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Abstract Protein–protein interaction (PPI) and host–

pathogen interactions (HPI) proteomic analysis has been

successfully practiced for potential drug target identifica-

tion in pathogenic infections. In this research, we attempted

to identify new drug target based on PPI and HPI com-

putation approaches and subsequently design new drug

against devastating enterohemorrhagic Escherichia coli

O104:H4 C277-11 (Broad), which causes life-threatening

food borne disease outbreak in Germany and other coun-

tries in Europe in 2011. Our systematic in silico analysis on

PPI and HPI of E. coli O104:H4 was able to identify

bacterial D-galactose-binding periplasmic and UDP-N-

acetylglucosamine 1-carboxyvinyltransferase as attractive

candidates for new drug targets. Furthermore, computa-

tional three-dimensional structure modeling and subse-

quent molecular docking finally proposed [3-(5-Amino-7-

Hydroxy-[1,2,3]Triazolo[4,5-D]Pyrimidin-2-Yl)-N-(3,5-

Dichlorobenzyl)-Benzamide)] and (6-amino-2-[(1-naph-

thylmethyl)amino]-3,7-dihydro-8H-imidazo[4,5-g]quina-

zolin-8-one) as promising candidate drugs for further

evaluation and development for E. coli O104:H4 mediated

diseases. Identification of new drug target would be of

great utility for humanity as the demand for designing new

drugs to fight infections is increasing due to the developing

resistance and side effects of current treatments. This

research provided the basis for computer aided drug design

which might be useful for new drug target identification

and subsequent drug design for other infectious organisms.
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CASTP Computed Atlas of Surface Topography of

proteins

ADMET Absorption, Distribution, Metabolism,

Excretion and Toxicity

HIA Human intestinal absorption

BBB Blood brain barrier

Background

Enteric bacterial infections remain a major cause of mor-

bidity and mortality in both developing and developed

countries (Petri et al. 2008). Among various pathogenic

E. coli strains that cause intestinal or extra-intestinal dis-

eases in humans, the most devastating are enterohemor-

rhagic E. coli (EHEC) strains, which produce highly potent

cytotoxins called Shiga toxins (Stxs) (Bradley et al. 2012;

Brooks et al. 2005). The EHEC E. coli caused diarrhea,

hemorrhagic colitis, life-threatening hemolytic uremic

syndrome and encephalopathy (Evans and Evans 1996).

Several deadly EHEC outbreaks were reported all over the

world since last two hundred years predominated by the

O157:H7 strain of E. coli (Frank et al. 2011; King et al.

2012; Michino et al. 1999; Waters et al. 1994). However, in

2011, a new EHEC strain O104:H4 was identified and this

strain was related to an outbreak in Germany and other

countries in Europe. This massive outbreak was of great

concern to the drug designers as a number of deaths from

the infection were reported due to the ineffective medica-

tion (Bielaszewska et al. 2011; Grad et al. 2012). This

pathogenic strain acquired a shiga toxin gene and an

antibiotic resistant virulence plasmid pAA, which allow it

to exhibit resistance against a significant number of

antibiotics including cephalosporins, co-trimoxazole and

all penicillins while susceptible to imipenem, meropenem,

amikacin, kanamycin and carbapenems (Mora et al. 2011;

Muniesa et al. 2012). In order to get the most effective

treatment options, it is crucial to identify new drug and

vaccine candidates to combat with this deadly pathogen.

The crucial step in drug discovery is the target identi-

fication (Chan et al. 2010). However, traditional drug dis-

covery methods are capital-intensive, time-consuming, and

often yield few drug targets. In contrast, advantages of the

bioinformatics, genomics and proteomics approach repre-

sent an attractive alternative to identify drug targets worthy

of experimental follow-up. The pathogen and host-genome

sequence offer a better understanding of pathomechanism

of disease and hence identification of drug targets. In recent

years, computational methods have been used widely for

the identification of potential drug and vaccine targets in

different pathogenic microorganisms (Amineni et al. 2010;

Damte et al. 2013; Mondal et al. 2014, 2015; Sliwoski et al.

2014). Protein–protein interactions (PPI) and host–

pathogen interactions (HPI) approaches offer an area of

unexplored potential for next generation drug targets

(Taylor et al. 2011). It is important for bacterial cellular

processes and pathogenesis analysis and thus efficient to

identify the protein-set essential for the pathogen’s survival

but absent in the host (Archakov et al. 2003; Eisenberg

et al. 2000). Subtraction of the host genome from essential

genes of pathogens helps in searching for non-human

homologous targets which ensures no interaction of drugs

with human targets. The integration of these approaches

with different advanced bioinformatics tools may ensure

the discovery of potential drug targets for most of the

infectious diseases. After the drug target(s) optimization,

the in silico virtual screening of different chemical data-

bases could provide unprecedented opportunity to select

and design the best possible inhibitor(s) (Lavecchia and Di

Giovanni 2013).

