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Abstract

The encoded transcript of the Maestro—Male-specific Transcription in the developing Repro-

ductive Organs (MRO) gene exhibits sexual dimorphic expression during murine gonadal

development. The gene has no homology to any known gene and its expression pattern, pro-

tein function or structure are still unknown. Previously, studying gene expression in human

ovarian cumulus cells, we found increased expression of MRO in lean-type Polycystic Ovar-

ian Syndrome (PCOS) subjects, as compared to controls. In this study, we examined the

MRO splice variants and protein expression pattern in various human tissues and cells. We

found a differential expression pattern of the MRO 5’-UTR region in luteinized granulosa-

cumulus cells and in testicular tissues as compared to non-gonadal tissues. Our study also

shows a punctate nuclear expression pattern and disperse cytoplasmic expression pattern of

the MRO protein in human granulosa-cumulus cells and in testicular germ cells, which was

later validated by western blotting. The tentative and unique features of the protein hampered

our efforts to gain more insight about this elusive protein. A better understanding of the tis-

sue-specific MRO isoforms expression patterns and the unique structure of the protein may

provide important insights into the function of this gene and possibly to the pathophysiology

of PCOS.

Introduction

Granulosa cells (GCs) are cuboidal cells surrounding the oocyte in developing ovarian follicles.

As a follicle matures, the GCs proliferate to form multicellular layers and those directly sur-

rounding the oocyte form the cumulus oophorous complex (COC) [1]. Before ovulation, GCs
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are the primary site of estrogen production; these cells become granulosa lutein cells which pro-

duce primarily progesterone after ovulation. GCs can only be collected during ovum retrieval

from patients undergoing controlled ovarian stimulation for in-vitro fertilization (IVF) and

have been used extensively in studies to improve our understanding of gene function and regu-

lation in human fertility and the pathobiology of infertility. The Male-specific Transcription in
the developing Reproductive Organ-MAESTRO (MRO) gene transcript was first described in

murine male gonadal development but not in female gonads [2]. The human MRO gene (gene

ID: 83876) [3, 4] was first reported in a study comparing gene expression patterns in human

ovarian cumulus cells (CCs) from lean and obese-type polycystic ovary syndrome (PCOS) ver-

sus median Body Mass Index (BMI) matched non-PCOS controls [5]. MRO had a 10-fold

increased expression in lean-PCOS as compared to controls, together with proteoglycan 1 secre-

tory granule (PRG1); ryanodine receptor 3 (RYR3); lectin galactoside-galectin 12 (LGALS12);
Hyaluronan and proteoglycan link protein 1 (HAPLN1); chemokine (C-C motif) ligand 20

(CCL20); solute carrier family 7 member 2 (SLC7A2); and wingless-type MMTV integration site

family, member 5A (WNT5A). The lack of information on the MRO transcript and protein,

both in murine model and human, has encouraged us to further characterize the gene splice

variants, tissue distribution and protein product(s). The protein structure and biological func-

tion remain to be clearly defined.

MRO belongs to a relatively new gene family, named ‘maestro heat-like repeat family

(MROH) [6]. The MROH family include 11 members so far (MRO, MROH, MROH2A,

MROH2B, MROH3P, MROH4P, MROH5, MROH6, MROH7, MROH8, MROH9) and all con-

tain HEAT repeats motif or regions that are highly similar to HEAT repeats [3]. The protein

structure and function of these MROH family members is also unknown. The HEAT domain,

which are found in several cytoplasmic proteins including the four that give rise to the acro-

nym HEAT [7]. Other examples for HEAT-containing proteins include the nuclear cargo

transport protein Ran-GTP binding importin beta (Karyopherin, KPNB1) and Exportin 1

(XPO1) cargo transport proteins [8, 9]. This domain is structurally related to armadillo repeats

(ARM), which form rod-like helical structures and are involved in intracellular transport.

The eight deduced spliced transcripts of the novel MRO gene (see Fig 1) described here can

give rise to four protein isoforms ranging 26–29 kDa (S1 Fig) as well as several non-sense

mediated decay transcripts (NMD; NCBI [4], Ensembl [10]). MRO gene and protein is con-

served in mammalian only (magnorder Boreoeutheria) and have no homology to other genes

or proteins in the genome databases (HomoloGene:41729, [4]).

A mouse knockout model has been created and is both viable and fertile [11] however,

no detailed studies have been reported on adult female mice or human MRO expression and

cellular localization. Given the paucity of information regarding the human MRO gene, and its

potential role in folliculogenesis, our aim was to gain a detailed understanding of MRO tran-

scription patterns and protein expression in humans, with particular emphasis on the gonads.

Materials and methods

Isolation of human granulosa cells and cumulus cells

This study was vetted by the University of Toronto Research Ethics Board and specifically

approved the use of these materials for this study (Approval #29237). With written informed

consent, CCs and GCs were isolated from follicular fluid (FF) collected during standard IVF

from healthy young ovum donors (n = 9) and PCOS (n = 9) patients undergoing standard IVF

procedures at the CReATe Fertility Centre, Toronto, ON, Canada. PCOS was diagnosed

according to the Rotterdam criteria [12]. Patients age, median body mass index (BMI), num-

ber of retrieved oocytes and hormonal profile are given in Table 1. Controlled ovarian
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stimulation was achieved by flexible-start antagonist protocol and underwent transvaginal

ultrasound assisted follicle aspiration 36 h after triggering with human chorionic gonadotropin

(hCG) and/or Gonadotropin-releasing hormone (GnRH), agonist, as described previously

[13].

