of Christensenella minuta was reported to alter the microbial ecology and 

protect mice from obesity.165 In a recent study, administration of Lactobacillus reuteri was 

reported to increase insulin secretion by promoting incretin release in obese glucose-tolerant 

subjects.166 Similarly, administration of Lactobacillus sp. was associated with significant 

reduction of toxins produced by the small intestine, such as dimethylamine and 

nitrosodimethylamine, in patients with CKD,167 and changes in colon levels of certain 

SCFAs in patients with carotid atherosclerosis.168 In some studies, engineered probiotic 

bacteria are genetically modified to enhance their potential beneficial effects. For example, 

Davies and colleagues formed N-acylphosphatidylethanolamines-expressing Escherichia 
coli Nissle 1917 to alleviate high fat diet-induced obesity, insulin resistance and 

hepatosteatosis in mice.169 Among other therapeutic targets of interest, the intestinal 

alkaline phosphatase is well-known to detoxify bacterial LPS by de-phosphorylating its lipid 

A moiety.170 In a study using genetically engineered NAPE-expressing E. Coli Nissele 

1917, a reduction in adiposity, insulin resistance and liver lipid accumulation in mice was 

reported.171 However, the mechanism of action and how these microbes affect 

cardiometabolic risks in humans are yet to be determined.

Another strategy for modulating intestinal microbiota is the use of prebiotics, which are non-

microbial entities provided to elicit a favorable impact on microbial community composition 

and function. Typical prebiotcis are food indigestible molecules such as oligosaccharides or 

complex saccharides. In some studies, prebiotics administration is associated with both 

improved glycemic control and plasma lipid profiles. 172, 173 Three months of oligofructose 

supplementation in obese patients was associated with weight loss and improved glucose 

tolerance.174 In a preclinical study employing an insulin resistance mouse model, use of 
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antibiotics or prebiotics was reported to reverse microbial community features associated 

with diabetes, improve gut permeability, reduced metabolic endotoxemia, lower 

inflammation, and improve glucose intolerance.175 However, in a subsequent follow-up 

clinical study, the prebiotic treatment in obese women did not show similar strong effects, 

raising questions as to the translatability of studies performed in mice compared with 

humans.176 It has also been found that not all humans respond to dietary changes in a similar 

manner, and non-responsiveness to either a fiber-rich or weight loss diet was shown to 

correlate with pre-intervention increased bacterial diversity.177

Therapeutic intervention focusing on the elimination of disease-causing microbiota by 

antibiotics is an obvious concept, but the general consensus is such non-specific anti-

microbial approaches may do more harm than good. The use of antibiotics in humans during 

the first six months of life is associated with childhood obesity.178 Similar results were 

observed in mice whereby a subtherapeutic dose of antibiotics increased adiposity in young 

mice.179 Surprisingly, ApoE-KO mice fed a standard low cholesterol diet and maintained in 

germ-free conditions develop severe atherosclerosis compared to their conventionally-

housed counterparts.180 These results suggest that therapeutic alteration in gut microbial 

composition should also focus on the preservation of the beneficial microbiota that are 

central in maintaining well-being because those microbiota or their metabolites may mediate 

cardiovascular protective effects. Taken together, these findings suggest that individualized 

treatment programs based on the microbiota may provide novel treatment strategies for 

cardiometabolic disorders.

Small molecule antimicrobial enzyme therapeutics

The recent discovery of the TMAO pathway, its numerous clinical links to adverse CVD 

outcomes, and its adverse effects on host cardiometabolic phenotypes, has raised the 

exciting possibility of selectively targeting microbial synthetic enzymes responsible for 