This study focused on a combination approach of the

proteomics data analysis and homology modeling to find

out a novel therapeutic target from E. coli O104:H4 C277-

11 (Broad). We performed the protein–protein interactions

of E. coli O104:H4 through the three different methods (1)

protein interactions from PSIbase (2) protein interactions

from Database of Interacting Proteins (DIP) and (3)

domain–domain interactions from Domain interaction map

(DIMA). Host–pathogen interactions (HPIs) between

predator E. coli O104:H4 and its target Homo sapiens were

predicted by host–pathogen interaction database (HPIDB).

E. coli O104:H4 proteins contributed in HPIs were inves-

tigated for identifying potential drug targets and subse-

quent computer aided drug design process. The identified

potential drug targets might expand our understanding of

the molecular mechanisms of E. coli O104:H4 pathogen-

esis and also facilitate the design of effective antibiotics.

Materials and methods

Intra species protein–protein interaction prediction

from PSIbase, DIP and DIMA

Protein sequences of the E. coli O104:H4 str. C227-11

(Broad) was taken from the Patric Pathosystems Resource

Integration Center (Gillespie et al. 2011). These sequences

were assigned with Structural Classification of Proteins

(SCOP) 1.75 database using SUPER FAMILY 1.75 with an

e-value cutoff 0.0001 (de Lima Morais et al. 2011). SCOP

domains were further submitted to the PSIbase database

which is based on Protein Structural Interactome map

(PSIMAP) information to obtain interaction partners (Gong

et al. 2005b). A comparison of the protein sequences of

E. coli O104:H4 str. C227-11 (Broad) to the protein

sequences (dip20120218.seq) from DIP (Salwinski et al.
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2004) database was carried out using BLASTp with an e

value cutoff 10-5 and a minimum sequence identity of 40%

(Altschul et al. 1997). Interaction pairs were obtained from

the DIP database by applying DIP node identity from the

blast output. All the E. coli O104:H4 proteins were aligned

for the corresponding Pfam domains using WebMGA ser-

ver with hmmscan 3.0 and PFAM 2.4 by the e value cutoff

0.01 (Luo et al. 2011; Wu et al. 2011).

Host–pathogen interactions from HPIDB

Homologous protein interactions between E. coli O104:H4

and human were predicted from the HPIDB (Kumar and

Nanduri 2010). ‘‘Search Homologous HPIs’’ option was

selected to identify host–pathogen interaction with the

BLASTp parameter set to\1020 and the sequence identity

cutoff of 30%.

Drug target identification

Pathogen proteins participating in host–pathogen interac-

tions were further investigated for drug target

identification.

Paralogous and non-homologous protein identification

The complete protein sequence of Homo sapiens was

retrieved from NCBI FTP site (ftp://ftp.ncbi.nlm.nih.gov/).

To identify duplicate or paralogous proteins within the

1497 proteins of E. coli O104:H4, protein sequences were

purged at 60% using CD-HIT (Huang et al. 2010). Paralogs

and duplicate proteins were discarded. The non-paralogous

proteins were applied to BLASTp search against complete

proteome of Homo sapiens to identify non-homologous

proteins. Expectation threshold value was set to 10-4. The

resultant dataset that had significant similarity with the

human proteins were excluded and the non-homologous

proteins were compiled.

Essential protein identification and metabolic pathway

analysis

Non-homologous proteins were subjected to identify

pathogen specific essential proteins. From the Database of

Essential Genes (DEG) (Zhang et al. 2004) prokaryotes

essential genes were downloaded and all of the non-ho-

mologous proteins were subjected to BLASTp against

DEG database (de Lima Morais et al. 2011). Parameters set

for BLASTp execution was cutoff for e value\10-10, bit

score [100 and percentage of identity [35%. Metabolic

pathway analysis of identifying essential proteins was

carried out using KEGG Automatic Annotation Server

(KAAS) (Moriya et al. 2007). Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway database was used

for the comparative pathway analysis between E. coli

O104:H4 and Homo sapiens to map out essential proteins

entailed in pathogen specific metabolic pathway (Kanehisa

and Goto 2000).

Subcellular localization prediction

Subcellular Localization prediction server PSORTb version

3.0.2 was used for the identification of cytoplasmic,

periplasmic and transmembrane protein within the essential

proteins involved in pathogen specific metabolic pathway

(Yu et al. 2010).