The oocyte and FF are collected from the patient by inserting an aspiration needle into the

follicle under transvaginal ultrasound guidance and applying gentle suction to drain the follicle

of its contents. The oocyst is taken by an embryologist and the remaining discarded material

including the FF (containing GCs) were pooled. GCs were purified according to previously

Fig 1. Schematic representation of the human Maestro (MRO) gene structure. The start codon of the

Open Reading Frame (ORF) indicated by an arrow is localized in exon 2 for MROa, MROa2, MROc, MROd,

and in exon 4 for ‘MROb’ (b1-b4) transcript variants. MROa (NM_031939.3), MROd (NM_001127176.1), and

MROc (NM_001127175.1) coding regions consist of 753bp, 648bp, and 492bp and encode 248aa, 262aa,

and 210aa protein, respectively. MROb1 (NM_001127174), MROb2, and MROb3 consist of 678bp, 827bp,

and 792bp and encode 196aa, 248aa, and 210aa proteins, respectively. MROa is considered as a non-sense

mediated decay (NMD) transcript. The ‘a’ variant differs by a 103bp additional 5’ exon (exon 4) compared to

the ‘c’ and ‘d’ variants. The ‘c’ variant lacks one in-frame exon (exon 7) compared to ‘d’. The MRO ‘b’ variants

(MROb1-4) contain a distinct 5’ UTR differ from MROa, c, d by a 76bp non-coding exon (exon 1), and differ

from each other by one alternate exon (exon 3) and one in-frame exon (exon 7). MROb4 (BC029860.1) is the

longest transcript, consisting of 948bp and encoding 248aa. The predictive protein isoforms have 2 distinct N-

terminus with expected sizes of 196 aa– 248 aa and a mass of 23-29kDda (S1 Fig).

https://doi.org/10.1371/journal.pone.0174873.g001
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published methods [13–15]. Briefly, the GCs were pelleted by centrifugation (700 x g, 10 min,

4˚C). The top cellular layer was collected and transferred to a new tube and was washed in a

1:1 mixture of Dulbecco’s Modified Eagle Medium and Ham’s Mixture F-12 (DMEM/F-12)

(ThermoFisher Scientific, Burlington, ON, Canada), layered over equal volume of a 100%

Ficoll gradient solution (GE Healthcare, Mississauga, ON, Canada) and centrifuged (700xg,

20 min, 4˚C). The cellular layer at the Ficoll/PBS interface was aspirated and washed in 1x

PBS. To further eliminate contaminating blood cells, the suspension was incubated (3 min,

RT) with 2x Lysis-EZ buffer (BioBasic, Markham, Canada). A small portion of cells was kept

aside to use as control for cell purity. After centrifugation (700xg, 10 min, 4˚C), the cells pellet

was washed twice with DMEM/F12 before being cultured or used for RNA and/or protein

extraction. Viable cell-counts for the purified GCs were performed using the semi-automated

Countess instrument (ThermoFisher) according to the manufacturer’s instruction. CCs were

collected by standard mechanical microdissection of oocytes by embryologists as previously

described [16, 17].

RNA extraction and RT-PCR

Total RNA was isolated from GCs and CCs using the RNeasy Mini kit (Qiagen Inc., Toronto,

ON, Canada). TURBO DNA-free kit (ThermoFisher) was used to ensure removal of genomic

DNA. Commercial total RNA from human tissues (testes—pooled from 39 Caucasians, ages:

14–64; liver—Caucasian male, age: 51; kidney—Caucasian female, age: 40; ovary—pooled

from 16 Caucasian, ages: 20–60) (Takara Bio USA Inc., Mountain View, CA, USA) and H68

cell line (Life Technologies, Carlsbad, CA, USA). The cDNA was prepared from 1 ug of total

RNA using the QuantiTect Reverse Transcription Kit (Qiagen). PCR amplification was per-

formed with the QuickLoad Taq enzyme mix (New England Biolabs (NEB), Ipswich, MA,

USA), using the Biometra thermocycler (Biometra, Goettingen, Germany). To clone the MRO
splice variants, 4 primer pairs were designed (Table 2) using Primer3 software [18]. PCR

Table 1. Clinical parameters of PCOS and control patients.

PCOS (N = 9) Range Controls (N = 9) Range

Age (years) 26 26–36 32 30–36

BMI (kg/m2) 22 18 to 24 23 19.7–24.1

Number of eggs retrieved 24 14–28 18 5–24

Number of follicles on cycle day 2 >12 n/a <10 n/a

AMH (pmol/L) 54.3 50.8–121.7 31.9 17.1–37.8

E2 (pg/mL) 468.2 236–2576 169 35.3–882

LH (mIU/mL) 9.41 1.0–10.0 11.27 1.0–10.0

FSH (mIU/mL) 5.64 2.6–8.9 5.66 2.4–14.3

PRG (ng/mL) 2.3 0.8–22.1 2 0.4–22.2

Free Testosterone (pmol/L) 7.4 0.49–9.8 1 0.49–11.4*

Prolactin (ng/mL) 7.7 6.5–17.4 11.1 7.8–14.2

DHEAS (umol/L) 3.8 2.6–10.9 6.7 4–11.8

TSH (IU/mL) 2.7 1.2–4.3 1 0.99–1.6

Androstenedione (nmol/L) 7.3 4.4–15.2 5 3.6–7.6

17-OH (prog nmol/L) 5.3 4.7–8.8 4.2 2.2–4.9

Median body mass index (BMI), Anti-mullerian hormone (AMH), Luteinizing hormone (LH), Follicle-stimulating hormone (FSH), Dehydroepiandrosterone

sulfate (DHEAS), Thyroid stimulating hormone (TSH). Values are expressed as Median.

