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Abstract

Ocular toxoplasmosis is mediated by monocytes infected with Toxoplasma gondii that are

disseminated to target organs. Although infected monocytes can easily access to outer

blood-retinal barrier due to leaky choroidal vasculatures, not much is known about the

effect of T. gondii-infected monocytes on outer blood-retinal barrier. We prepared human

monocytes, THP-1, infected with T. gondii and human retinal pigment epithelial cells,

ARPE-19, grown on transwells as an in vitro model of outer blood-retinal barrier. Exposure

to infected monocytes resulted in disruption of tight junction protein, ZO-1, and decrease

in transepithelial electrical resistance of retinal pigment epithelium. Supernatants alone

separated from infected monocytes also decreased transepithelial electrical resistance

and disrupted tight junction protein. Further investigation revealed that the supernatants

could activate focal adhesion kinase (FAK) signaling in retinal pigment epithelium and the

disruption was attenuated by FAK inhibitor. The disrupted barrier was partly restored by

blocking CXCL8, a FAK activating factor secreted by infected monocytes. In this study, we

demonstrated that monocytes infected with T. gondii can disrupt outer blood-retinal bar-

rier, which is mediated by paracrinely activated FAK signaling. FAK signaling can be a tar-

get of therapeutic approach to prevent negative influence of infected monocytes on outer

blood-retinal barrier.

Introduction

Blood-retinal barrier (BRB) is composed of tight junctions of retinal capillary endothelial cells

(inner BRB) and retinal pigment epithelial cells (outer BRB). The retinal pigment epithelium
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(RPE) is a monolayer of highly specialized hexagonal-shaped cells located between the sensory

retina and the leaky choroidal vasculature. The tight junctions between RPE cells efficiently

restrict paracellular permeation into the retina [1]. A disruption can increase permeability and

impair homeostatic function of RPE leading to visual disturbance.

One of the conditions where the barriers are impaired is uveitis. According to the experi-

mental models of uveitis, leukocyte infiltration and BRB breakdown primarily occurred at

inner BRB while packed inflammatory cells at choroid without evidence of migration were

observed at outer BRB [2]. At later stages of uveitis, occasional infiltration of inflammatory

cells and opening of tight junctions were observed at outer BRB [2, 3]. As ocular toxoplasmosis

is the most common cause of posterior uveitis [4], similar impairment is expected in ocular

toxoplasmosis.

Ocular toxoplasmosis is caused by infection with Toxoplasma gondii, an obligate intracel-

lular protozoan parasite. Following the ingestion of cysts consisting of T. gondii, tachyzoites,

invasive and fast replicative forms of T. gondii, cross the intestinal epithelium and infect

monocytic cells adjacent to the lamina propria [5]. The infected cells are disseminated

through the blood flow toward target organs. Acute ocular toxoplasmosis commonly appears

as necrotising retinochoroiditis that shows diffuse inflammation in the retinal and RPE/cho-

roidal tissue [6], and there are various other presentations such as punctate outer retinal

toxoplasmosis whose lesion is restricted to RPE. According to the experimental study of par-

asite load in various parts of the eye after oral administrations, T. gondii was simultaneously

detected in the retina and choroid [7]. The load in the choroid was remaining at low level,

while the load in the retina increased gradually. These findings contradict conventional con-

cept of primary involvement of retina and secondary involvement of choroid by T. gondii
infection [8].

It is interesting to note that parasite load in the choroid remained at low level [7]. The grad-

ual increase of the parasite load in the retina probably indicate transmigration and replication

of T. gondii. As it is known that T. gondii inside RPE cells can replicate [9], low level of parasite

load in the RPE/choroid probably indicate migration of infected cells to the RPE/choroid can

occur but replication in the RPE/choroid is likely to be restricted. Therefore, pathogenesis of

lesions at outer BRB was investigated by using T. gondii-infected cells instead of tachyzoites

that were commonly used in other studies to directly infect RPE [10–12].

In this study, we demonstrated disruption of an in vitro model of outer BRB by infected

monocytes. Supernatants alone could also disrupt outer BRB and the disruption was attenu-

ated by focal adhesion kinase (FAK) inhibitor. CXCL8 secreted from infected monocytes

partly mediated the disruption of outer BRB.

