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Abstract

Propensity score methods are an important tool to help reduce confounding in non-experimental 

studies and produce more accurate causal effect estimates. Most propensity score methods assume 

that covariates are measured without error. However, covariates are often measured with error. 

Recent work has shown that ignoring such error could lead to bias in treatment effect estimates. In 

this paper, we consider an additional complication: that of differential measurement error across 

treatment groups, such as can occur if a covariate is measured differently in the treatment and 

control groups. We propose two flexible Bayesian approaches for handling differential 

measurement error when estimating average causal effects using propensity score methods. We 

consider three scenarios: systematic (i.e., a location shift), heteroscedastic (i.e., different 

variances), and mixed (both systematic and heteroscedastic) measurement error. We also explore 

various prior choices (i.e., weakly-informative or point mass) on the sensitivity parameters related 

to the differential measurement error. We present results from simulation studies evaluating the 

performance of the proposed methods and apply these approaches to an example estimating the 

effect of neighborhood disadvantage on adolescent drug use disorders.
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1 Introduction

In psychology, education, and the behavioral sciences more generally, researchers using non-

experimental designs need to control for all potential confounders in order to draw accurate 

causal inferences regarding clinical or scientific questions. Most statistical methods for 

doing so, such as propensity scores, assume that the covariates are measured without error. 

However, covariate measurement error is inevitable and potentially problematic as it could 

lead to biased results (Steiner, Cook, and Shadish, 2011). An unbiased treatment effect 

estimate is obtained when treatment and control groups are balanced with respect to all 
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covariates affecting both treatment assignment and outcomes (i.e., confounders), as is 

obtained in a randomized experiment. Propensity score methods strive to create balance 

between groups on the observed covariates. However, if a covariate is measured with error, 

we cannot directly balance the two groups (at least not just using the observed, mismeasured 

covariate), resulting in potentially biased estimates of treatment effects.

Covariate measurement error exists in many applications. For example, depression or school 

test scores may not reflect the true underlying psychometric profile or intellectual ability of 

subjects, a large-scale survey may have only self-reported and not actual income or 

education level, and health care claims data may only have diagnoses without clinical 

measures of health status (such as cholesterol level). Furthermore, the degree of 

measurement error can differ by exposure or treatment status, a type of differential 
measurement error. For example, when combining multiple data sources or comparing a 

study sample to another dataset such as a nationally representative survey, different 

measurement (e.g., depression) scales may be used for the treated and control groups. This 

type of measurement error is more complex than the typically considered classical 

measurement error and adds challenges when aiming to estimate a causal effect.

Propensity scores, defined as the probability of treatment assignment given observed 

covariates, are widely used in non-experimental study designs to balance observed 

covariates between treated and control groups (Rosenbaum and Rubin, 1983). Generally, we 

first estimate propensity scores for each subject without using outcomes, and this step is 

called the propensity score stage. This stage is considered part of the study design because 

the outcome information is not incorporated. Then we estimate an average treatment effect 

by comparing outcomes between treated and control groups after weighting, matching, or 

stratifying based on the estimated propensity scores, called the outcome stage (Stuart, 2010). 

Numerous propensity score methods have been developed under a frequentist framework 

(Rosenbaum and Rubin, 1983; Rosenbaum, 2002; Stuart, 2010). Recently, Bayesian 

counterparts have been actively investigated (McCandless, Gustafson, and Austin, 2009; An, 

2010; Kaplan and Chen, 2012).

Although most existing propensity score approaches assume no measurement error, some 

can handle classical (non-differential) measurement error, where error-prone covariates are 

noisy, unbiased versions of true covariates. These include propensity score calibration 

(Stürmer and others, 2005) and corrected propensity score weighting (McCaffrey, 

Lockwood, and Setodji, 2013). In addition, various methods have been developed including 

multiple imputation (Cole, Chu, and Greenland, 2006), simulation-extrapolation (Lockwood 

and McCaffrey, 2014), latent variable methods (Raykov, 2012), and Bayesian approaches 

(Gössl and Kuechenhoff, 2001; Gustafson, 2003). As far as we know, no methods are 

targeted to the case with differential measurement error in covariates.