*outlier.

https://doi.org/10.1371/journal.pone.0174873.t001

Human MRO gene expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0174873 April 13, 2017 4 / 19

https://doi.org/10.1371/journal.pone.0174873.t001
https://doi.org/10.1371/journal.pone.0174873


products were resolved on 2% agarose gels and visualized on the MiniBis gel documentation

system (DNR, Kiryat-Anavim, Israel).

The PCR products were cloned into Cloning into pGEM-Teasy vector (S1 File) and success-

ful ligation was confirmed by sequencing at the Centre of Applied Genomics–TCAG (Hospital

for Sick Children, Toronto, ON, Canada). Sequencing files can be found in Kenigsberg, Shlomit

(2017): MRO clones sequence files. Figshare. https://doi.org/10.6084/m9.figshare.4779763.v1

Quantitative PCR

For quantitative analysis, a duplex PCR (qPCR) reaction was performed using MRO Taq-

Man1 MGB probes (Table 3) labeled with 5’-FAM reporter dye and the internal control gene

probe, 18S RNA, labeled with the 5’-VIC reporter (ThermoFisher), using TaqMan1 Multiplex

Master Mix.

(ThermoFisher) on the Rotor-Gene 6000 thermocycler (Qiagen). All probes were individu-

ally validated in preliminary experiments using plasmids for each MRO clone to ensure spe-

cific, efficient, and linear amplification (data not shown). Assays were performed in triplicate

and relative levels of gene expression were calculated using Rotor-Gene 6.0 software (Qiagen)

and normalized to levels of 18S RNA.

Statistics

Results were generated from GCs and CCs from 18 independent patients, each sample was run

in triplicates. Relative mRNA values were expressed as Mean ± SEM. One-way ANOVA was

performed using GraphPad Prism version 5.00 for Windows (GraphPad Software, San Diego

California USA, www.graphpad.com). Differences were considered significant at p<0.05.

Table 2. List of PCR primers.

Primer Name primer sequence Expected fragment size (bp) Annealing temp. (C˚)

p1F F: CACCCTTCATGAGGATGAGC 677, 955 61

p3/5F F: CCGCAGGTCTCTTGGAAAC 513, 669 63

p4F F: TGGACCAAAGACAGAGGAGAATC 606, 762 63

p9R R: CCTGCTGCTCTGCGCTTAC

hACTB F: ATGCAGAAGGAGATCACTGC 508 55

R: GTCCTCGGCCACATTGTGAA

To detect and clone all potential human MRO splice variants, primer pairs were designed based on sequences retrieved from electronic gene databases

(NM_031939.3, NM_001127174.1, NM_001127175.1, NM_001127176.1). Specific primer pair combinations (F: Forward primer, R-reverse primer) were

used to characterize potential splice variants. Primers p1-Forward (p1F) together with p9-Reverse (p9-R) enabled us to clone the ’MROb’ isoforms

containing the distal 5’UTR, while primer p3/5-F spanning exons 3/5, skipping exon 4, together with p9-R facilitated the cloning of MROa, MROc and MROd

containing the proximal 5’UTR. Primer p4-Forward (p4F) together with p9-R enable the cloning of the coding region. hACTB—Human beta-actin.

https://doi.org/10.1371/journal.pone.0174873.t002

Table 3. List of commercial TaqMan probes used for qPCR (Thermo Fisher). The amplification program

was as follows: a uracil-DNA glycosylase (UDG) incubation (50˚C, 2 min) and initial DNA polymerase enzyme

activation (95˚C, 10 min), followed by 40 cycles of denaturation (95˚C, 15 sec) and annealing ⁄ extension

(60˚C, 1 min).

Probe name Exons span Cat. #

pQ-1/3 exons 1, 3 Hs00901130_m1

pQ-2/3 exons 2, 3 Hs00903498_g

pQ-8/9 exons 8, 9 Hs00901134_m1

18sRNA Hs99999901_s1

https://doi.org/10.1371/journal.pone.0174873.t003
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Immuno-florescence cytochemistry (IF-ICC) on GCs and CCs in culture

GCs and CCs were cultured for 24 h in Millicell EZ 8-well glass slides (Millipore, Etobicoke,

ON, Canada) in DMEM/F-12 medium (ThermoFisher) supplemented with 10% FBS and 1X

Antibiotic-Antimycotic (ThermoFisher). Cells were fixed in 4% paraformaldehyde (15 min,

RT) followed by permeabilization with 0.1% Triton X-100 (10 min, RT). The slides incubated

with 1%BSA/5% goat serum for 1h to reduce non-specific binding, following by overnight incu-

bation (0.4 ug/ml, 4˚C) with the rabbit anti-human MRO-FIL antibody, raised against amino

acid 50–150 (CAT# ab181048 from Abcam, Toronto, ON, Canada), or the FL-248 antibody,

raised against the full length protein produced in E.coli (CAT# SC-134943, from Santa Cruz

Biotechnology (SCBT), Dallas, Texas, USA). Slides were then incubated with FITC-conjugated

goat anti-rabbit IgG secondary antibody (1:10,000; BD Biosciences, Mississauga, ON, Canada).

