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Time-series data from multicomponent systems capture the dynamics of the ongoing processes and reflect
the interactions between the components. The progression of processes in such systems usually involves
check-points and events at which the relationships between the components are altered in response to
stimuli. Detecting these events together with the implicated components can help understand the temporal
aspects of complex biological systems. Here we propose a regularized regression-based approach for
identifying breakpoints and corresponding segments from multivariate time-series data. In combination
with techniques from clustering, the approach also allows estimating the significance of the determined
breakpoints as well as the key components implicated in the emergence of the breakpoints. Comparative
analysis with the existing alternatives demonstrates the power of the approach to identify biologically
meaningful breakpoints in diverse time-resolved transcriptomics data sets from the yeast Saccharomyces
cerevisiae and the diatom Thalassiosira pseudonana.

T
ime-series data gathered from biological and technological systems capture the underlying dynamics of the
ongoing processes. For a single component of the system, the corresponding time-series can be partitioned
into intervals with predominant trends, e.g., increasing or decreasing1. The identified breakpoints are usually

associated with major events contributing to the behavior of the components2. However, determining consensus
intervals over multiple observed components of a given system, referred to as multivariate time-series segmenta-
tion (MTS-seg), remains a challenging computational problem3. MTS-seg has wide applications in computational
systems biology4,5, market analysis6, and process control7.

In a multicomponent system, the progression of processes is a result of interactions among the components
whose dependencies are reflected in the correlation structure of the respective data read-outs. For instance, in a
biological system, the components include genes, proteins, and metabolites, whose changes can be monitored
with high-throughput technologies8. Moreover, changes in the behavior of system’s components may cause shifts
in the correlation structure. MTS-seg can therefore be applied on time-resolved biological data to detect major
changes as breakpoints in the systems behavior based on the temporal correlation structure.

Various approaches have been developed for the MTS-seg problem9–11, which can be categorized into four
classes based on the computational methodology used: (1) clustering4,12–14, (2) graphical models15–20, (3) genetic
algorithms21–23, and (4) regression.

While the first three categories have been well-investigated (see Ref. 5 for further details), the regression-based
approaches provide a novel strategy for addressing the MTS problem, especially if regularization techniques (e.g.,
least absolute shrinkage and selector operator (LASSO)24) are considered25. The regression-based approaches
must account for the realistic scenario with a small number of time points (n) and large number of variables (p),
typically arising in biological settings. For instance, Davis et al.26 applied minimum description length to detect
the best fitting autoregressive (AR) model for each segment. This approach was recently extended in Ref. 23,
where each segment is represented by a piecewise quantile regression model penalized for description length.
Another regression-based approach addresses the MTS-seg problem by applying piecewise constant function on
the MTS data27. The breakpoints are estimated by using total variation penalty while small jumps from the zero-
mean are discarded. This method has also been extended to solve the MTS-seg problem by reformulating it as
group LASSO regression28.

A further approach uses a discrete hidden logistic process which allows for smooth or abrupt changes in
polynomial regression models. This method was first suggested to solve the problem of univariate time series
segmentation/clustering29,30 which was then extended to multivariate time-series data sets31. This method uses an
expectation-maximization algorithm to estimate the model parameters in an unsupervised fashion; however, the
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presented formulation of this approach relies on a pre-specified
number of latent processes. Another recent approach that relies on
dynamic programming is based on the simple piecewise polynomial
regression mixture32; however, this approach may result in discon-
tinuous segmentation, which is not meaningful in the analysis of
time-series data from biological systems.

Finally, Preuß et al.33 introduced a nonparametric approach to
infer breakpoints in the autoco-variance structure of the multivariate
piecewise stationary process which relies on comparison of spectral
distribution on different segments.