In this paper, we consider Bayesian propensity score approaches to model differential 

covariate measurement error in observational study settings where the true value of the 

covariate is associated with both treatment status and outcome. This may be particularly 

relevant for many settings in psychology and education where individuals self-select their 

own “treatments” rather than having decisions made for them by physicians or researchers. 
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(In the latter case the decisions may in fact be made based on the observed, mis-measured 

covariates, which is not the scenario of interest in this work). We are concerned with settings 

where the true underlying covariates are the ones that influence treatment selection and 

outcomes, which can make causal inference difficult in settings with measurement error.

The remainder of the paper is structured as follows. First, Section 2 overviews a general 

causal framework, propensity scores, causal effect estimation, and Bayesian propensity score 

methods. Then, we introduce three possible differential measurement error scenarios where 

the measurement error differs between treatment groups: systematic, heteroscedastic, and 

mixed measurement error. Section 3 proposes two Bayesian hierarchical modeling 

approaches accounting for differential covariate measurement error. We show extensive 

simulation studies in Section 4 to assess and validate our models. In Section 5, we apply the 

Bayesian approaches to a real data analysis. Finally, Section 6 discusses our work, its 

limitations, and needed future methodological developments.

2 Background and setting

In this paper, we consider a binary treatment indicator A, a continuous outcome Y, and two 

continuous confounders X and Z. Here, Z is observed and correctly measured while X is not 

observed but instead we observe W which is the mismeasurement of X. Note that X and Z 
could be sets of confounders instead of scalars.

2.1 Causal inference framework

Our research question of interest is to estimate an effect of a treatment on a certain outcome. 

For the ith subject, the binary treatment indicator is Ai = 0 or 1 for untreated or treated, 

respectively. Following the Rubin causal model (Rubin, 1974), Yi(Ai = a) is the potential 

outcome for individual i when the individual is assigned to the treatment (a = 1) or control (a 
= 0). However, it is not feasible to observe both potential outcomes for an individual. Our 

estimand of interest is the average treatment effect (ATE), defined as E(Y (1) − Y (0)), 

where the expectation taken over some population of interest. This paper is interested in 

non-experimental studies, where we simply observe that some people received the treatment 

and others received the control condition (in contrast to randomized studies, where treatment 

conditions are assigned to individuals randomly).

In non-experimental studies where all variables are correctly measured, given an observed 

confounder (or a set of observed confounders) Xi, the identification of the estimand relies on 

the following assumptions: no unmeasured confounders (or called ignorability), Yi(a)⫫Ai | 
Xi; consistency, Yi(a) = (Yi | Ai = a) for subject i; and positivity, 0 < P (Ai = a | Xi) < 1 for 

all Xi. An additional assumption is the stable unit treatment value assumption (SUTVA) 

meaning that one person’s treatment assignment does not influence another person’s 

potential outcomes and there is only one version of each treatment (Rubin, 1980).

The non-random treatment assignment in non-experimental studies results in various sources 

of bias (i.e., selection bias). Since the treatment assignment may depend on sample 

characteristics, treated and untreated groups can differ in the distribution of confounders, 
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obscuring the true treatment effect. To estimate an unbiased causal effect, both treated and 

untreated groups should be exchangeable across confounding variables.