Nuclei were counterstained with DAPI (2 μg/ml, 2 min, ThermoFisher). The immune stained

cells were visualized and imaged using the EVOS fluorescence microscope (AMG, Bothell, WA,

USA). Wheat germ expressed recombinant MRO protein [2 ug/ml (5X concentration of anti-

body; CAT# ab164453, Abcam)] was used as a blocking peptide to demonstrate antibody speci-

ficity, according to the manufacturer instructions. Detailed analysis of the available MRO

primary antibodies and recombinant proteins used in this study is provided in S1 File, S1 and

S2 Tables.

Immuno-florescence histochemistry (IF-IHC) with human tissue sections

Immunolocalization of MRO was performed on 5um sections of archived formalin fixed

paraffin embedded human PCOS and non-PCOS ovarian tissues after clinical and patholog-

ical investigation (Department of Pathology, Queen Mary Hospital, The University of Hong

Kong). The use of these clinical materials was approved by the Institutional Review Board

of The University of Hong Kong/Hospital Authority Hong Kong West Cluster (IRB refer-

ence number: UW 14–169). Briefly, tissue sections were deparaffinized and rehydrated with

xylene and a serial ethanol gradient, and subjected to heat-mediated antigen retrieval in cit-

rate buffer (10 mM, pH 6.0; 20 min, 95˚C). Non-specific binding was blocked using 5%

milk diluted in PBS-T (40 min, RT), following overnight incubation at 4˚C with the FL-248

antibody (4 ug/ml). After washing, sections were incubated with goat anti-rabbit IgG conju-

gated with Alexa-fluor 488 (1h, RT), mounted in prolong gold anti-fade reagent with DAPI

(ThermoFisher) and visualized using an Axioplan 2 Imaging immunofluorescence micro-

scope with images captured and analyzed using Axion-Vision 4.8 software (Zeiss, North

York, ON, Canada).

MRO protein expression in other human tissues was examined by IHC on tissue array

microslides (TAM) from pre-menopausal human ovaries (CAT# OV801), ovarian carcinoma

(CAT# T112a), testis carcinoma (CAT# TE482) and multiple organs–cerebellum section of the

brain (CAT# BN501) (US BioMax, Rockville, MD, USA) at the Centre for Modeling Human

Disease (Toronto, ON, Canada) as described previously [19]. Briefly, TMA sections were

deparaffinized and rehydrated in a series of xylene and ethanol washes, incubated with H2O2

(0.3%; 30 min) to quench endogenous peroxidases and subjected to antigen retrieval with the

Trilogy system (Cell-Marque, Rocklin, CA, USA). Sections were then incubated with anti-

MRO FL-248 antibody (1:500, overnight, 4˚C), followed by biotinylated anti-rabbit secondary

antibody (1:200, 60 min, RT, ThermoFisher) and streptavidin-HRP/diaminobenzidine (Vec-

tastain ABC Elite peroxidase kit, Vector Laboratories, Burlingame, CA, USA). Hematoxylin

was used as a counterstain. Processed sections were examined by acquiring a digital image on

the NamoZoomer 2.0RS, (Hamamatsu, Japan) of the entire array and processed using the

Metamorph software (Molecular Devices, Sunnyvale, CA, USA).

Human MRO gene expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0174873 April 13, 2017 6 / 19

https://doi.org/10.1371/journal.pone.0174873


Multiplex Western blotting in GC nucleus and cytoplasm

GCs were lysed with NE-PER Nuclear and Cytoplasmic Extraction Reagents (ThermoFisher).

Both fractions contained protease inhibitors (Sigma-Aldrich, Oakville, ON, Canada). MRO
containing plasmid (pSNAP-MRO) was transfected (4ug of DNA, 12hrs; S1 File) into Chinese

hamster ovary cells (CHO-K, kindly provided by Dr. Reginald (Department of Immunology,

University of Toronto, Toronto, ON, Canada) using Lipofectamine2000 (ThermoFisher).

Transfected cells were lysed using the Cell Lytic Mammalian Cell Lysis Kit (Sigma-Aldrich).

This served as a positive control for the Western Blot.

For western blotting, 12ug of protein was loaded per lane, resolved on a precast 4–12% Bolt

Bis-Tris Plus gradient gel (ThermoFisher) and transferred onto a 0.2 μm nitrocellulose mem-

brane using the Bolt transfer system (ThermoFisher). Membranes were blocked with a 1:1

ratio of Odyssey blocking buffer (LI-COR Biosciences, Lincoln, NB, USA) and 1x TBST

(50mM Tris base, 150mM Sodium chloride, 0.05% Tween 20) then incubated overnight at 4˚C

with rabbit anti-MRO-FL-248 (1:250) (SantaCruz). The mouse monoclonal anti-Actin anti-

body (1:1000) (Sigma-Aldrich) was used as a loading control and rabbit anti- Histone Deacety-

lase-1 (HDAC1, 1:500) (Abcam) was used as a nuclear extract specific control. The

membranes were then washed 3 times with 1xTBST and incubated with secondary antibodies

conjugated to a IRDye fluorophore (LI-COR Biosciences); goat anti-rabbit IgG (800 CW, 1:

10,000) and donkey anti-mouse IgG (680RD, 1:20,000). The membrane was visualized on the

Odyssey IR imaging system (LI-COR Biosciences). To ensure the purity of the GCs, protein

was extracted as mentioned above from GCs after the initial spin and before and after the

Ficoll gradient. Anti-CD45 antibody (Abcam) was used to detect lymphocyte contamination.