Materials and methods

Cell culture

Human RPE cells, ARPE-19, were purchased from American Type Culture Collection (Manas-

sas, VA, USA) and maintained in Dulbecco’s modified Eagle’s medium: nutrient mixture F-12

(DMEM/F12) containing 10% fetal bovine serum (FBS), 100 U/mL penicillin, and 100 μg/mL

streptomycin. Human monocytic cells, THP-1, were purchased from Korean Cell Line Bank

(Seoul, Korea) and maintained in RMPI 1640 containing 10% FBS, 100 U/mL penicillin, and

100 μg/mL streptomycin. Human foreskin fibroblasts (HFF) were purchased from Korean Cell

Line Bank and maintained in Dulbecco’s modified essential medium containing 10% FBS, 100

U/mL penicillin, and 100 μg/mL streptomycin. All culture reagents were purchased from Invi-

trogen (Carlsbad, CA, USA). Cells were incubated at 37˚C in a moist atmosphere of 95% air

and 5% CO2.
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Parasites and reagents

An avirulent type 2 strain of T. gondii expressing green fluorescent protein (PTG strain, ATCC

#50941) [13] was purchased from the American Type Culture Collection. Tachyzoites were

maintained by serial passaging in HFF.

FAK was inhibited by treating 1 μM of PF-573228 (Tocris, Minneapolis, MN, USA) on api-

cal side of RPE monolayer and CXCL8 was neutralized by treating 1 μg/mL of human CXCL8

antibody (MAB208; R&D systems, Minneapolis, MN, USA) on basolateral side of RPE mono-

layer. An antibody with corresponding IgG1 isotype (MAB002; R&D systems) was used as a

control.

Infection of cells with Toxoplasma gondii

Infected HFFs were lysed and filtered through a 3-μm pore-sized membrane to remove host

cell debris. Prepared tachyzoites were added to THP-1 cells at a density of 106 cells/mL (para-

site/cell ratio 2). After incubation for 24 h at 37˚C in an atmosphere containing 5% CO2, infec-

tion was confirmed under the fluorescence microscope. Then, supernatants were separated by

centrifugation at 1000g for 10 min and filtration through a 0.22-μm pore-sized filter. The col-

lected supernatants were stored at -20˚C. Heat-inactivated tachyzoites were prepared after

incubation at 56˚C for 30 min as previously described [14, 15]. For immunocytochemistry,

THP-1 cells were labeled with CellTracker™ Deep Red (Invitrogen) prior to the addition of the

tachyzoites.

Transepithelial electrical resistance measurement

RPE cells were plated at a density of 1.6×105 cells/cm2 on transwell filters (6.5-mm diameter,

0.4-μm pore, Corning Inc., NY, USA) coated with laminin. After confluency was achieved, the

monolayer was maintained in DMEM/F12 containing 1% FBS to induce polarization [16].

Monolayers incubated more than 4 weeks were utilized for the analysis of barrier function and

immunocytochemical staining.

The transepithelial electrical resistance (TEER) was measured with an eipithelial voltohm-

meter EVOM2 (World Precision Instruments, Sarasota, FL, USA). The value of each individ-

ual transwell was calculated by subtracting the value of a coated transwell without cells. Values

measured immediately after treatments were set as 100% to normalize the results.

Immunocytochemistry

After removal of the medium, the monolayers were washed with PBS and fixed with 4% para-

formaldehyde at room temperature for 15 min. After permeabilization with 0.2% Triton X-100

in PBS at room temperature for 10 min, cells were incubated with 1% bovine serum albumin

in PBS at room temperature for 1 h. Cells were then incubated overnight at 4˚C with rabbit

anti-ZO-1 (Invitrogen). On the next day, cells were washed with PBS and incubated at room

temperature for 1 h with secondary antibodies (Alexa Fluor 488 anti-rabbit IgG, Invitrogen).