Despite these recent developments, however, the existing regres-
sion-based approaches suffer from several shortcomings related to the
applicability on large data sets and the necessity to a priori specifica-
tion of the breakpoints in the system. Moreover, most of these
approaches are designed and applicable only for the case where com-
ponents of the system are independent, which does not hold true in
biological applications34. Our contribution is threefold: First we pro-
pose a formulation of the MTS-seg problem based on a fused LASSO
regression, whereby the natural order of time points (features) is
imposed in the fusion. We then propose a novel method to estimate
the significance of the determined breakpoints which relies on clus-
tering within each of the detected segments. Finally, we identify the
key components for the determined segments, based on quantifying
the effect that the removal of a set of components has on the estab-
lished segments. To this end, we employ two criteria: structural and
ontology-based homogeneities. We extensively illustrate the bio-
logical relevance of the proposed method through a comparative case
study with the state-of-the-art alternative methods on transcrip-
tomics MTS data from various experimental scenarios on the yeast
Saccharomyces cerevisiae and the diatom Thalassiosira pseudonana.

Results
Fused LASSO formulation of the MTS-seg problem. We formulate
the approach for the MTS-seg problem by using fused LASSO to
consider the inherent order of time points. Therefore, each
variable, corresponding to a time point, is described by a vector
over the considered components. Since the relationship between
variables changes at a breakpoint, it is expected that the variables
for the preceding time points have negligible explanatory power in
the regression model for the breakpoint variable; analogously, a
breakpoint variable is expected to have small explanatory
contribution for the time points following it.

Therefore, in a regression setting with a given variable (time point)
as a response and the variables corresponding to the preceding time
points as regressors, the breakpoint variable is expected to have zero
regression coefficient, provided that all variables are scaled and cen-
tered. This idea can be readily captured by the fused LASSO formula-
tion: Given time-series for m variables over n time points,
T~ tlf gn

l~1, represented by a data matrix Mm3n, we aim at deter-
mining a model for partitioning the time-series into k non-overlap-
ping contiguous segments P~ ti0 ,ti1½ �, ti1z1,ti2½ �, . . . , tik{1z1,tik½ �, 1 # ij

, ij11 # n, 0 # j , k, that span the whole series, i.e., i0 5 1 and ik 5 n.
Let ytres

be the profile of time point tres, (3 # res # n), and let the
matrix xtreg includes the profiles of all subsequent time points treg, (reg
g [1, res)) which will be used as regressors. The fused LASSO is then
given by:
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with b as a vector of regression coefficients. Solving the fused LASSO
with every time point as a response, we obtain a lower-triangular
matrix Cn3n containing the regression coefficients of the n models.

Breakpoints are then determined by examining the sequence A
obtained by averaging the absolute values from each column of the
matrix C. This sequence A summarizes the overall behavior and
temporal patterns of the components over the examine time domain.
The breakpoints correspond to the local minima of A, given by the
time point i for which Ai21 . Ai and Ai , Ai11.

The assumption is that each segment captures a specific trend in
the system’s behavior. Therefore, the data profiles of the time points
in a given segment should be similarly explained by the preceding
time points. As a result, the breakpoints are those with weak relation.
To this end, the ‘‘fusion’’ helps detect the consecutive time points,
preceding the time point corresponding to the response, which can
similarly explain the behavior of the response time point. The sim-
ilarity of the explanatory behavior is captured by the closeness of the
respective coefficients, assessed by the respective absolute value of
their difference. While the LASSO constraint helps identify the likely
true dependencies between regressors and the response (in case of
large time-series data), the fusion penalty contributes to minimizing
the differences of the coefficients (capturing the dependencies)
between successive time points.

Estimating the statistical significance of the segments. Segmen-
tation constraints require that segments are internally homogeneous
and externally heterogeneous with respect to the behavior of the
components. These constraints can be readily examined by
considering the quality of the clusters extracted from the different
segments by using cluster quality indices35. The significance level of
the resulting segmentation can be estimated by permutation testing
in the following fashion: First, the segmentation approach is applied
on the original data set and the average cluster quality index of choice
is estimated over the resulting segments, denoted by S0:

S0~
1
k

Xk

i~1

Qi ð2Þ

where k is the number of clusters and Qi is the quality index of the i’th
cluster (segment). Then, the time points are randomly permuted and
the segmentation approach is applied on the permuted data set. The
resulting breakpoints are then used to segment the original data set.
The empirical p-value is obtained as:

p~

P B
j~1I SjwS0

� �
z1

Bz1
ð3Þ

where Sj is calculated using Eq. 2 with the results obtained from the
j’th permutation, I is the indicator function, and B is the number of
permutations.