Results

Tissue-specific expression of MRO isoforms

Three sets of primers were utilized to clone the MRO transcripts. The MROb (MROb1-b4 tran-

scripts that contain the distal 5’ UTR-promoter were detected by RT-PCR using the p1F-p9R

primers (Fig 2A). These PCR products, later confirmed to be MROb2 and MROb4 by sequenc-

ing, were found in testes, GCs and CCs (Fig 2B-i), but not in other tissues tested. A third isoform,

MROb3, was expressed solely in GCs and CCs. MROb1 was not detected in any cells or tissues.

Using primer sets p3/5F-p9R and p4F-p9R –isoforms MROa, MROc and MROd were detected

in liver, kidney, brain and whole ovary (post-menopausal) tissues (Fig 2B-ii and 2B-iii).

To better quantify the different MRO isoforms, quantitative qPCR was performed using

TaqMan gene expression assays. Fig 3A depicts the gene sequence with primers spanning tran-

script-specific exons. Total MRO expression, amplified by pQ8-9 primers set, was evident in

GCs and CCs with increased expression (p�0.05) in PCOS patients (Fig 3B). We also con-

firmed expression of the distal 5’-UTR-promoter region (amplified by pQ1/3) in these cells.

Interestingly, there was little to no expression of the proximal 5’-UTR-promoter (amplified by

pQ2/3) in GCs or CCs. In contrast, the proximal 5’-UTR-promoter was found in liver, kidney,

post- and pre-menopausal ovarian tissue while the distal 5’-UTR-promoter was absent (Fig

3C).

Our findings, combining standard PCR, TaqMan qPCR, cloning, and sequence analysis

results are summarized in Table 4. The results indicate that the distal 5’UTR promoter is

uniquely expressed in testicular tissue and within the maturing GCs and CCs of the Graafian

follicle. Conversely, the MRO transcripts, having the proximal-5’UTR promoter (exon 2 and

3), are expressed in brain, liver, kidney and post-menopausal ovary, and appear to have no role

in active folliculogenesis [20].
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MRO protein is localized in GC nuclei

Next, we determined if MRO protein is expressed in luteinized GCs and CCs in culture.

using the MRO-FIL antibody, nuclear staining was observed in GCs (Fig 4A–4D) and CCs

(S2 Fig). The FL-248 has similar nuclear staining, but also had a high background with this

method (data not shown). Using a blocking peptide (CAT# ab206335, Abcam) MRO stain-

ing was not evident, indicating that the antibody is specific for the MRO protein (Fig 4E

and 4F).

Fig 2. Tissue-specific expression of MRO isoforms. RT-PCR using MRO primer combinations demon-

strated the presence of multiple splice variants, confirming the inferred sequences, and revealing a novel

isoform (MROa2). (A) Schematic representation of the MRO RT-PCR primer annealing location. (B-i) PCR

using primers set p1F-p9R, detected two products in testes and GCs (MROb2 and MROb4). A third isoform,

MROb3, was cloned in GCs only. (B-ii) PCR using primers p3/5F-p9R detected MROa variant in the ovary and

MROc and MROd in liver, kidney and brain. In the testes and GCs, this primer set detected MROb3 and b4.

(B-iii) PCR using primer set p4F-p9R, detected MROa (all tissues) and MROa2 (brain) products. (B-iv) Human

actin-B (hACTB) was used as loading control. NTC–RNA template control. Cycling conditions were as follows:

3 min at 95˚C following by 40 cycles of 95˚C/30 sec, annealing at 60˚C/ 30 sec and extension at 68˚C/ 1–2 min

(contingent on the size of the expected amplification product).

https://doi.org/10.1371/journal.pone.0174873.g002
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Fig 3. Relative expression of MRO transcripts was analyzed by qPCR. (A) Schematic representation of

the MRO splice variants and the position of the TaqMan probes. Overall expression detected by the pQ8/9

probe. pQ1/3 spans exons 1–3 and detects the ’b’ isoforms (MROb1-4); pQ2/3 spans exons 2/3 and detects

isoforms MROa,c,d. The expression of MRO was normalized to 18s RNA and presented as relative a

expression ratio (1/ΔCt). (B) MRO transcripts analysis in GCs and CCs from PCOS and control subjects. The

overall expression, shown by exon 8/9 was higher in PCOS cells vs that of controls (* in GCs and * in CCs; p

�0.05). Inverse expression of exon 1/3 in GCs and CCs vs exon 2/3 was detected. (C) Inverse expression of

exon 2/3 vs 1/3 in kidney, liver, brain and post-menopausal ovary.

https://doi.org/10.1371/journal.pone.0174873.g003
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MRO protein detection by immunoblotting

MRO was detected in both the nuclear and cytoplasmic fraction from granulosa cells using the

FI-248 antibody (Fig 5A). HDAC1 was detected in only the nuclear fraction, confirming that

this fraction contains nuclear derived proteins and that the cytoplasm fraction did not contain

any contaminating nuclear deprived protein. As indicated by the absence of CD45 positive sig-

nal, the GCs were purified after the Ficoll gradient and did not contain any lymphocytes (Fig

5B). Anti-actin was used as a loading control.