The filters were detached from the transwells, mounted on slide glasses and observed under

fluorescence microscope (Ni-U, Nikon, Tokyo, Japan)

Western blot analysis

Western blot analysis was performed using standard methods. After cell lysates were prepared

in RIPA buffer, equal amounts of protein were separated by electrophoresis on 7% sodium

dodecyl sulfate—polyacrylamide gel electrophoresis and transferred to nitrocellulose mem-

brane (Amersham, Pittsburgh, PA, USA) by electrotransfer. After being blocked with skim
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milk or bovine serum albumin, the membranes were incubated overnight at 4˚C with rabbit

anti-phospho-FAK(Y397), anti-FAK, anti-β-actin (all three from Cell Signaling Technology,

Beverly, MA, USA), rabbit anti-ZO-1 or anti-occludin (both from Invitrogen). After incuba-

tion with HRP-linked anti-rabbit IgG secondary antibody, the immunoreactive bands were

visualized using a chemiluminescent kit solution (Dogen, Seoul, Korea).

Quantification of cytokines secreted by THP-1 cells in response to

Toxoplasma gondii infection

Supernatants from infected THP-1 were collected as described above. Levels of CXCL8 were

measured by using ELISA kits (KOMA Biotech, Seoul, Korea) according to manufacturer’s

instructions. The minimum detectable concentration was 16 pg/mL according to manufactur-

er’s descriptions. In addition, supernatants were analyzed by Human Cytokine Array kit

(ARY005B; R&D systems) according to manufacturer’s instructions.

Statistics

Differences between groups were evaluated with the Mann-Whitney U-test using SPSS 19.0

(SPSS Inc., Chicago, Illinois, USA). Mean values with SEM were described. P-values less than

0.05 were considered to be statistically significant.

Results and discussion

Infected monocytes disrupt tight junction proteins

A previous study revealed that tachyzoites probably take a paracellular pathway to cross intesti-

nal epithelial barriers leaving the integrity of barriers unaltered [17]. Outer BRB is also consti-

tuted by epithelial cells, but the results from intestinal barriers cannot be applied to outer BRB

because parasite dissemination is mainly fulfilled not by extracellular tachyzoites but by intra-

cellular tachyzoites in leukocytes [18]. Another study revealed CD11b+ monocytes are respon-

sible for carrying tachyzoites in the blood and transporting them to the brain [19]. Therefore,

we utilized monocytes infected with tachyzoites to investigate their effects on integrity of our

in vitro model of outer BRB.

THP-1, a monocytic cell line that is derived from a patient with acute myeloid leukemia [20],

were infected with freshly prepared tachyzoites. Then, infected THP-1 cells were added to the

basolateral side of RPE monolayers that were prepared on the 5-μm pore-size transwell mem-

brane, and the barrier integrity was evaluated by staining of tight junction protein (Fig 1A).

Zonula occludens-1 (ZO-1) was selected among tight junction proteins because ZO-1 was more

sensitive to cytokine than others in RPE cells [21]. After two hours of incubation, the transwell

membranes were isolated and immunostained with anti-ZO-1 antibody. In a group incubated

with uninfected THP-1 cells, ZO-1 was localized as continuous lines at the periphery of each

cell, which shows its association with the membrane (Fig 1B). In a group incubated with THP-1

cells infected with T. gondii, a much granular pattern and an occasional loss of association with

the membrane were observed (Fig 1C). Further analysis with additional information on the

location of THP-1 cells revealed that the ZO-1 expression of RPE cells adjacent to the infected

THP-1 cells (magenta with multiple green fluorescent dots around) was mainly affected, but its

integrity in RPE cells that lay apart from the infected THP-1 cells was also impaired (Fig 1C).

Infected monocytes decrease TEER

To investigate the effect of ZO-1 disruption on the permeability of outer BRB, TEER was eval-

uated after the addition of infected THP-1 cells. We have previously shown that TEER was
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decreased under the condition that ZO-1 was disrupted in RPE monolayers [22]. The mean

TEER established on the RPE monolayers cultivated on the 5-μm pore-size transwell mem-

brane was 60.6 ± 1.3 ohms▪cm2 when the value reached a plateau. Three and six hours after

incubation with infected THP-1 cells, TEER was significantly decreased to 81.9 ± 2.4% and

70.6 ± 4.7%, respectively, while a group incubated with uninfected THP-1 cells remained

unchanged (Fig 2). Further evaluation revealed minimal changes on TEER later on. Our find-

ings of ZO-1 immunostaining and TEER measurements demonstrate infected monocytes can

disrupt outer BRB.