2.2 Propensity scores and inverse probability of treatment weighting method

A particularly useful tool in non-experimental studies is that of propensity scores, proposed 

by Rosenbaum and Rubin (1983), defined as ei(Xi) = P (Ai = 1 | Xi) for subject i. Propensity 

scores are usually estimated by fitting a logistic (or probit) regression model, and have two 

important properties. First, propensity scores balance the treated and control groups in terms 

of the distribution of all observed covariates, Xi⫫Ai | ei(Xi). The second property is that if 

ignorability holds given the full set of covariates then it also holds given the propensity 

score, that is if Yi(a)⫫Ai | Xi then Yi(a)⫫Ai | ei(Xi). Thus, propensity scores behave as a 

summary of all observed confounders so that we can use them to equate the treatment and 

comparison groups using matching, weighting, or subclassification instead of the full set of 

covariates.

In this paper, we use a propensity score approach known as inverse probability of treatment 

weighting (IPTW). In the outcome analysis, those who are actually treated are weighted by 

w1i =1/ei and those who are not have weights w0i = 1/(1−ei). The ATE is estimated by

(1)

where  is an estimate of the ATE. Although we only consider a simple difference in 

means, more complex doubly robust approaches could be used as well (Robins and others, 

2007).

The underlying assumption for estimating unbiased ATE is that all observed confounders are 

measured without error. Suppose that X is not correctly measured, but instead we observe 

W, which is a mismeasurement of X. That is, W is an error-prone confounder. To obtain an 

unbiased estimate of the ATE using IPTW, we should use the “true” confounder X to 

balance treated and control groups. If we use W instead of X to balance the two groups, we 

would expect a biased IPTW estimate because balancing on W will not imply balance on X. 

Note that this is only true when X is a confounder (i.e., when ignorability requires 

conditioning on X, not W). If W (not X) is related to the treatment assignment then the 

measurement error on X might not be influential at all in terms of estimating the ATE, 

because ignorability would hold given W (i.e., Y (a)⫫A | W. In this case, W would be the 

confounder, not X.

2.3 Bayesian propensity score methods

A Bayesian model provides flexibility given appropriate prior distributions, incorporates all 

parameter uncertainties, and offers probability-based interpretations. Under a Bayesian 

framework, we can account for the uncertainty of estimated propensity scores via Markov 

Hong et al. Page 4

Psychometrika. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



chain Monte Carlo (MCMC) algorithms, instead of considering the estimated propensity 

scores as fixed. In addition, we can easily calculate 95% credible intervals for parameters 

from their posterior distributions (Carlin and Louis, 2009).

McCandless, Gustafson, and Austin (2009) and An (2010) propose practical Bayesian 

propensity score methods that estimate a causal effect by modeling the propensity score and 

outcome stages jointly. Kaplan and Chen (2012) propose other Bayesian propensity score 

methods, which retain the separation of design and analysis inherent in the two-step 

propensity score approaches of design and outcome analysis. Although both approaches 

account for uncertainties of estimated propensity scores when estimating a causal effect, 

there is a thorny issue about combining propensity score and outcome models in the joint 

model approach. In conventional propensity score methods, the propensity score model 

should not depend on the information about outcome values (due to a desire to separate the 

design of the study from the outcome analysis), while the Bayesian joint model does not 

provide this separation. On the other hand, Little (2004) suggests that combining both 

propensity score and outcome models can produce estimates with good frequentist 

properties. Given the pros and cons in both approaches, the purpose of our paper is not 

validating which approach is better, but proposing the use of the two Bayesian propensity 

score approaches when existing differential covariate measurement error.

2.4 Differential covariate measurement error scenarios

Figure 1 depicts the data generating mechanism under differential covariate measurement 

error. Since we assume that the measurement error of X is differential by treatment status, 

the arrow from A to W exists, while this arrow would be removed under the classical 

measurement error case. Corresponding models can be written as

(2)

(3)

(4)

(5)

Here, we assume that P(W | X, A, Z) = P(W | X, A) and P(Y | X, A, Z, W) = P(Y | X, A, Z). 

In (2), we assume X and Z are correlated. The treatment assignment A depends on these two 

covariates as shown in (3). For differential measurement error, (4) shows that W relies on the 
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treatment assignment with a location shift parameter γ and scale parameter δ. Note that (4) 

reflects a classical measurement error case when γ and δ equal 0. In (5), the conditional 

mean of the outcome Y is a linear combination of treatment and confounding effects.