Determining key components. The breakpoints partition the time-
series data into the sequence of segments. Each segment can reveal
information about the temporal behavior of the system.

Given a set of segments P~ ti0 ,ti1½ �, ti1z1,ti2½ �, . . . , tik{1z1,tik½ � for
which 1 # ij , ij11 # n, 0 # j , k while i0 5 1 and ik 5 n, next
we introduce an approach to discover the key components for each
segment which may be responsible for the breakpoints. To this end,
we rely on the idea that a component is considered key if the removal
of its time-series disturbs the estimated breakpoints on the entire
data set. Determining the key components can be obtained by con-
sidering two criteria:

. Structural homogeneity: This criterion can be applied in cases that
variables in the time-series data are not well characterized (anno-
tated). In this case, the following steps are repeated for all except
the last segment in P (Algorithm 1). First, the data profiles located
in the time interval corresponding to the segment tij ,tijz1

� �
are

clustered by using an algorithm of choice (the partitioning around
medoid (pam) clustering is used in this analysis36). Then, the
profiles of the components in each cluster are iteratively removed,
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and the segmentation is determined on the remaining data pro-
files, followed by inspection of any change in the breakpoints. To
determine the maximum number of key components in a feasible
manner, the clustering is performed starting with l 5 2 clusters.
The number of clusters, l, is increased by one if none of the l
clusters affected the breakpoints. The clustering procedure is
repeated until at least one cluster is found to be the key for the
segmentation or the number of clusters equals the number of
components.

. Ontology-based homogeneity: Biological data can be grouped
based on conceptual features given in an ontology. For example,
in case of transcriptomics data, genes can be grouped based on the
pathways or biological processes in which they participate.
Therefore, an analogous approach as for the structural homogen-
eity can be applied. The divisive step can be readily applied due to
the hierarchical nature of the existing ontologies37. More specif-
ically, to cluster the profiles of genes based on their biological
homogeneity, we proceeded as follows: (1) The GO terms were
obtained for the genes to be clustered. (2) The kmeans clustering
was applied for the k 5 2: 40 number of clusters. (3) For each k,
the biological homogeneity of the clusters was estimated using
biological homogeneity index38. (4) The value for k which was
associated with the maximum biological homogeneity index was
stored. (5) The procedure was repeated 1000 times starting from
step (2). (6) The histogram of the obtained values for k from the
1000 runs was used to determine the most frequent value of k
which resulted in the highest biological homogeneity for the clus-
ters.

Applications of the approach. We applied the proposed approach
for MTS-seg problem based on fused LASSO regression to several
data sets, including: synthetic, yeast’s metabolic and cell cycles, and
Thalassiosira pseudonana’s diel growth state transition. Moreover,
we compared its performance with the other regression-based
approach intended for solving the MTS-seg problem.

Synthetic data. To investigate the performance of the algorithm, we
created synthetic time-series data for 80 variables over 40 time points
(see Figure 1 and Methods). The segmentation points corresponded
to time points 5, 13, 25, 28 and 35. Figure 1 illustrates the segments
obtained by the proposed approach with the p–value of 0.04 for 1000
permutations. The synthetic MTS data are segmented into 8 seg-
ments with breakpoints at 6, 13, 18, 20, 25, 29, and 35. All real
breakpoints were captured, and only two additional breakpoints
were included. This was likely due to the apparent change in the

behavior of the time-series between the time points 13 and 25, which
was not controlled in the generation of the data (see Methods).

In contrast, the group fused LASSO approach from Bleakley et al.27

on the same data resulted in the five segments with following break-
points: 6, 12, 16, and 24. However, this approach could not detect the
late breakpoints at 28 and 35. The extensive comparison of the con-
tending methods with our approach is given in the Supplementary
information S1 (including Fig. S1 and Table S1).

The time-series data were next structurally clustered in each seg-
ment to obtain the key components. The colored curves at each
segment show the key components which led to a structural change
at the specified breakpoint. Since detection of key components is
based on clustering, only the segments with more than two time
points were inspected for the key components.