Conditioned media from infected monocytes can also disrupt outer BRB

Our findings of ZO-1 disruption that occurred distant from the infected monocytes and

decreased TEER that infers generally increased permeability throughout the membrane, sug-

gest the presence of factors that can work paracrinely to disrupt tight junctions without neces-

sity for direct cell contacts. The paracrine effect of infected monocytes was evaluated by

application of conditioned media isolated from infected monocytes on outer BRB. Superna-

tants were collected from infected THP-1 cells by centrifugation and applied to basolateral side

of RPE monolayers (Fig 3). The mean TEER established on the RPE monolayers cultivated on

the 0.4-μm pore-size transwell membrane was 65.8 ± 1.4 ohms▪cm2 when the value reached a

plateau. Three and six hours after the treatment of the conditioned media from infected THP-

1 cells, TEER was significantly decreased to 81.6 ± 4.0% and 74.4 ± 3.0%, respectively, while

groups incubated with supernatants from uninfected THP-1 cells, supernatants from THP-1

cells exposed to heat-inactivated T. gondii tachyzoites or boiled supernatants, remained

unchanged (Fig 3A). Immunostaining of ZO-1 on RPE monolayers at 6 h revealed that mem-

brane-associated pattern of ZO-1 expression was preserved in RPE cells treated with superna-

tants from uninfected THP-1 cells (Fig 3B) or from THP-1 cells exposed to heat-inactivated T.

Fig 1. Infected monocytes disrupt tight junction protein. Human monocytic cells, THP-1, were labeled

with deep red fluorescent cell tracker dyes and exposed to viable tachyzoites of Toxoplasma gondii

expressing green fluorescent protein (PTG strain). (A) After the prepared inserts were turned upside down,

THP-1 cells (105 cells/well) were added to the basal side of the inserts. After incubation for 1 h, the inserts

were placed back into the 24-well plates and incubated for another 1 h, and then transwell membranes were

fixed, permeabilized, and immunostained with ZO-1 (red). The results of (B) THP-1 cells that were not

infected (magenta) and (C) THP-1 cells that were infected with tachyzoites (magenta with green fluorescent

dots around) were examined under the fluorescence microscope. Figures were selected as representative

data from three independent experiments. Scale bar = 20 μm.

https://doi.org/10.1371/journal.pone.0175159.g001
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Fig 2. Infected monocytes decrease transepithelial electrical resistance. THP-1 cells that were not

infected (Uninfected) and THP-1 cells infected with T. gondii tachyzoites (Infected) were added to RPE

monolayer (105 cells/well). Transepithelial electrical resistance was measured before the treatment (0 h), and

3, 6, 12 and 24 hours after the treatment. Values of uninfected group at 0 h were normalized to 100%. Data

were presented as the mean ± SEM of three independent experiments. *P<0.05.

https://doi.org/10.1371/journal.pone.0175159.g002

Fig 3. Conditioned media from infected monocytes can also disrupt outer BRB. (A) Transepithelial

electrical resistance was measured before the treatment (0 h), and 3,6,12 and 24 h after the treatment of

supernatants from THP-1 cells that were not infected (SN_Uninfected), THP-1 cells that were exposed to

heat-inactivated tachyzoites (SN_Inactivated T. gondii) and THP-1 cells infected with live tachyzoites of T.

gondii (SN_Live T. gondii). In addition, supernatants from infected THP-1 cells were boiled at 100˚C for 20

min, and utilized (SN_ Live T. gondii (Boiled)). (B-D) Expression of ZO-1 was evaluated by

immunocytochemical staining of ZO-1 (green) 6 h after the treatment of supernatants from THP-1 cells that

were not infected (B), from THP-1 cells that were exposed to heat-inactivated tachyzoites (C) and from THP-1

cells infected with live tachyzoites of T. gondii (D). Data were presented as the mean ± SEM of five

independent experiments. Figures were selected as representative data from three independent experiments.