Based on γ and δ settings in (4), we can define three measurement error scenarios. Section 5 

provides examples of these types of measurement error.

Systematic measurement error—The measurement error means differ by treatment 

status, when γ ≠ 0 and δ = 0. That is, the mean of W is shifted by γ from X only for the 

treated group, though the variance of W is the same for both groups.

Heteroscedastic measurement error—The measurement error variances differ by 

treatment status, but the mean of W in both groups is X when γ = 0 and δ ≠ 0. The variance 

in (4) assumes that the distribution of W for the treated group is noisier than that for the 

control group. When the opposite is assumed, we can simply switch the labels of treatment 

and control groups, or the variance needs to be replaced with .

Mixed measurement error—This case corresponds to one where γ ≠ 0 and δ ≠ 0, that is 

both the mean and variance of W differ by treatment status. The distribution of W for the 

treated group is shifted by γ from X and more variable than that for the control group.

In this paper, we choose the IPTW estimator in (1) as the estimator of our estimand ATE 

because using IPTW can help prevent reliance on a particular outcome model assumption. In 

the outcome model (5), ψ2 could be an alternative estimator of the ATE. However, if the 

outcome model is misspecified, ψ2 could not correctly account for the covariate balance 

between treated and untreated groups because we do not directly incorporate the propensity 

score weights into the outcome model (i.e., we do not use a weighted regression model). As 

such, we use the IPTW estimator for inference.

3 Bayesian hierarchical modeling for differential covariate measurement 

error

In this section, we introduce Bayesian hierarchical models to estimate causal effects when 

some covariates are measured with error, particularly where the magnitude of measurement 

error is different by treatment status. As we described in Section 2.4 we consider three 

differential measurement error structures: systematic, heteroscedastic and mixed 

measurement error. Under a Bayesian framework, we model differential measurement error 

structures in addition to the propensity score and outcome models, and consider the 

unobserved X to be an unknown variable. We apply two types of Bayesian propensity score 

methods: joint and separate modeling of propensity score and outcome stages. Our models 

assume that there is no internal or external validation data providing information about the 

relationship between X and W. In addition, we assume that investigators have some baseline 

knowledge about the extent of differential measurement error (e.g., measurement in the 

treated group is shifted less than some number of standard deviation units, relative to the 
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shift in the control group), and this prior knowledge can be used when specifying prior 

distributions.

3.1 Joint model of propensity score and outcome stages

The first approach we consider models the propensity score, measurement error, and 

outcome stages jointly by fully incorporating all known information. Given our data 

framework in Section 2.4, we model equations (2) to (5), where (3), (4), and (5) represent 

propensity score, measurement error, and outcome stages, respectively. Recall that we 

assume that Z is observed and measured without error and X is an unknown variable to be 

estimated. The likelihood of the observed data is written as

where α = (α0, α1, α2), ψ = (ψ0, ψ1, ψ2, ψ3), and ξ = (σw |x,a, σy |x,a,z). The full 

conditional posterior distribution is derived in the supplementary material.

The relationship of X and Z in (2) can be used as a prior distribution for X, such as 

. We assign normal priors to α, ψ, and β, where β = (β0, β1) and 

uniform priors to σy |x,a,z and σx|z. Informative priors can be applied when strong prior 

information is available. In addition, we assign prior distributions to the parameters related 

to the measurement error as follows:

Systematic measurement error—For the location parameter γ, we consider 1) a 

normal prior, but with a reasonably small variance for better model convergence and 2) point 

mass priors for conducting sensitivity analyses. We assign a uniform prior to σw | x.