Yeast’s metabolic and cell cycles. Motivated by the predictions from
applying the approach on the synthetic data set, we next investigated
the MTS-seg on the transcriptomics data sets from yeast metabolic
cycle39, cell cycle40, and the experiment capturing the effect of oxid-
ative stress, induced by hydrogen peroxide (HP) treatment, on the
yeast’s cell cycle41. In all data sets, we filtered out the genes which: (1)
contain missing values, (2) have no gene ontology (GO) annotation,
and (3) their coefficients of variation are smaller than 1. We focused
on yeast’s metabolic cycle, and the results for the other data sets as
well as the comparison with other methods are detailed in the
Supplementary Information S1 (including Fig. S2–S4 and Table
S2–S4).

The yeast metabolic cycle (YMC) consists of the following three
successive phases spanning each ,5 h: (1) a reductive charging (R/
C) phase, involving non-respiratory metabolism (glycolysis and fatty
acid oxidation) and protein degradation, (2) oxidative metabolism
(Ox), in which respiratory processes are used to generate adenosine
triposphate (ATP), (3) reductive metabolism (R/B), marked by a
decrease in oxygen uptake and dominance of DNA replication, mito-
chondrial biogenesis, ribosome biogenesis, and cell division39. The
data set included the time-resolved expression of 6555 genes (with
9335 microarray probes) over 36 time points (separated by ,25-min
intervals) over three consecutive cell cycles. Clustering of the
obtained transcript profiles was employed in Tu et al.39 to show that
YMC controls the timing of key cellular and metabolic processes to
allow coordination of anabolic and catabolic processes for efficient
energy production and usage. Therefore, this data set can serve as a

Algorithm 1: Key components detection.

Data: T time-series data with n time points

P~ ti0 ,ti1½ �, ti1z1,ti2½ �, . . . , tik{1z1,tik½ �

Result: key, list of key components for each breakpoint
begin

l r 2
for each segment p in P do

while key is empty do
cls r cluster the segment p into l clusters
for each cluster cl in cls do

T́ r remove cl from T
segment T́ (Algorithm 2)
if the estimated breakpoints disturbed then

key r cl
if key is empty then

increase l

Figure 1 | Segmentation over synthetic data. The green dashed lines show

the obtained breakpoints. The blue colored curves at each segment

illustrate the respective key components. The gray colored parts of the

time-series denote the variables not involved in the local changes at the

corresponding breakpoints. The red dots, connected by a red line,

represent the sequence A (column-averages of the absolute values of the

regression coefficients in the matrix C).
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benchmark for testing our proposed algorithms for the MTS-seg
problem.

With the filtering steps mentioned above, the number of genes was
reduced from 6555 to 255. The latter were employed to determine the
segmentation based on the proposed approach. Due to the presence
of recurrent changes on the global level, two segmentation points, at
12–13 and 24–25 should be detected. These breakpoints delineate the
three considered cell cycles. In addition, due to the presence of the
alternation phases in the metabolic cycle, each of the three cycles
should contain at least one more segmentation point.

Applying the proposed approach on YMC time-series data
resulted in 9 segments which was significant at the level of 0.088.
Figure 2.A illustrated the segmentation and the Supplementary Table
S2 compares the segmentation results with the previous studies4,5,27.
As it is shown in the Figure 2.A, the starting points of the three
aforementioned cycles were captured by this approach. The inferred
breakpoints are at the 5, 7, 13, 17, 19, 24, 28 and 31 time points, and
the breakpoints delineating the three considered cell cycles (time
points 13 and 24) could be precisely detected. The approach of

Bleakley et al.27 failed to infer all three cycles, as well as the other
breakpoints in each cycle (breakpoints at 8, 9, 26, 31, and 32).

We used biological homogeneity index to cluster the genes based
on the biological process (BP). Two clusters were generated as a
result, including 41 and 214 genes, respectively. Genes in the first
cluster were predominantly involved in the M, G1, and G1/S phases
of the cell cycle (Figure 2.B), while genes in the second cluster were
related to the metabolic processes (Figure 2.C), as determined by
gene enrichment analysis (Supplementary Table S5).