Homology modeling, structure refinement

and active site prediction

Homology modeling of D-galactose-binding periplasmic

protein MglB and UDP-N-acetylglucosamine 1-car-

boxyvinyltransferase was performed by automated

homology modeling server SWISS-MODEL using the

templates retrieved from Protein Data Bank (PDB) by

comparative modeling (Rajender et al. 2011). Three

dimensional structure of D-galactose-binding periplasmic

protein MglB and UDP-N-acetylglucosamine 1-car-

boxyvinyltransferase from the homology modeling were

passed through the structure refinement process using

KoBaMIN (Rodrigues et al. 2012). Structural Analysis and

Verification Server (SAVES) was implemented for evalu-

ating the quality and validation of the refined 3-D structure

model (Luthy et al. 1992).

Active site in the validated refined model was predicted

by the Computed Atlas of Surface Topography of proteins

(CASTp) database (Dundas et al. 2006) with the default

parameter. Through extensive literature search best active

site was identified and selected for both of the models.

Virtual screening and docking ligand into homology

model

Virtual screening was performed for identifying active lead

compounds with total 6460 molecules, 1447 approved and

5040 experimental posited in DrugBank (Knox et al. 2011).

All approved and experimental molecules are downloaded

from DrugBank in SDF format and converted into mol2

format using OpenBabel 2.3.1 (O’Boyle et al. 2011).

Raccoon v1.0 processed these mol2 formatted ligand file

into Autodock Vina (Trott and Olson 2010) compatible

format.

Cluster computer with Linux based with 32 core system

was executed for virtual screening using mpiVina. This

cluster computer capable to accomplish 500 docking per

hour. Based on high binding affinity a simple python script
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selected top 100 molecules from the processed result. Re-

docking of these 100 molecules was carried out several

times to check the stable high binding affinity. Finally,

Pymol, Discovery Studio was used to analyze and visual-

ization of the ligand-receptor interaction.

ADMET pharmacokinetic and toxicological analysis

Absorption, Distribution, Metabolism, Excretion and Tox-

icity (ADMET) analyses constitute the pharmacokinetics

of a drug molecule. The PreADMET server (https://pre

admet.bmdrc.org) was used to predict the ADME profiles

and carcinogenicity of a compound and helps to avoid toxic

compound.

Results and discussion

Analysis of E. coli O104:H4 C227-11 protein–

protein interactions (PPI) and host–pathogen

interaction PPI

A total of 5325 proteins of E. coli O104:H4 C227-11

(Broad) was used for protein–protein interaction analysis.

The algorithm PSIMAP was reported to extrapolate the

protein–protein interactions by applying the sequence

similarities (Kim et al. 2008). It provides a global inter-

active map of protein–protein and domain–domain inter-

action information by calculating euclidean distance

between structural domains in interacting protein pairs

(Gong et al. 2005b). PSIMAP utilizes Protein Data Bank

(PDB) and Structural Classification of Proteins (SCOP)

domains to retrieve molecular interaction data and test the

fundamental working mechanisms of cells (Gong et al.

2005a). We carried out E. coli O104:H4 protein interac-

tions using SUPER FAMILY 1.75 and PSIbase. Our

analysis identified 7769 predictive interactions for 1278

proteins which was around 24% of the total E. coli

O104:H4 C227-11 (Broad) proteins (Supplementary file 1).

On contrary, Database of Interacting Proteins (DIP) anal-

ysis revealed 17,411 protein–protein interactions (PPI)

from 2512 proteins which was 47% of the total E. coli

proteins (Supplementary file 2). All these PPI has experi-

mental evidence because DIP deposit and unionize infor-

mation on protein–protein interaction was extracted from

single research articles (Salwinski et al. 2004).

Domain interaction map (DIMA) imported domain–do-

main interaction pairs from iPfam and 3DID database

which have been known to build physical contacts to the

Protein Data Bank (PDB) data (Luo et al. 2011). We pre-

dicted 136885 Pfam domain interaction pairs for 3451

proteins comprising 64% of the total proteins using DIMA.

We predicted 11107 protein–protein interactions from

iPfam composed of 2527 E. Coli proteins representing

approximately 47% of the total proteins (Supplementary

file 3).

To explore the infection strategies, host–pathogen pro-

tein interactions information is crucial. For this purpose,

we analyzed the host–pathogen interactions of pathogenic

E. coli O104:H4 C227-11 (Broad) with human. In this

analysis, we detected 1493 E. coli proteins targeting 1910

human proteins and the total number of protein–protein

interactions was 4657. The HPIDB server was used to

predict the host–pathogen interactions which infer homol-

ogous protein interactions from its integrated databases

(Kumar and Nanduri 2010). HPIDB integrates Biomolec-

ular Interaction Network Database (BIND) (Bader et al.