Heteroscedastic measurement error—Similarly, we assign 1) two separate uniform 

priors to the standard deviations of two treatment groups, σw | x,a=0 and σw | x,a=1, where δ 

can be calculated by solving the equation , and 2) point mass 

priors to δ for conducting sensitivity analyses with a uniform prior to σw | x,a=0.

Mixed measurement error—Under the mixed measurement error scenario, a 

combination of those two prior options for γ and δ, a total of four prior setups, are used. We 

will discuss the impact of prior choices for γ and δ in Sections 4 and 5.

In our setting with no validation data, the choice of hyperparameters of priors for γ, 

σw | x,a=0 and σw | x,a=1 in measurement error models is important because we have limited 

information about the relationship between X and W. As we assume that the scientific 

knowledge about the extent of differential measurement error is available this information 

will help us assign somewhat informative priors. For example, we might know that the mean 

of the covariate is shifted less in the treated group than in the untreated group (e.g., the shift 

in the treated group is less than 1 unit than the shift in the control group). Using this 

information we would assign γ a normal prior with mean zero and a fairly small variance 

instead of a large variance. Similarly, the treated group might be more variable (but less than 
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2 times, for example) than the untreated group, and we could assign σw | x,a=0 and σw | x,a=1 a 

uniform prior having a reasonably narrow range instead of a wide range.

3.2 Two-step approach with multiple imputation

Our second approach models the propensity score and outcome stages separately. That is, in 

the first step (i.e., study design step), we sample X by fitting propensity score and 

measurement error models under a Bayesian framework. In the second step, we apply the 

multiple imputation approach proposed by Rubin (1987) using the posterior samples of X 
obtained in the first step.

In the first step, we model equations (2) to (4) with similar prior distributions we used for 

joint models. We save M samples of Xi from their posterior distributions and denote them 

, where m = 1, …, M. As a result, we have M complete datasets, (Y, A, X(m), Z). When 

we impute Xi in this step, we do not borrow any information from the outcome. That is, the 

relationship of X on Y has nothing to do with the posterior distribution of Xi.

In the second step, we regard those M complete datasets as a product of multiple imputation. 

For each complete dataset, we estimate propensity scores  using Zi and  by fitting a 

frequentist logistic regression. Then, we calculate weights  and 

 and estimate the treatment effect, , and its standard error, , by 

fitting a weighted regression model of Y on A. By applying Rubin’s rule (Rubin, 1987), the 

ATE and its standard error are calculated by

where  and  representing within-imputation 

and between-imputation variances, respectively. Note that we do not implement a Bayesian 

model in the second step because running M separate Bayesian models is computationally 

expensive, and for a simple regression the Bayesian models with vague priors would provide 

results similar to those under frequentist models.

4 Simulation studies

4.1 Settings for simulated data

In this simulation study, we investigate the performance of our joint and two-step Bayesian 

models in terms of estimating the ATE. In addition, we study the impact of various prior 

choices and model misspecification on performance. Furthermore, we explore how well the 

approach works across a range of X-Y association scenarios. Bias, mean squared error 

(MSE), the average width of 95% credible intervals of estimates, and coverage probabilities, 

one of the frequentist properties, are used as measures of performance. We generate 1000 
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datasets using equations (2) to (5) and each simulated dataset has 1000 subjects. True 

parameters are set up as follows.

True covariates—In (2), we set (μx, μz) = (1, 1), (σx, σz) = (1, 1), and ρ = 0.5.

Treatment assignment—Ai for subject i is drawn from a Bernoulli distribution with 

probability of being treated expit(α0 + α1Xi + α2Zi) in (3). We consider two sets of α: (−1, 

0.5, 0.5) and (−2, 1, 1), where the standardized mean differences of X, defined by {E(X | A 
= 1) − E(X | A = 0)}/σx | a=0 are around 0.7 and 1, thus the imbalance of X between treated 

and untreated groups are regarded as moderate and high, respectively. In both settings, about 

half of the subjects are treated.