*, P<0.05. Scale bar = 20 μm.

https://doi.org/10.1371/journal.pone.0175159.g003
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gondii tachyzoites (Fig 3C), while the integrity was lost in RPE cells treated with supernatants

from infected THP-1 cells (Fig 3D).

FAK is activated by conditioned media from infected monocytes

When infected with T. gondii, human leukocytes are altered in gene expression [23]. As diverse

factors secreted from infected leukocytes probably work as synergistically or antagonistically

to make consequence of disrupted barrier, it is feasible to investigate common pathways medi-

ating the disruption in RPE first.

Previous studies on animal models of ocular toxoplasmosis commonly showed migration

of RPE cells in animals infected with T. gondii [24, 25]. As the migration can be triggered by

disruption of RPE monolayer [24], one common pathway can probably modulate both the

migration in animal models and the disruption of outer BRB in our study. In other immune

privileged organs, FAK activation was found to be involved in disruption of blood-brain bar-

rier [26] and blood-testis barrier [27]. As FAK is not only known to be closely involved in

migration of cells [28], but also known to regulate tight junctions in the epithelium [29, 30],

the involvement of FAK signaling was investigated.

We first evaluated the activation of FAK by conditioned media. After the treatment of

supernatants from infected THP-1 cells on RPE cells, expressions of FAK and phosphorylated

FAK were determined by Western blot analysis. The ratio of phosphorylated FAK over FAK

was increased 4.3- and 3.5-fold when treated with supernatants from infected THP-1 cells for

0.5 h and 4 h, respectively, compared to a group incubated with standard medium (Fig 4). In a

group treated with supernatants from uninfected THP-1 cells, the ratio of phosphorylated

FAK over FAK remained unchanged at 0.5 h.

Fig 4. FAK is activated by conditioned media from infected monocytes. Representative Western blots of

anti-pFAK, anti-FAK and anti-β-actin obtained with RPE cell lysates after treatment of conditioned media.

RPE cells were incubated with standard medium, supernatants from uninfected THP-1 cells (SN_Uninfected)

for 0.5 h, or supernatants from infected THP-1 cells (SN_Infected) for 0.5 and 4 h. β-actin served as loading

control. Figures were selected as representative data from three independent experiments.

https://doi.org/10.1371/journal.pone.0175159.g004
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Inhibition of FAK signaling attenuates the disruption of outer BRB

Then, the effect of inhibiting FAK activation on barrier function of RPE was investigated. A

selective FAK inhibitor, PF-573228, that is known to inhibit FAK phosphorylation with an

IC50 of 30–100 nM was utilized [31]. After the FAK inhibitor was confirmed to have no effect

on viability of RPE cells at a concentration of 1 μM (S1 Fig), it was added to supernatants to

inhibit FAK activation. The addition of FAK inhibitor to control group did not have any

adverse effect on TEER at 6 h (Fig 5A) and any other time point later on when observed until

24 h. Six hours after the treatment of supernatants from infected THP-1 cells with or without

additional FAK inhibitor, TEER was higher in a group with additional FAK inhibitor

(86.8 ± 3.5%) than without it (74.7 ± 3.9%) (Fig 5A). The results were in accordance with

FITC-dextran permeability assay performed after 6 h incubation with corresponding superna-

tants. Increased FITC-Dextran permeability by supernatants from infected THP-1 cells was

attenuated by addition of FAK inhibitor (S2 Fig). Immunostaining of ZO-1 on RPE monolayer

fixed at 6 h revealed corresponding results with TEER measurement. The membrane-associ-

ated pattern of ZO-1 expression was preserved in RPE cells treated with addition of FAK

inhibitor to control group (Fig 5B). The loss of integrity in RPE cells by supernatants from

infected THP-1 cells (Fig 5C) was attenuated by addition of FAK inhibitor (Fig 5D).