2003), Molecular INTeraction database (MINT) (Zanzoni

et al. 2002), pathogen interaction gateway (PIG) (Driscoll

et al. 2009), Gene Reference Into Function (GeneRIF),

REACTOME (Matthews et al. 2009), INACT (Aranda

et al. 2010) databases into one station and serve as a unified

resource to investigation of host–pathogen interaction.

From the HPIDB result we excluded the protein sequences

less than 30% sequence identity for pruning the resultant

dataset. According to the E. Coli–Homo sapiens interaction

results we observed that the protein sequences of E. coli

O104:H4 C227-11 (Broad) showed significant homology

with the Bacillus anthracis, Yersinia pestis, Francisella

tularensis subsp. tularensis SCHU S4, E. coli K-12, E. coli

O157:H7. Detailed data for this full set of interactions is

given in Supplementary file 4.

Drug target identification from the E. coli O104:H4

C227-11 (Broad)

For identifying putative drug targets against E. coli

O104:H4 C227-11 (Broad), we analyzed 1493 E. coli

proteins that can interact or target their human host pro-

teins. For rationalizing protein dataset, paralogs or dupli-

cate proteins were discarded using CD-HIT. We identified

56 duplicate protein sequences and omitted from the total

list. Finally, 1437 protein sequences were subjected to a

BLASTP program for deciphering non-human homologous

sequences. Non-human homologous protein should be

selected for drug target to preclude the cross binding of

drug to the human body and for avoid the consequences of

adverse drug side effects (Sakharkar et al. 2004). Total 797

non-human homologous proteins were further tested for

identification essential gene using DEG database (Zhang

and Lin 2009). For development of new promising and

potential antimicrobial drugs it is the prerequisite first to

identify essential genes that own fundamental role in the

bacterial cellular process (Zhang and Lin 2009). From the

BLASTP result, 339 essential proteins were identified

which are crucial for the survival of E. coli O104:H4 C227-
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11 (Broad) bacterium. Metabolic pathway analysis of

essential proteins was carried out by the KEGG Automatic

Annotation server (KAAS) (Moriya et al. 2007). From 339

essential proteins 71 metabolic pathways were constructed

and compared to the Homo sapiens metabolic pathways for

drawing pathogen specific unique metabolic pathway. We

select 17 unique pathways comprising 79 essential proteins

to map out best candidate for drug targets by predicting

their subcellular localization in a cell.

Computational anticipation of protein subcellular

localization acts an important agent for detecting potential

drug targets (Yu et al. 2010). Subcellular localization of

essential proteins in unique pathways was accomplished by

PSORTb (Yu et al. 2010). Out of 79 proteins, 49 proteins

were found to be cytoplasmic, 25 to be localized in the

cytoplasmic membrane, 1 outer membrane protein, 2 pro-

teins found to be periplasmic localized and the remaining 2

proteins location were unknown. Although the membrane

proteins, particularly receptor proteins and ion channels,

have great importance in a wide variety of therapeutics,

there are practical problems of working with membrane

proteins like as protein purification, expression and crys-

tallization (Duffield et al. 2010; Arinaminpathy et al.

2009). We selected best candidate by extensive literature

review from cytoplasmic and periplasmic proteins. Finally,

two potential drug targets are selected in Galactose/methyl

galactoside ABC transport system, D-galactose-binding

periplasmic protein MglB and UDP-N-acetylglucosamine

1-carboxyvinyltransferase (Fig. 1a, b). Drug target identi-

fication steps and their results are summarized (Table 1).

D-Galactose-binding periplasmic protein involved in the

active transport of glucose and galactose. It mediates

chemotaxis towards the two sugar residue by interacting

with the Trg chemoreceptor in a number of bacterial spe-

cies (Borrok et al. 2007). By chemotaxis bacteria encounter

the environmental surrounding and find out more favorable

conditions for its survival (Rao et al. 2004). D-Galactose-

binding periplasmic protein plays a crucial role in the

Fig. 1 Homology modeling and structural quality check of drug

target candidates from E. coli O104:H4 str. C227-11. Homology

modeling by using SWISS-MODEL server based on template

structure 2FVY and 3KQJ. a D-Galactose-binding periplasmic protein

MglB, and b UDP-N-acetylglucosamine 1-carboxyvinyltransferase.

c Structure quality validation by using the PROCHEK program.