Outcome—Given X, Z, and A, we simulate the outcome Y using the linear regression 

model in (5). We consider two cases regarding the strength of association between X and Y. 

We set the intercept and coefficients for A, X, and Z of the linear model for Y to be 1) ψ = 

(0, 2, 0.5, 0.5) for low X-Y association and 2) ψ = (0, 2, 2, 2) for high X-Y association. The 

true ATE is 2 in both cases. The conditional variance of Y, , is 1.

Differential measurement error—We specify the location shift parameter γ and the 

scale parameter δ to generate the error-prone covariate W given the true covariate X and the 

treatment status A. Table 1 summarizes the parameter setups under three measurement error 

scenarios. We choose (γ, δ) in (4) to be (1, 0), (0, 0.5), and (1, 0.5) for systematic, 

heteroscedastic, and mixed measurement error cases, respectively. We set  to 

imply a reliability of 0.7 in the control group. The choice of γ does not affect reliability in 

the treated group while a large δ value results in low reliability in the treated group.

4.2 Settings for fitted models

Across all three measurement error scenarios, we begin with fitting two Bayesian models not 

accounting for the measurement error. We estimate propensity score ei by fitting a logistic 

regression model for treatment assignment with covariates Zi and Xi, denoted as the “True” 

model, and with covariates Zi and the error-prone Wi, denoted as the “Naïve” model.

To account for measurement error, we fit our proposed joint and two-step models, and Table 

2 summarizes model names and corresponding prior options. We denote the joint Bayesian 

models as “Joint” and the two-step models as “TS”.

Systematic measurement error—Joint models adopt an informative prior for γ, 

namely N(0, 3), and a point mass prior where we choose γ to be the true value 1. These two 

models are denoted by “Joint_inf” and “Joint_PM”, respectively. We apply the same point 

mass prior for the two-step model, denoted by “TS_PM”, and compare the results with 

Joint_PM.

Heteroscedastic measurement error—Similar prior settings were utilized for the 

heteroscedastic scenario. A uniform(0.01, 3) prior distribution is used for the standard 
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deviations of W of the joint model, and δ is set to 0.5 as the point mass prior option for both 

joint and two-step models.

Mixed measurement error—With regard to the mixed measurement error scenario, four 

different prior options are applied to the joint model: 1) informative priors on both γ and δ 
(denoted Joint_inf); 2) a point mass prior to γ but an informative prior to δ (Joint_S); 3) a 

point mass prior to δ but an informative prior to γ (Joint_H); 4) and point mass priors to 

both γ and δ (Joint_SH). We only consider the fourth prior for the two-step model, denoted 

by “TS_SH”, because the main findings when comparing joint and two-step models are 

similar under other prior options.

All other regression coefficients and standard deviations have N(0, 3) and Uniform(0.01, 3) 

priors, respectively. Here, we use somewhat informative priors on these parameters to 

guarantee model convergence. For two-step models, we set M = 100.

In addition, we investigate performance under outcome and propensity score model 

misspecification. For the outcome model misspecification setting, we simulate a dataset 

using (2) – (4) and we add a quadratic term for X in (5), such as E(Y | X, A, Z) = ψ0 + ψ1A 
+ ψ2X +ψ3Z +0.25 ψ2X2. Then, we fit the same joint and two-step models ignoring the 

quadratic effect of X on outcome. Similarly, for the propensity score misspecification 

setting, we simulate a dataset using a true propensity score model that has an added 

quadratic term for X, such as A | X, Z~Ber(logit−1(α0 + α1X + α2Z + 0.25α1X2)), and then 

fit the same joint and two-step models ignoring the quadratic effect of X on treatment 

assignment.

For all models, the ATE is estimated using the IPTW estimator in (1). We performed 

simulation studies in R using the R2jags package (Su and Yajima, 2014). For each Bayesian 

model parameter, a single chain was run and 20000 samples were obtained after discarding 

the first 20000 samples as a burn-in.