MRO protein is detected in active granulosa cell layers in human ovarian

tissue sections in non-PCOS and PCOS ovaries

To compare MRO protein expression in PCOS and non-PCOS, ovarian tissue sections were

immunostained using the FL-248 antibody, as it gave superior results over the FIL-Ab used for

ICC. Similar cytoplasmic and nuclear staining was observed in both the PCOS and non-PCOS

ovarian tissue sections, although higher cytoplasmic background staining is observed in the

PCOS section (Fig 6). Blocking peptide abolished the specific nuclear staining and produced

much less background staining, suggesting that the cytoplasmic staining might be, impart due

to non-specific targets.

The expression of MRO protein was also evident in human primary follicle (Fig 7), with

similar pattern of nuclear staining in GCs and CCs and high cytoplasmic background staining

in some stromal cells. A stronger staining was observed in PCOS tissues and the nuclear stain-

ing in GCs, which was abolished in the presence of the blocking peptide (Fig 7C).

Minute MRO protein expression in human ovary and testis tissues

The expression of MRO protein in ovarian tissue of a post-menopausal subject (age 52), testis

and brain was determined (Fig 8). Nuclear staining was evident in sparse luteal granulsoa cells

(GLC) (Fig 8A) and in spermatogonia cells in adult testis (Fig 8B) but absent in testicular semi-

noma–tissue displaying minimal spermatogenesis (Fig 8C). Nuclear staining was occasionally

evident in glial cells from the cerebrum (brain) tissue (Fig 8D).

MRO antibodies

We have tested the all available commercial and in-house MRO antibodies in combination

with transfected lysates and recombinant proteins and peptides (S1 Table and S2 Table).

Table 4. Summary of the MRO splice variants detected in GCs, CCs and human tissues by standard PCR and TaqMan qPCR analysis. (+) indicates

positive detection and intensity (++++ being the highest). (-) indicates no product detected.

Isoforms Primer sets GC/CC Ovary (post) Ovary (pre) Testis Brain Liver /Kidney

MROa, MROa2 p3/5-p9R, p4R-p9R

pQ2/3, pQ8/9

- - -[ ++ ++ - - - + +

MROc p3/5-p9R,

pQ2/3, pQ8/9

- - - - - - - - - - - - ++ +

MROd p3/5-p9R,

pQ2/3, pQ8/9

- - - - - - - - - - - - + ++

MROb1 p1F-p9R - - - - - - - - - - - - - - - - - -

MROb2 p1F-p9R +++ - - - - - - ++ - - - - - -

MROb3 p1F-p9R, p4R-p9R,

pQ1/3

++++ - - - + - - - - - - - - -

MROb4 p1F-p9R, p4R-p9R,

pQ1/3

++++ - - - + ++ - - - - - -

https://doi.org/10.1371/journal.pone.0174873.t004
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While all could detect the cell-free in-vitro MRO product, the antibodies detect mainly high

molecular weight nonspecific products, while no detection or a very faint detection was

observed for the MRO (S3 Fig)

Discussion

Herein, we report for the first time the tissue-specific expression pattern of the human MRO
gene and protein. We have demonstrated that 1) transcripts derived from distal 5’UTR pro-

moter region was selectively and exclusively expressed in luteinized GCs, CCs and in testicular

germ cells. 2) The transcript from the proximal 5’UTR promoter was found in the brain, kid-

ney, liver, and whole postmenopausal ovary tissues. 3) We also confirmed earlier results of

Fig 4. MRO expression in GCs. Representative micrograph of GCs immunostained with MRO-FIL antibody

(0.4 ug/ml) and counterstained with DAPI (nuclei). (A) Merged signals, (B) MRO only, (C) DAPI only. (D)

Merged signals under high magnification (x40) micrograph showing MRO staining in the nucleus, as well as in

the cytoplasm. Antibody specificity was validated with (E) MRO blocking peptide (CAT# ab206335). (F)

Counterstain with DAPI. All images are taken with the same exposure time.

https://doi.org/10.1371/journal.pone.0174873.g004
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MRO overexpression in GCs and CCs from PCOS patients. 4) Nuclear staining of the MRO
protein was observed in GC and CCs, with weak staining of the cytoplasm, supporting previ-

ous results from Smith et al. [2]. 5) Last, in light of the limited information in the literature

regarding the MRO protein and antibodies, we provide a detailed list of antibodies that are

available and their inaccuracies, suggesting caution be exercised in interpreting findings aris-

ing from their usage.

Following our hypothesis that MROb isoforms (containing the distal exon 1) is expressed

only in GCs and CCs from the follicle retrieved from super-ovulated subjects, it is not surpris-

ing that the whole ovary–a tissue that contain only few secondary follicles in normal physiolog-

ical state or mainly theca and stroma tissues in post-menopausal ovaries, show very low or no

expression of MROb isoforms. This is supported by the immunostaining of human ovaries

from post-menopausal ovaries showing only disperse MRO staining. It is possible that the dif-

ferent 5’-UTR of the MRO in GCs and CCs cells and in spermatocyte/spermatid reflects their

functional role in the human reproductive system. Alternative mRNA splicing and differential

promoter utilization could determine tissue-specific gene expression [21, 22], thereby allowing

multiple regulatory pathways be differentially regulated in a cell-specific manner [23–25].