PROCHECK program executes Ramachandran plot and plot statistics

for D-galactose-binding periplasmic protein MglB, and UDP-N-

acetylglucosamine 1-carboxyvinyltransferase protein. d Prediction

of average Z score of D-galactose-binding periplasmic protein MglB,

and UDP-N-acetylglucosamine 1-carboxyvinyltransferase protein

using PROVE
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bacterial chemotaxis which emphasizes this protein as a

potential drug target. UDP-N-acetylglucosamine 1-car-

boxyvinyltransferase, alternative name is UDP-N-acetyl-

glucosamine enolpyruvyl transferase, participates for the

biosynthesis of peptidoglycan polymer (Gautam et al.

2011; Kumar et al. 2009). Peptidoglycan serves as a crucial

component of bacterial cell wall and important for bacterial

survival. Furthermore, this essential enzyme is omnipresent

in all the prokaryotes but not required by mammals.

Therefore UDP-N-acetylglucosamine 1-carboxyvinyltrans-

ferase is an attractive target for the drug design to pursue

against the drug resistant bacteria (Eschenburg et al. 2005).

Homology modeling, structure refinement

and validation

Homology modeling was performed to determine the 3D-

structure of D-galactose-binding periplasmic and UDP-N-

acetylglucosamine 1-carboxyvinyltransferase. Template

identification of the target proteins was carried out based

on the sequence identities, lower expect value, X-ray

crystallography resolution and R value. We selected 2FVY

for D-galactose-binding periplasmic protein and 3KQJ for

UDP-N-acetylglucosamine 1-carboxyvinyltransferase as

the most suitable templates using the aforementioned cri-

teria. The complete results of template identification for

these two drug target proteins are presented (Table 2).

Homology modeling was performed by using SWISS-

MODEL server based on template structures 2FVY and

3KQJ, respectively (Fig. 1a, b).

Structure refinement for 3D homology model of D-

galactose-binding periplasmic protein and UDP-N-acetyl-

glucosamine 1-carboxyvinyltransferase was carried out by

KoBaMIN web server (Rodrigues et al. 2012). To refine the

protein structure after homology modeling KoBaMIN

provides a fast and effective protein structure refinement

based on minimization of a knowledge-based potential of

mean force (Rodrigues et al. 2012). The initial energy of D-

galactose-binding periplasmic homology structure was

-3867.28 kcal/mol and after refinement final energy

appeared to be -6706.5036 kcal/mol. Total energy mini-

mizations was -2839.22 kcal/mol. In addition, UDP-N-

acetylglucosamine 1-c-rboxyvinyltransferase homology

structure energy minimization was -3918.85 kcal/mol

(Fig. 1a, b; Supplementary file 5).

Further we determined the structure quality by validat-

ing the modeled PDB. We used SAVES metaserver (which

integrates 6 programs PROCHECK, WHAT_CHECK,

ERRAT, VERIFY_3D, PROVE, CRYST1 record matches)

to check structural quality (http://services.mbi.ucla.edu/

SAVES/) (Pontius et al. 1996). PROCHECK program

executes the Ramachandran plot to evaluate model quality

(Hariprasad et al. 2010). Ramachandran plot analysis of the

3D structures of D-galactose-binding periplasmic protein

showed that 94.5% residues in the core region, 4.4% in

allowed region. ERRAT and PROVE results for the same

protein structure showed quality factor 96.633 and average

Z score -0.036, respectively. On contrary, UDP-N-

acetylglucosamine 1-carboxyvinyltransferase Ramachan-

dran plot expressed that 95.0% of the residues are in the

core region. (Figure 1c, d and Supplementary file 6).

Active site prediction and virtual screening

for docking

Drug targets proteins active sites were predicted by the

Computed Atlas of Surface Topography of proteins

Table 1 A summary of drug target identification steps and the results

Drug target identification steps Results

Total proteins 1493

Duplicate proteins identified by CD-HIT 56

Final set of proteins without duplicates or paralogs 1437

Non-homologous to human 797

Essential proteins identified from DEG 339

Metabolic pathway construction by essential proteins 71

Pathogen specific unique pathways 17

Essential proteins involved in unique pathways 79

Cytoplasmic proteins 49

Cytoplasmic membrane proteins 25

Outer membrane protein 1

Periplasmic proteins 2

Unknown localized proteins 2

Table 2 Results of template identification for two drug target proteins based on the sequence identities, lower expect value, X-ray crystal-

lography resolution and R value

Drug target protein Template

PDB ID

Organism % of

identity

E value X ray crystallography

resolution (Å)

R

value

D-Galactose-binding periplasmic 2FVY Escherichia coli 95 1.30291E-167 0.92 0.118

UDP-N-acetylglucosamine

1-carboxyvinyltransferase

3KQJ Escherichia coli

K-12

97 0.0 1.70 0.168
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(CASTp). Using CASTp, we selected pocket volume

1006.7 and 1737.2 for D-galactose-binding periplasmic

protein and UDP-N-acetylglucosamine 1-carboxyvinyl-

transferase proteins, respectively (Fig. 2). Comparative

active site analysis of 2FVY (template) and D-galactose-

binding periplasmic protein (homology model) reveal

100% conserved residues between template and homology

model.