4.3 Results

Table 3 displays bias, MSE, coverage probability, and the average width of 95% credible 

intervals of estimates and Figure 2 exhibits box plots of the ATE estimates under six 

different settings: the three measurement error scenarios for each of the low and high X-Y 

associations. Here, the average width shows uncertainty of estimates. Again, the true ATE is 

2. We show results for α = (−1, 0.5, 0.5), which indicates moderate imbalance on X between 

the treated and control groups. The results for the higher imbalance setting (α = (−2, 1, 1)) 

are in the supplementary material. We first explain findings under each measurement error 

structure, followed by more comprehensive results across all measurement error structures.

Systematic measurement error—When the X-Y association is low, in Panel (a) of 

Figure 2, the Joint_inf model performs better than the Naïve model in terms of bias and 

coverage probability while the Joint_PM model provides slightly larger bias and MSE than 

the Naïve model. Comparing joint and two-step models with point mass priors, the two-step 

model yields a less biased ATE with smaller MSE and better coverage. However, these 

findings differ when the X-Y association is large (Panel (b)). In this setting, the Joint_inf, 
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Joint_PM, and TS_PM models perform better than the Naïve model, and using a point mass 

prior reduces bias and MSE more than using an informative non-point mass prior when 

using the joint model approach. Joint_inf always provides the largest variability resulting in 

the widest 95% credible intervals. In addition, the TS_PM model yields larger bias and MSE 

than Joint_PM. The same trend is observed when we compare joint and two-step models 

using informative non-point mass priors (results not shown).

Heteroscedastic measurement error—When X is not a strong predictor of outcome in 

Panel (c), the Joint_PM model results in a less biased ATE than the Naïve model. The 

TS_PM model yields slightly larger bias but smaller MSE than Joint_PM. With a strong X-

Y association (Panel (d)), ATE estimates under Joint_inf show dramatic improvement in 

bias, MSE, and coverage probability, and the bias is smaller than that under Joint_PM. 

Again, the two-step model produces larger bias and MSE than Joint_PM.

Mixed measurement error—In Panel (e), with a low X-Y association, the Joint_SH and 

TS_SH models perform better than the Naïve model. Joint_inf, Joint_S, and Joint_H provide 

similar bias and MSE, though Joint_inf yields the largest coverage probability. Note that this 

large coverage probability in Joint_inf is due to the large uncertainty of estimates resulting 

in wide 95% credible intervals. When the X-Y association is large (Panel (f)), we observe 

that prior choices affect the estimates. The Joint_S and Joint_SH models result in much 

smaller bias and MSE with slightly better coverage than Joint_inf and Joint_H. This shows 

that adopting a point mass prior on the shift parameter γ is more beneficial to have an 

unbiased and precise ATE estimate than using a point mass prior on the scale parameter δ. 

The TS_SH model provides larger bias and MSE than Joint_SH.

In general, the magnitude of the association between the true covariate X and the outcome is 

related to the methods’ performance; this can be explained by the performance of posterior 

samples of Xi. As a model imputes Xi better, propensity scores control for Xi better, so we 

can estimate a more accurate treatment effect. To illustrate, Figure 3 plots the true Xi and 

posterior medians of imputed Xi from a single simulated dataset under the Joint_PM model 

with systematic measurement error. In Panel (b), the setting where X is a strong predictor of 

outcome, the imputed Xi are closer to the true values than in Panel (a). Specifically, the 

imputed values are more centered towards the mean of Xi with a low X-Y association. This 

is because there is relatively little information on Xi in Yi so their posterior samples shrink 

towards their mean.

In addition, the performance of two-step models is related to the magnitude of the X-Y 

association. The two-step models consistently result in larger bias and MSE (though the 

coverage probabilities are acceptable) than the joint models using the same point mass priors 

when X is a strong predictor of Y. As the two-step models ignore the X-Y association when 

imputing X, they can yield a biased and imprecise estimate when a strong predictor of 

outcome is mis-measured.