In Figures 2.B and 2.C, the red dashed lines visualize the points at
which the specific cluster highly contributed to the inferred break-
points. Considering the third cycle (time interval between 25 h and
36 h), genes that were involved in M, G1, and G1/S phases were
identified to contribute to the detection of a breakpoint at time point
28 h, while the genes involved in metabolic processes were involved
at the breakpoint at 31 h.

Diel growth state transition of diatom Thalassiosira pseudonana. The
proposed approach is also applicable to short time-series data. To

Figure 2 | Segmentation over yeast’s metabolic cycle. (A) The expression profiles of 255 genes over 36 time points (separated by ,25-min intervals) over

three consecutive cell cycles. The green dashed lines denote the obtained breakpoints. The blue colored curves at each segment illustrate the key

components. The gray colored parts of the time-series denote the variables not involved in the local changes at the corresponding breakpoints. The red

dots, connected by a red line, represent the sequence A (column-averages of the absolute values of the regression coefficients in the matrix C). Genes were

grouped into two clusters (B) and (C) based on their biological homogeneity. (B) includes 41 genes which are predominantly involved in M, G1, and G1/S

phases and (C) contains 214 genes related to the metabolic processes. Each cluster is specifically responsible for the breakpoints represented by red dashed

lines.
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illustrate this application, we investigated the MTS-seg on transcrip-
tomics MTS data from Thalassiosira pseudonana’s diel growth state
transition42. Ashworth et al.42 measured the transcript level of
Thalassiosira pseudonana in five days on a 12512 h
dark(Dk)5light(Lt) cycle to find the key regulators responsible for
exponential and stationary phase modulation as well as diel phase
reversal (Fig. 3). They reported a major shift on the third day between
12 h dark and 12 h light (3 Dk and 3 Lt). Up to the third day 12 h
light (3 Lt), genes labeled as ‘‘exponential’’ showed higher expression
than genes labeled as ‘‘stationary’’; however, from the third day light
(3 Lt) on, the stationary genes showed higher expression.
Consequently, the time between 3 Dk and 3 Lt could be considered
as a transition period due to the shift between exponential and sta-
tionary phase causing major change in gene expression levels.

The proposed MTS segmentation approach applied on the tran-
scription profiles of 5417 genes (with the coefficient of variation
above 0.3) over 10 time points resulted in 2 segments with breakpoint
at 3 Dk with the significance level of 0.14 illustrated in Figure 3.

Next, we used three groups of genes annotated with exponential
and stationary phase modulation as well as diel phase reversal
(Supplementary Table S7 obtained from Supplementary Dataset1
in Ref. 42). However, the removal of all these genes did not affect
the result of the clustering which indicates further genes that also
affect the shift between 3 Dk and 3 Lt. Therefore, and due to the lack
of GO annotation for Thalassiosira pseudonana, we used structural
clustering in order to detect the key components. We could obtain 82
genes as key components whose behavior led to the break point at

3 Dk (Supplementary Table S6). The profile of these genes are high-
lighted in blue in Figure 3. Among the key components 9 genes were
in the list of genes which were more highly expressed at dawn during
the exponential and diel phase, based on the Supplementary Dataset1
from Ref. 42.

Discussion
Here we introduced a regression formulation of the MTS-seg prob-
lem based on fused LASSO. The breakpoints were determined by
inspecting the changes in the regression coefficients over a series of
regression models. In addition, we proposed a method to determine
the statistical significance analysis of the inferred breakpoints by
applying a cluster-based approach and a cluster quality index of
choice.

We note that all findings on the statistical significance of the found
breakpoints were obtained based on the cluster quality measure. Due
to the difference in behavior of different cluster quality indices43, the
determined p-values should be carefully interpreted based on the
properties of the investigated data sets. Nevertheless, the proposed
procedure provides a general method to couple clustering in seg-
ments with the determined breakpoints with the aim of establishing
the significance of the latter.

Moreover, we devised a clustering-based approach to identify the
key components giving rise to the abrupt changes in the system. We
could identify the order of processes for a metabolic cell cycle from
yeast data set. In addition, application of this approach to diel growth
state transition of diatom result in a group of key components which
are highly expressed at dawn during exponential and diel phase. This
approach elaborate on biological aspect of the dynamic relationships
underlying biological processes.