Follow the prediction of the active site residues we

carried out molecular docking using mpiVina based on

lowest binding energy (Azam and Abbasi 2013). Top 100

ligands were selected from the result dataset which were

showing lower binding energy to the receptor’s active site

filtered for Lipinski’s rule of 5 (Lipinski et al. 2001). 81

ligands follow the Lipinski’s rule of 5 and out of 81 inhi-

bitors top 10 ligands having lower binding energies were

selected and most importantly bacterial proteins as their

targets. Inhibitors that target human proteins were filtered

out for avoiding off target binding with human proteins.

Finally, top 10 hits for both of the target proteins D-

galactose-binding periplasmic protein and UDP-N-acetyl-

glucosamine 1-carboxyvinyltransferase protein were listed

according to their binding energy. Top 10 docking results

of these two target proteins are represented (Tables 3, 4).

Virtual screening result for D-galactose-binding periplasmic

protein shows that DB03571 [3-(5-Amino-7-Hydroxy-

[1,2,3]Triazolo[4,5-D]Pyrimidin-2-Yl)-N-(3,5-Dichloroben-

zyl)-Benzamide)] have high binding affinity to the protein with

lowest binding energy -10.5 kcal/mol. This ligand was found

to interact with Gln 210, Asp 207, Thr 208, Asn 38, Asp 37, Ala

236, Phe 39, Asn 234, Asn 279, Asp 259, Asn 114, Arg 181,

Asp 177, His 175, Glu 172, Trp 206, Tyr 33, Lys 34, Met 205

and Asn 66. Docking study results for UDP-N-acetylglu-

cosamine-1-carboxyvinyltransferase protein brings out that

DB04118 (N-coeleneterazine) contact with target protein’s

active site with high binding affinity (binding ener-

gy = -11.2 kcal/mol but among the top 10 hits we selected

DB08512 (6-amino-2-[(1-naphthylmethyl)amino]-3,7-dihy-

dro-8H-imidazo[4,5-g]quinazolin-8-one) having both high

binding affinity (10.7 kcal/mol) and interaction with previ-

ously reported essential active site residues Cys 115, Asn 23,

Asp 305 and Lys 22 (Fig. 3) (Samland et al. 1999). Blocking of

these active site residues in UDP-N-acetylglucosamine 1car-

boxyvinyltransferase can inhibit the first committed step for

peptidoglycan biosynthesis of bacterial cell. Therefore, the

docking results and interactions with the essential active sites,

suggested that DB03571 [3-(5-Amino-7-Hydroxy-[1,2,3]Tri-

azolo[4,5-D]Pyrimidin-2-Yl)-N-(3,5-Dichlorobenzyl)-Benza-

mide)] andDB08512 (6-amino-2-[(1-naphthylmethyl)amino]-

3,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one) might be

used as potential inhibitors against the E. coli O104:H4 C227-

11 (Broad) mediated diseases.

Fig. 2 Active site residues of drug target candidates from E. coli

O104:H4 str. C227-11. Identification of the active site was done by

CASTp server. Two significant binding pockets of a D-galactose-

binding periplasmic protein MglB, and b UDP-N-acetylglucosamine

carboxyvinyltransferase protein. Amino acid residues of the respec-

tive binding pockets are indicated in green
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ADMET pharmacokinetic and toxicological analysis

Prediction and significant description of drug-likeness such

as absorption, distribution, metabolism, excretion (ADME)

and toxic (Tox) properties were calculated with the help of

online server PreADMET. Through this server, we can

calculate different parameters such as human intestinal

absorption (HIA), cellular permeability (Pcaco-2), cell per-

meability Maden Darby Canine Kidney (PMDCK), plasma

protein binding (PPB), carcinogenicity, and penetration of

the blood–brain barrier (Cbrain/Cblood). The ADME prop-

erties should be perfect for a drug candidate. Both of our

proposed drug (DB03571 and DB08512) shows proper

ADME properties (Table 5).

In general, HIA indicates ‘poor’ absorption in the range of

0–20%, ‘moderate’ absorption from 20 to 70% and ‘well’

absorption between 70 and 100%. We found HIA was 94.07%

and 88.61% for DB03571 and DB08512, respectively, indi-

cating well-absorbed compounds. The MDCK computational

component would predict the renal clearance of the molecule.