Splicing mechanisms are important in development, ageing and are altered in various patho-

logical conditions [26, 27]. Genes regulated by hormones are known to have distinct promot-

ers [28–30]. For example, the gene for the follicle stimulating hormone receptor (FSHR) has a

remarkable cell-specific expression that is achieved by exon-skipping and regulatory elements

Fig 5. MRO is detected in both the cytoplasm and nucleus by western Immunoblot. A) Nuclear and cytoplasmic extracts were prepared

from purified GCs, electrophoresed through a 4–12% reducing SDS-PAGE gel, transferred to 0.2um nitrocellulose, blocked, and probed with

the MRO FL-248 (Santa Cruz), anti-HDAC1 (Abcam) and anti-Actin (Sigma-Aldrich) antibodies. MRO (~28kDa) is found at similar abundance

in both the cytoplasmic and nuclear fraction (top panel). HDAC1 served as a nuclear specific control to ensure the purity of the extract (middle

panel) and Actin served as a loading control (bottom panel). B) Protein extracts from portions of GCs from the different isolation method were

resolved. GCs pre-wash (Load), after the 1st wash (post-wash) and after the Ficoll gradient (Post-Ficoll) were probes with the lymphocyte

marker anti ἀCD45. Actin served as a loading control (bottom panel).

https://doi.org/10.1371/journal.pone.0174873.g005
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that lie far from the transcription start site [31]. A differential tissue expression profile has also

been reported for the human sex hormone binding globulin (SHBG) [32] and Cytochrome

P450 Family 19 Subfamily A Member 1 (CYP19A1, aromatase P450) [33]. The 5’- UTR of

CYP19A1 transcripts in gonads, placenta, and brain are encoded by different tissue-specific

first exons, which are alternatively spliced onto a common site just upstream of the translation

start codon. This is remarkably similar to the alternative splicing of the MRO transcript we

have profiled in this study. The biological role of MRO is unclear. Due to the HEAT domain,

it is a candidate transcription factor and may have a role in regulating gene expression. This

gene expression may be different depending on the isoform of MRO being expressed.

The murine Mro transcript was first discovered in murine embryos during male gonadal

somatic cell development, but was not detected in female gonads at this developmental stage

[2]. Although both male and female knockout mice are viable and fertile [11], no detailed stud-

ies have been reported on the adult female mice. This lack of evidence for Mro expression in

the mouse fetal female gonads may be due to a temporal expression of MRO as we demonstrate

in humans (loss of expression in postmenopausal women). Time course studies on gene

expression in mouse cumulus oocyte complex around the peri-ovulatory period reveal that

Mro is down regulated 8 h after the administration of hCG [34]. In addition, Fan et al [35]

Fig 6. MRO expression in human ovarian sections. Immunofluorescence was performed on non-PCOS (A) and PCOS (B and C)

ovarian sections using the FL-248 antibody (4ug/ml). Nuclear staining is apparent in the granulosa cells (magnified images), while the

blocking peptide abolished the MRO signal (C). MRO expression was observed in green (Alexa-fluor 488) and nucleus in blue (DAPI).

Magnification: x100. Duration of exposure: 2000 milliseconds (non-PCOS) and 1500 milliseconds (PCOS) demonstrating that even

with short exposure the fluorescence intensity is higher in PCOS samples.

https://doi.org/10.1371/journal.pone.0174873.g006

Human MRO gene expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0174873 April 13, 2017 13 / 19

http://www.ncbi.nlm.nih.gov/geoprofiles/17725794
https://doi.org/10.1371/journal.pone.0174873.g006
https://doi.org/10.1371/journal.pone.0174873


reported that the MRO was identified together with a group of genes regulated by Erk1/2 in

GCs downstream of gonadotropin signalling [35]. In S1 Table of the aforementioned paper,

the authors reported that MRO expression was decreased 9-fold in wild-type GCs after hCG

treatment. Interestingly, a 6-fold increase was observed in conditionally inactivated Erk1/2-/-

GCs. Other genes that were similarly down-regulated included Cyp19a1, Cyp17a1 and Fshr—
all are well known to be involved in folliculogenesis. This could suggest that these genes and

MRO act downstream of gonadotropin and Erk1/2 signaling pathway. In contrast to wild-type

mouse Mro, we observed high expression of the human MRO gene in luteinized GCs. Impor-

tantly, we could not detect any MRO protein in mouse or rat tissue using any MRO antibodies

(data not shown), which limit us from further exploring the biological function of the protein

in a rodent model.

The MRO protein family (MRO-like) are newly discovered proteins with no known func-

tion to date. The lack of information regarding the characteristics the MRO protein (domains,

secondary structure, cellular localization etc.) made it challenging to detect the native protein.