Applying the method to different data sets supported the reliability
and significance of the determined breakpoints in the well-documen-
ted cases of yeast’s cell and metabolic cycles. Unlike other
approaches, we did not impose restriction on the number of time
points included in each segment, rendering our method applicable to
short time-series typical in biological studies. In addition, the com-
parative analysis demonstrated that the regression-based approach
performs better in comparison to the state-of-the-art algorithm.

Improvement to the proposed approach can be obtained by
imposing constraints to the fused LASSO regression such as in the
recent study from Sue and Tibshirani et al.44. To further investigate
on the accuracy and sparsity of the breakpoint set, various con-
straints can be imposed to the fused LASSO. For instance, if a time
point as a regressor does not have explanatory power for the response
time point, the regression coefficients of all preceding time points can
be neglected.

Formulation of the segmentation with additional constraints,
including different segmentations for groups of entities, would ren-
der our approach widely applicable in different fields.

Methods
Segmentation algorithm. The segmentation algorithm, given in Algorithm 2, is
implemented in R [http://www.R-project.org] by using the package penalized [http://
cran.r-project.org/web/packages/penalized]). The regression coefficients were
robustly estimated by K-fold cross validation (K selected based on the available time
points) together with the optimal values for l1 and l2 from the range [1,50]. We
assumed that no breakpoints could occur in the first and the last three time points of
the time-series, as robust changes could only be detected after at least 4 consecutive
time points5. The implementation is available at http://mathbiol.mpimp-golm.mpg.
de/Segmentation-fLASSO/index.html.

Significance and key components of segmentation. In the current implementation,
the significance level of the segmentation was based on the average silhouette width45.
To determine the structural homogeneity, partitioning around medoids algorithm
(pam) function in the R package cluster [http://stat.ethz.ch/R-manual/R-patched/
library/cluster/html/pam.html] with Pearson correlation was employed to cluster
data profiles. For biological data, the ontology-based homogeneity was inspected
based on the biological process (BP) category of the Gene Ontology46. The GO
enrichment analysis for each cluster was performed using hypergeometric test for
which we used phyper function from R package stats [https://stat.ethz.ch/R-manual/

Figure 3 | Segmentation over diel growth state transition of diatom
Thalassiosira pseudonana. The expression profile of 5417 genes illustrated

over cycles of 12512 h dark(Dk)5light(Lt) in 5 days. The green dashed line

shows the obtained breakpoint. The blue colored curves illustrate the key

components within the first segment which led to the only structural

changes at [3 Dk]. The gray colored parts of the time-series denote the

variables that were not involve in the local changes at the corresponding

breakpoints, as detected by the approach. The red dots, connected by a red

line, represent the sequence A (column-averages of the absolute values of

the regression coefficients in the matrix C).

Algorithm 2: Regularized segmentation.

Data: T time-series data with n time points
Result: BP, breakpoints
begin

for i in n: 3 do
y r T [,ti]
x r t (T [, 1: (ti 2 1)])
estimate b based on Eq. 1
C[i,] r c(rep(0, i), b)

A r average over columns of matrix C
BP r time point i for which Ai21. Ai and Ai ,Ai11
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R-patched/library/stats/html/Hypergeometric.html] and annotation package
ygs98.db [http://www.bioconductor.org/packages/release/data/annotation/html/
ygs98.db.html].

Synthetic data set. To create these segmentation points, a number of data profiles
were generated for each segment by simulating a zero-mean autoregressive moving
average (ARIMA) model (described in Ref. 5). The number of profiles simulated for
the six segments, [1–5], [6–13], [14–25], [26–28], [29–35] and [36–40], was set to 5, 2,
8, 3, 7 and 4, respectively. Each of the 80 variables was obtained by randomly sampling
a characteristic data profile in each segment. In addition, a normally distributed error
term, N(0, 1), was added to the sampled profile value at each time point. The code for
generating synthetic data is available at http://mathbiol.mpimp-golm.mpg.de/
Segmentation-fLASSO/index.html.
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34. Pósfai, M., Liu, Y.-Y., Slotine, J.-J. & Barabási, A.-L. Effect of correlations on
network controllability. Sci. Rep. 3; doi:10.1038/srep01067 (2013).