The MDCK results showed 0.08 nm/s and 0.39 nm/s for

DB03571 and DB08512, respectively. Both compounds show

very low permeability in in vitro MDCK cells (less than

25 nm/s according to PreADMET). The value of in vitro cell

permeability (Pcaco-2) on intestinal epithelium cells are con-

sidered as ‘low’ permeability when the value is less than 4 nm/

s, ‘middle’ permeability when the range is from 4 to 70 nm/s

and high permeability when it is above 70 nm/s. The observed

cell permeability of DB03571 and DB08512 are 19.85 and

20.84 nm/s, respectively, in intestinal epithelium and it indi-

cates middle permeability in in vitro Caco-2 cells.

Blood brain barrier (BBB) restricts the passage of most of

the compounds from the blood to brain, thus having a brain

protecting property. The in vivo blood brain barrier (BBB) is

the direct measure of penetration of drug in central nervous

system (CNS). The DB03571 and DB08512 are found to be

low and middle absorption category according to Pre-

ADMET analysis. Plasma protein binding prediction results

showed 92.26 and 86.92% plasma protein binding for

DB03571 and DB08512, respectively, indicating strongly

bound chemicals which are not desirable.

Generally, the carcinogenicity test requires much study

time ([2 years) in case of experimental procedures, but

PreADMET helps to analyse the results quickly from NTP

(National toxicology program) and EUA/FDA 2 year’s

in vivo data. Both drugs exhibit no evidence of carcino-

genic activity. So, the overall ADME properties of

DB03571 and DB08512 are excellently satisfactory.

Table 3 Top ten docking results for D-galactose-binding periplasmic protein

No. Screened

compounds (Drug

Bank id)

Binding

energy

(kcal/mol)

Active site residues involved in interactions Molecular

weight

(g/mol)

1 DB03571 -10.5 Gln 210, Asp 207, Thr 208, Asn 38, Asp 37, Ala 236, Phe 39, Asn 234, Asn 279,

Asp 259, Asn 114, Arg 181, Asp 177, His 175, Glu 172, Trp 206, Tyr 33, Lys

34, Met 205, Asn 66

430.248

2. DB06949 -10.2 Asn 114, His 175, Thr 208, Asp 207, Trp 206, Asp 37, Met 205, Lys 34, Tyr 33,

Leu 261, Asn 38, Asn 234, Phe 39, Arg 181, Ala 236, Asp 259, Asn 279,

464.107

3 DB08666 -10.2 Tyr 318, Gln 284, Phe 39, Asn 279, Arg 181, Asp 259, Tyr 33, Asn 234, Asp 37,

Trp 206, Asn 114, His 175, Asp 177, Tyr 130, Gly 132, Thr 133,

268.198

4 DB01691 -10.1 Gln 210, Asn 66, Lys 34, Glu 172, Lys 115, Asn 114, His 175, Asn 279, Arg

181, Asn 234, Asp 259, Trp 206, Asp 37, Tyr 33, Met 205,

374.4357

5 DB07055 -10.1 Trp 206, Asp 259, Asn 234, Asn 279, Gln 284, Arg 181, Tyr 130, Thr 133, Gly

132, Ser 135, Asp 177, Tyr 318, Asn 114, His 175, Asp 37,

243.2215

6 DB07434 9.8 Asp 177, Asn 114, Arg 181, Asp 37, Thr 208, Tyr 33, Asp 36, Asp 207, Lys 34,

Gln 210, Asn 66, Met 205, Asn 38, Ala 236, Asn 234, Trp 206, Phe 39, Asp

259, His 175

457.4366

7 DB08668 -9.8 Gly 132, Tyr 130, Thr 133, Asp 177, Lys 115, His 175, Tyr 33, Trp 206, Asn

234, Arg 181, Asp 259, Asn 114, Gln 284, Phe 39, Asn 279,

244.2095

8 DB07041 -9.7 Phe 39, Asn 38, Thr 208, Ala 236, Asp 207, Asn 234, Lys 34, Trp 206, Met 205,

Met 40, Asn 114, Glu 172, Lys 115, His 175, Asn 66, Tyr 33, Gln 210, Asp 36,

Asp 37

428.4864

9 DB07743 -9.7 Asn 234, Asn 279, Asn 66, Lys 115, Trp 206, Asn 38, Lys 34, Asp 37, Thr 208,

Asp 36, Asp 207, His 175, Glu 172, Met 205, Tyr 33, Asn 114, Asp 259, Arg

181

363.314

10 DB04452 -9.5 Asn 279, Arg 181, Asp 259, Phe 39, Asn 234, Asn 66, Trp 206, Asp 37, Lys 34,

Tyr 33, Glu 172, Met 205, His 175, Asp 177, Asn 114

372.4231

Lowest docking energies, important residues of the binding site observed to be interactive with the ligands from DrugBank
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Conclusion

Through the integrated protein–protein interaction and

host–pathogen interaction analysis, we identified two

potential drug targets from the cytoplasmic and periplasmic

region of E. coli 01O4:H4 C227-11 (Broad). The first

target D-galactose-binding periplasmic protein play

important role in bacterial chemotaxis. In chemotaxis,

bacteria sense chemical gradients in the environment and

move toward favorable conditions for survival. The path-

way is arguably best characterized in the case of E. coli.