The effect of FAK inhibitor was further evaluated with Western blot analysis of phosphory-

lated FAK and tight junction proteins. The ratio of phosphorylated FAK over FAK was

increased 2.6-fold at 6 h after the treatment with supernatants from infected THP-1 cells, but

addition of FAK inhibitor significantly attenuated the ratio increase to half (Fig 5E). Further

evaluation with the corresponding samples demonstrated that decreased expressions of tight

junction proteins, ZO-1 and occludin, after the treatment of supernatants from infected THP-

1 cells were restored by addition of FAK inhibitor (Fig 5E).

Previous studies on the association between FAK and tight junction proteins demonstrated

that increased association of FAK with occludin destabilize occludin/ZO-1 protein-protein

interaction and disrupt blood-testis barrier [27]. Inhibition of FAK activation was sufficient to

prevent ZO-1 disruption in blood-brain barrier [26]. Here, we demonstrated the activation of

FAK signaling during the disruption and protective effect of inhibiting FAK activation on bar-

rier integrity in outer BRB.

Blockade of CXCL8 can partly rescue the disruption of outer BRB

To investigate factors in supernatants mediating the disruption, secretory factors from infected

leukocytes were evaluated by analyzing Gene Expression Omnibus (GEO) database (NCBI

GEO accession no. GSE360) regarding gene expression of monocyte-derived macrophages

infected with T. gondii. The expression values were compared to the untreated macrophages,

and genes were sorted in ascending order of adjusted p-value calculated by GEO2R provided

by GEO. Chemokine (C-X-C motif) ligand 8 (CXCL8; ID: 35372_r_at) had lowest adjusted p-

value among genes producing secretory factors. The expression value increased more than

nine-fold after the infection while it increased less than two-fold after exposure to extracellular

parasites, Brugia malayi. Furthermore, CXCL8 is well known to induce FAK phosphorylation

via CXCL8 receptors CXCR1 and CXCR2 [32] and CXCL8 receptors are known to be

expressed in RPE [33]. Thus, the role of CXCL8 in the disruption of outer BRB by supernatants

from infected THP-1 cells was investigated.

The concentration of CXCL8 in the supernatants from infected THP-1 cells was first evalu-

ated by ELISA. Twenty-four hours after infection with T. gondii, the concentration of CXCL8

was increased to 18.97 ± 2.1 ng/mL while conditioned media from uninfected THP-1

remained undetectable. Then, a neutralizing antibody against CXCL8 was prepared to block
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Fig 5. Inhibition of FAK signaling attenuates the disruption of outer BRB. (A) Transepithelial electrical

resistance was measured before the treatment (0 h) and 6 h after the treatment of supernatants from THP-1

cells that were not infected (SN_Uninfected) or from THP-1 cells infected with T. gondii (SN_Infected) with or

without FAK inhibitor (PF-573228, 1μM). (B-D) Expression of ZO-1 was evaluated by immunocytochemical

staining of ZO-1 (green) 6 h after the treatment of supernatants from uninfected THP-1 cells with FAK inhibitor

(B), supernatants from infected THP-1 cells without FAK inhibitor (C) or with FAK inhibitor (D). (E)

Representative Western blots of anti-pFAK, anti-FAK, anti-ZO-1, anti-occludin and anti-β-actin obtained with

RPE cell lysates after treatment of conditioned media with or without FAK inhibitor for 6 h. β-actin served as

loading control. Data were presented as the mean ± SEM of five independent experiments. Figures were

selected as representative data from three independent experiments. *, P<0.05. Scale bar = 20 μm.

https://doi.org/10.1371/journal.pone.0175159.g005
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the action of CXCL8. The monoclonal antibody had 50% neutralization dose at 0.08–

0.4 μg/mL against 20 ng/mL of recombinant human CXCL8. When 1 μg/mL of the neutraliz-

ing antibody was added to supernatants from infected THP-1 cells, RPE monolayers showed

slightly higher TEER but failed to show significance at 6 h (Fig 6A). Higher dosage up to

5 μg/mL failed to show additional effect on TEER at any time point. However, immunocyto-

chemistry of ZO-1 demonstrated focal restoration of disrupted tight junction protein com-

pared to the ZO-1 distribution after the treatment of supernatants from infected THP-1 cells

with or without control IgG (Fig 6B–6D). Focal protective effects of CXCL8 blockade fail to

attenuate TEER changes that measure the electrical resistance across the whole membrane.