35. Wagner, S. & Wagner, D. Comparing clusterings- an overview Technical Report
2006-04, ITI Wagner, Informatics, Universität Karlsruhe. (2007).

36. Reynolds, A. P., Richards, G., de la Iglesia, B. & Rayward-Smith, V. J. Clustering
rules: A comparison of partitioning and hierarchical clustering algorithms. JMMA
5, 475–504; doi:10.1007/s10852-005-9022-1 (2006).

37. Rhee, S. Y., Wood, V., Dolinski, K. & Draghici, S. Use and misuse of the gene
ontology annotations. Nat. Rev. Genet. 9, 509–515; doi:10.1038/nrg2363 (2008).

38. Datta, S. & Datta, S. Methods for evaluating clustering algorithms for gene
expression data using a reference set of functional classes. BMC Bioinformatics 7,
397; doi:10.1186/1471-2105-7-397 (2006).

39. Tu, B. P., Kudlicki, A., Rowicka, M. & McKnight, S. L. Logic of the yeast metabolic
cycle: temporal compartmentalization of cellular processes. Science 310,
1152–1158; doi:10.1126/science.1120499 (2005).

40. Spellman, P. T. et al. Comprehensive identification of cell cycle-regulated genes of
the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9,
3273–3297; doi:10.1091/mbc.9.12.3273 (1998).

41. Shapira, M., Segal, E. & Botstein, D. Disruption of yeast forkhead-associated cell
cycle transcription by oxidative stress. Mol. Biol. Cell 15, 5659–5669; doi:10.1091/
mbc.E04-04-0340 (2004).

42. Ashworth, J. et al. Genome-wide diel growth state transitions in the diatom
thalassiosira pseudonana. Proc. Natl. Acad. Sci. U.S.A. 110, 7518–7523;
doi:10.1073/pnas.1300962110 (2013).

43. Delling, D., Gaertler, M., Görke, R., Nikoloski, Z. & Wagner, D. How to evaluate
clustering techniques (University of Karlsruhe, Faculty of Informatics, 2006).

44. Suo, X. & Tibshirani, R. An ordered lasso and sparse time-lagged regression. arXiv
preprint arXiv:1405.6447 URL http://arxiv.org/abs/1405.6447 (2014).

45. Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis. J. Comput. Appl. Math. 20, 53–65; doi:10.1016/0377-
0427(87)90125-7 (1987).

46. Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet.
25, 25–29; doi:10.1038/75556 (2000).

Author contributions
Conceived and designed the study: N.O. and Z.N. Developed the model: N.O. and Z.N.
Implemented: N.O. Wrote the paper: N.O., B.M.R. and Z.N. All authors read the
manuscript, made comments and approved the final version submitted.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/
scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Omranian, N., Mueller-Roeber, B. & Nikoloski, Z. Segmentation of
biological multivariate time-series data. Sci. Rep. 5, 8937; DOI:10.1038/srep08937 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International
License. The images or other third party material in this article are included in the
article’s Creative Commons license, unless indicated otherwise in the credit line; if
the material is not included under the Creative Commons license, users will need
to obtain permission from the license holder in order to reproduce the material. To
view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8937 | DOI: 10.1038/srep08937 6

https://stat.ethz.ch/R-manual/R-patched/library/stats/html/Hypergeometric.html
http://www.bioconductor.org/packages/release/data/annotation/html/ygs98.db.html
http://www.bioconductor.org/packages/release/data/annotation/html/ygs98.db.html
http://mathbiol.mpimp-golm.mpg.de/Segmentation-fLASSO/index.html
http://mathbiol.mpimp-golm.mpg.de/Segmentation-fLASSO/index.html
http://arxiv.org/abs/1106.4199
http://arxiv.org/abs/1405.6447
http://www.nature.com/scientificreports
http://www.nature.com/scientificreports
http://creativecommons.org/licenses/by/4.0/

	Title
	Figure 1 Segmentation over synthetic data.
	Figure 2 Segmentation over yeast’s metabolic cycle.
	Figure 3 Segmentation over diel growth state transition of diatom Thalassiosira pseudonana.
	References