Whereas UDP-N-acetylglucosamine 1-carboxyvinyltrans-

ferase target protein function in the peptidoglycan

biosynthesis which is crucial for bacterial cell wall for-

mation and thus important for bacterial survival. Most

importantly, this enzyme is essential for bacteria but absent

Table 4 Top ten docking results for UDP-N-acetylglucosamine 1-carboxyvinyltransferase

No. Screened

compounds (Drug

Bank Id)

Binding

Energy

(kcal/mol)

Active site residues involved in interactions Molecular

weight

(g/mol)

1 DB04118 -11.2 Glu 190, Trp 95, Asn 23, Ala 165, Glu 188, Gly 164, Ser 162, His 125, His 299,

Val 163, Pro 298, Val 161, Phe 328, Val 327, Glu 329, Arg 120, Arg 91, Arg

232

491.5372

2 DB02033 -10.9 His 125, Arg 120, Ala 92, Arg 91, Phe 328, Leu 26, Pro 121, Lys 22, Thr 304,

Asp 305, Val 163, Asn 23, Gly 164, Val 327, Trp 95, Ser 162

479.588

3 DB01061 -10.8 Pro 121, Leu 124, Val 327, Phe 328, Pro 298, His 299, Glu 188, Asp 305, Arg

232, Thr 304, Asn 23, Val 163, Gly 164, Val 161, Ser 162, Ala 165, Arg 120,

Arg 91, His 125

461.492

4 DB08512 -10.8 Gly 398, Asp 49, Leu 370, Lys 22, Arg 371, Asn 23, Thr 304, Asp 305, Arg 232,

Val 163, Pro 298, Glu 188, His 299, Val 327, Cys 115, Arg 120, Arg 91, Gly

114, Arg 397

356.3806

5 DB01459 -10.7 Leu 370, Asp 49, Arg 397, Lys 22, Arg 91, Phe 328, Val 327, Pro 298, Val 163,

Ser 162, Val 161, Gly 164, Thr 304, Asp 305, Asn 23, Arg 120, Trp 95,Ala 92,

Cys 115

492.6114

6 DB04030 -10.7 Val 327, Val 161, Pro 298, Ser 162, Val 163, His 125, Arg 91, Gly 164, Arg 120,

Asn 23, Arg 232, Glu 190

398.4538

7 DB04064 -10.7 Val 163, Trp 95, Asn 23, Asp 305, Arg 232, Glu 188, Thr 305, Pro 303, His 299,

Ala 297, Pro 298, Val 327, Arg 91, Phe 328, Arg 120, Ser 162, Gly 164

378.3317

8 DB04685 -10.7 Asp 49, Met 90, Arg 91, Arg 397, Ile 117, Gly 114, Cys 115, Trp 95, His 125,

Ser 162, Gly 164, Val 163, Thr 304, Val 327, Asp 305, Asn 23, Arg 120, Phe

328, Lys 22, Leu 26, Ala 92

472.5075

9 DB06922 -10.7 Asn 23, His 125, Arg 91, Ala 165, Gly 164, Arg 120, Ala 119, Glu 329, Val 327,

Phe 328, Val 163, Ser 162

389.3576

10 DB07241 -10.7 His 125, Arg 91, Lys 160, Arg 120, Ser 162, Val 327, Val 161, Val 163, Pro 298,

Glu 188, His 299, Gly 164

355.3462

Lowest docking energies, important residues of the binding site observed to be interactive with the ligands from DrugBank

Fig. 3 Molecular docking of predicted inhibitors to the binding site

of a D-galactose-binding periplasmic protein MglB, and b UDP-N-

acetylglucosamine 1-carboxyvinyltransferase protein are represent in

2D and 3D diagram. The color indicator on the left side of both

diagrams indicates the types of interaction of particular residues
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in human host. Extensive literature review supports both of

this protein as prominent drug target candidate.

Bacteria become resistant against single or multiple

antibiotics and ensure their survival in the environment.

The identification of potential targets for the development

of new antibiotics is becoming a topical and widely rec-

ognized need. The present study is an important basis for

screening novel and alternative targets in a way to design

and develop new drugs against other emerging human

pathogens.
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