TMA generation from nutrient precursors as a potential therapeutic strategy. Proof of 

concept for this strategy was recently shown through development of a small molecule tool 

drug for the inhibition of microbial choline TMA lyase activity.65 Use of a choline structural 

analogue, 1,3 dimethylbutanol (DMB), that inhibited microbial generation of TMA from a 

variety of nutrients (eg. choline, glycerphosphocholine, phosphorylcholine, 

phosphatidylcholine, as well as several carnitine related nutrients), was shown to both 

suppress plasma levels of TMA and TMAO in mice on a high choline or carnitine containing 

diet, as well as inhibit both diet induced macrophage foam cell formation and aortic root 

atherosclerosis development.65 In a rich nutrient broth, use of DMB with multiple human 

commensals was shown to inhibit TMA production from choline without impacting 

microbial growth. Thus, with the markedly reduced selective pressures for development of 

resistance that exist with a targeted non-lethal microbial inhibitor strategy, there is 

considerable excitement about the potential for future development of microbial enzyme 

inhibitors for the potential treatment of cardiometabolic phenotypes in subjects.
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GAPS IN KNOWLEDGE

Multiple human clinical studies reveal striking associations between either gut microbiota 

composition, or their derived metabolites, and both the presence and incident development 

of CVD. Despite these exciting and intriguing findings, by comparison, few studies have 

provided mechanistic or causal evidence of a direct participatory role of gut microbiota to 

the development of atherosclerosis or its adverse complications. Study designs using 

antibiotics or FMT, while compelling in terms of demonstrating mechanistic participation of 

gut microbiota to the monitored phenotypes, do not typically examine how specific 

microbiota or their products contribute to development and/or progression of diseases. A 

combination of both mechanistic investigations, and further prospective studies with large 

cohorts, are needed to understand whether (or which) gut microbiota is causally linked to 

host metabolism in humans. Moreover, simpy revealing a specific microbe strain can 

facilitate accelerated atherosclerosis in animal models and is reproducibly associated with 

CVD risks does not reveal how or why this association exists, nor the underlying molecular 

participants involved. Moreover, a better understanding of microbe-microbe interactions, and 

microbe-host interaction and how these are linked to the underlying molecular participants 

involved in disease susceptibility represent additional knowledge gaps. Studies aimed at 

revealing these sorts of details are needed to be able to leverage knowledge gained to 

develop therapeutic interventions.

CONCLUSION AND FUTURE PERSPECTIVE

Mounting evidence from animal and human studies supports that gut microbiota can 

influence host health and disease. The recent development of culture-independent techniques 

for microbiological analysis has uncovered the previously unappreciated complexity of the 

bacterial microbiome at various anatomic sites. In addition, the identification of bacterial 

metabolites which can modulate host physiological processes has opened the possibility for 

numerous microbial pathways as both mediators and potential pharmacological targets for 

the treatment of cardiometabolic diseases. Major advances are needed in our mechanistic 

understanding of how gut microbiota convert dietary and endogenous molecules into 

metabolites that communicate with peripheral organs and tissues in the host. While the 

advent of next-generation high-throughput sequencing technology and bioinformatics will 

no doubt help to further discover candidate microbial enzyme machinery involved, the 

business end of the pathway – the metabolite – and the host receptors that recognize them, 

represent the true exciting and attractive pieces of the puzzle needed for the next stage of this 

growing field.

Modulation of gut microbiota composition and function through diet, pre- and probiotics, 

and targeted non-lethal antimicrobial enzyme inhibitors may enable, in the long term, the 

capacity to alter host metabolic profile in a desired favorable direction. Coupled with 

monitoring of the gut microbial metabolite mediator level, much in the same way one can 

titrate diabetes regimens my monitoring glucose or glycated hemoglobin, or cholesterol 

levels with lipid lowering strategies, the future may hold promise for targeting a microbial 

pathway and titrating the intervention by monitoring blood levels of the biologically active 

microbial derived metabolite. Such a future would envision a more personalized and tailored 
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therapeutic intervention to occur, with the net readout of the system, the systemic level of 

the microbial metabolite, serving as an integrated sensor of the myriad processes that impact 

community gut microbiota organization and function, host genome and environmental (eg. 

diet) factors that collectively can impact the host.
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Figure 1. 
Gut microbiota and possible molecular pathways linked to cardiovascular and 

cardiometabolic diseases.
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