Furthermore, when relative amounts of cytokine levels in the supernatants were analyzed by

cytokine array kit, other cytokines such as CCL2, CCL5, IL-1β, and IL-1ra were also increased,

although to a lesser degree than CXCL8 (S3 Fig). We can suggest that although CXCL8 is not

the dominant factor mediating disruption of RPE monolayers by conditioned media from

infected monocytes, it can partly mediate the disruption.

The outer BRB is formed by RPE cells and fenestrated choriocapillaries while inner BRB is

formed by non-fenestrated endothelium [34]. The outer BRB is considered as a site for retinal

immunosurveillance where immune cells migrate to remove dead photoreceptors and cell

debris in the injured retina [35]. Although there is a possibility that outer BRB during immu-

nosurveillance was transiently disrupted as it was shown during leukocyte transmigration in

retinal venules [21], it is interesting to note that obvious breakdown of the BRB was not

Fig 6. Blockade of CXCL8 can partly rescue disruption of outer BRB. (A) Transepithelial electrical

resistance was measured before the treatment (0 h) and 6 h after the treatment of supernatants from

uninfected THP-1 (SN_Uninfected) or from infected THP-1 cells (SN_Infected) with a control IgG or with a

neutralizing antibody against CXCL8 (Anti-CXCL8, 1 μg/mL). (B-D) Expression of ZO-1 was evaluated by

immunocytochemical staining of ZO-1 (green) 6 h after the treatment of supernatants from infected THP-1

cells (B), and additional treatment with control IgG (C) or neutralizing antibodies against CXCL8 (D). Data

were presented as the mean ± SEM of three independent experiments. Figures were selected as

representative data from three independent experiments. Scale bar = 20 μm.

https://doi.org/10.1371/journal.pone.0175159.g006
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observed during the transmigration [35]. In contrast, tight junction proteins were significantly

disordered during experimental autoimmune uveoretinitis [21], which corresponds to this

study that showed monocytes infected with intracellular parasites disrupted outer BRB. The

discrepancy in the aspect of tight junction between immunosurveillance and our study proba-

bly depends on the status of leukocytes whether they are in the resting state or inflamed state.

The status of RPE is also important in the interactions with immune cells. CXCL8 is

secreted constitutively from RPE at concentration less than 1 ng/mL on both apical and basal

sides [36]. When RPE is stimulated from the apical side by mixture of IL-1β, TNF-α and IFN-

γ, CXCL8 secretion from apical side is increased to 111 ng/mL while stimulation from the

basal side induces only 22 ng/mL from the apical side [36]. CXCL8 secretion from the basal

side remains less than 5 ng/mL in both stimulation [36]. This kind of polarized secretion can

work as protective mechanism against infected cells to infiltrate RPE monolayer. When

inflammation is active on the apical side where retina lies, the gradient of CXCL8 helps leuko-

cytes infiltrate and fight against the source of inflammation. However, when inflammation is

active on the basal side where choroid lies, immune cells are less likely to migrate across the

RPE. In case of T. gondii infection, clinically observed punctate outer retinal toxoplasmosis [6]

may correspond to the stimulation from basal side and manifest as focal lesion limited to RPE

affected by chemokine from immune cells that could not infiltrate. Another manifestation

may correspond to the stimulation from apical side due to the neuroretinitis and manifest as

necrotizing retinochoroiditis [6] that involves whole retinal layer infiltrated with immune

cells.

In this study, we demonstrated outer BRB disruption by T. gondii-infected monocytes.

Supernatants alone separated from infected monocytes could also decrease TEER and disrupt

tight junction proteins. During the disruption, FAK signaling was paracrinely activated. FAK

inhibitor could attenuate the disruption by suppressing FAK activation. Blockade of CXCL8, a

FAK activating factor in the supernatants, could partly rescue the disruption. Selectively target-

ing FAK activation in RPE cells can be a new strategy to reduce complications of ocular

toxoplasmosis.
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