However, we were able to successfully detect the native protein from both the nuclear and

cytoplasmic fractions, using immunoblotting. Although we loaded in excessive amount of pro-

tein, the signal was very faint. This is probably due to several factors including very low protein

Fig 7. MRO protein expression in human primary follicle. Immunofluorescence was performed on an ovarian section from

a non-PCOS (A) and a PCOS (B) patients using the FL-248 antibody (4ug/ml). Blocking peptide in (C) demonstrated the

reduced fluorescence signal in the tissue. MRO protein is present in GCs and in some stromal cells. MRO expression is

indicated in green (Alexa-fluor 488) and nucleus in blue (DAPI). Magnification: x4 and x100; Duration of exposure in 40x: 3886

and 100x: 2000 milliseconds.

https://doi.org/10.1371/journal.pone.0174873.g007
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expression in these cells and antibodies that were raised against either a peptide or an unmodi-

fied version of the protein. Taken together, these results suggest that, these antibodies should

not be used for immunoprecipitation of the MRO protein in future studies.

To this end, we investigate the possibility that MRO has intrinsically disordered proteins

regions (IDPs). Using the PONDR algorithms (http://www.pondr.com/) and RaptorX (http://

raptorx.uchicago.edu/), we predicted that the MRO has several unstable IDP regions. IDP

Fig 8. MRO expression in human tissues with FL-248. MRO expression in (A) ovarian tissue of a post-

menopausal subject with no active folliculogenesis (age 52); (B) adult normal testis; (C) Typical testicular

seminoma; (D) Cerebrum (brain) tissue. Abbreviations: GLC–granulosa-lutein cells, TL–theca lutein cells,

SC–Sertoli cells, SG–spermatogonia, PS–primary spermatocyte, SP–spermatids, NP–Neuropil, GL–glial

cells. Bar ruler, 100um.

https://doi.org/10.1371/journal.pone.0174873.g008

Human MRO gene expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0174873 April 13, 2017 15 / 19

http://www.pondr.com/
http://raptorx.uchicago.edu/
http://raptorx.uchicago.edu/
https://doi.org/10.1371/journal.pone.0174873.g008
https://doi.org/10.1371/journal.pone.0174873


regions fail to form a stable structure, yet they exhibit biological activities [36, 37]. IDPs often

function as a hub of interaction between multiple binding partners in a signal transduction

cascade or in the regulation of transcription through the binding or recruitment of other tran-

scription factors [38–40].

In conclusion, tissue-specific transcriptional variants of the MRO gene are uniquely expressed

in human luteinized GCs and in the human testis. Future investigations, based on the tissue spe-

cific expression groundwork we report here, should reveal the significance of the MRO gene in

normal human gonadal physiology, and potentially provide further insight into the pathophysi-

ology of PCOS and/or other conditions leading to male or female sub-fertility. Due to the close

proximity of GCs, CCs and the oocyte, the variation in MROmay have a direct impact on follicu-

lar development and oocyte maturation. However, more studies investigating the biological

function or protein-protein interactions of MRO with some unknown binding partners in both

the mouse/rat models and in human samples would be required to validate these claims.

Supporting information

S1 Fig. Detailed Sequence alignment of the MRO transcripts, deduced protein isoforms

and antibodies position.

(TIF)

S2 Fig. MRO expression in CCs. Representative micrograph of CCs immunostained with

MRO-FIL antibody (0.4 ug/ml) and counterstained with DAPI (nuclei), as mentioned in Fig 4.

(A) MRO only, (B) Merged signals. (C) Antibody specificity was validated with (E) MRO
blocking peptide (ab206335). (F) Counterstain with DAPI. All images are taken with the same

exposure time.

(TIF)

S3 Fig. Recombinant MRO detection in transfected lysates and in-vitro product. Represen-

tative multiplex Western blotting analysis of recombinant MRO. The gel was loaded with

MRO transfected CHO-cells lysates (4ug). Membranes were blotted with the AER-Ab (green

signal) and MGMT (red signal). pSNAP-MRO vectors (pSNAP -1, 2 and 3), control vector or

mock transfection and the cell-free MRO product (Ivt-MRO).

(TIF)

S1 Table. MRO antibodies. List of all available primary antibodies tested for the detection

MRO in immunoblots and immunohistochemistry in this study. Antibodies, peptides, and

protein lysates used in this study (S1 Table and S2 Table) were obtained from Abcam

(Toronto, ON, Canada), Santa Cruz Biotechnology (Dallas, Texas, USA), Aviva Systems Biol-

ogy (San Diego, CA, USA), Sigma-Aldrich (Oakville, ON, Canada), Novus Biologicals (Oak-

ville, ON, Canada), and OriGene Technologies (Rockville, MD, USA). We also designed and

generated an affinity purified polyclonal antibody as raised in a rabbit against a deduced pep-

tide sequence from exon 6 (Genescript, Piscataway, NJ) and was labeled MRO-AER. All anti-

bodies were raised in rabbit against a peptide sequence or full-length protein (prepared in

non-mammalian wheat germ system). The A peptide competition assay (PCA) was performed

to confirm the specificity and reactivity of the peptide antibody and overexpressed lysates of

variant 1 and 2 MRO clones were used as positive controls. Detection of MRO by immunoblot-

ting in transfected cell lysate and from in-vitro, cell free expression system in shown S2 Fig.

(DOCX)

S2 Table. MRO recombinant proteins and transfected lysates. List of all available blocking

peptides, proteins, and transfected lysates for the detection MRO in immunoblots and
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immunohistochemistry in this study.

(DOCX)

S1 File. Recombinant MRO protein expression methods.

(DOCX)
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