Furthermore, the joint models are more sensitive to the prior choice for γ than to the prior 

choice for δ. For example, in the systematic measurement error scenario with a large X-Y 

association, the bias of the ATE under Joint_PM is much smaller than that under Joint_inf 
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(−0.030 versus −0.459), whereas in the heteroscedastic measurement error scenario, the bias 

under Joint_PM is relatively similar to the bias under Joint_inf (−0.053 vs. −0.022). 

Moreover, in the mixed measurement error scenario, compared to Joint_inf, Joint_S 

decreases the bias by 98% (from −0.708 to −0.017) while Joint_H decreases the bias by 8% 

(from −0.708 to −0.650). That is, using a point mass prior on γ is more helpful to reduce 

bias than using a point mass prior on δ. In the supplementary material, we compare prior and 

posterior distributions of the parameters in the measurement error models to show how 

different prior choices affect the estimation of these parameters.

We also investigate covariate balance using the standardized mean difference (SMD) to 

examine how similar the treatment and control groups are after weighting in terms of the 

imputed X and the true X in the mixed measurement error scenario with the high X-Y 

association. The SMD of X is 0.7 before applying our methods. Joint_inf and Joint_SH give 

the SMDs for the imputed X (on which propensity scores directly balance the two groups) 

0.007 and 0.001, respectively, showing that the two groups are well-balanced on the imputed 

X. However, the SMDs for the true X are −0.244 and 0.053 under Joint_inf and Joint_SH, 

respectively, showing that the balance between two groups on the true X is not as good as 

the balance on the imputed X. Note that as the SMD of the true X is smaller, the ATE 

estimate tends to be less biased (the bias values under Joint_inf and Joint_SH are −0.708 and 

−0.058, respectively).

The results of misspecification of the outcome and propensity score models under the mixed 

measurement error scenario are in the supplementary material. The results under outcome 

model misspecification show the similar trend to panels (e) and (f) of Figure 2, but the bias 

and MSE are much larger in Joint_inf and Joint_H with a large X-Y association (see Web 

Figure 1 of the supplementary material). The results under propensity score model 

misspecification show that propensity score model misspecification affects bias and MSE 

less than does outcome model misspecification, as previously shown by Drake (1993).

5 Illustrative data example

5.1 NCS-A data

We apply our Bayesian approaches to data from a representative survey of U.S. adolescents, 

the National Comorbidity Survey Replication Adolescent Supplement (NCS-A). The NCS-A 

has been described elsewhere (Merikangas and others, 2009; Kessler and others, 2009a). The 

Human Subjects Committees of Harvard Medical School and the University of Michigan 

approved recruitment and consent/assent procedures.

Our goal is to estimate the association between living in a disadvantaged neighborhood and 

past-year drug abuse or dependence (using Diagnostic Statistical Manual IV diagnoses 

(Kessler and others, 2009b)). Neighborhood disadvantage was operationalized using an 

established scale (Roux and others, 2001) that has been used with the NCS-A data (Rudolph 

and others, 2004). Neighborhoods in the lowest tertile of scale scores were considered 

disadvantaged.
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Maternal age at the birth reflects family socioeconomic status (SES) (lower SES families 

have children at younger ages, on average, than higher SES families), and is a confounder in 

analyses of neighborhood and mental health (Leventhal and Brooks-Gunn, 2000). In the 

NCS-A, maternal age at birth was reported by the adolescent. For a subset of adolescents, 

maternal age at birth was also reported by the mother. We consider the mother’s report to be 

the true confounder, X, and the adolescent’s report to be a mismeasurement of X, W. For 

this illustrative example, we examine the subset of adolescents who have both X and W 
(n=4,792) to compare estimates using our Bayesian approaches to the “true” estimate made 

using X. Due to confidentiality issues, our dataset cannot be uploaded to high-performance 

computing clusters and thus our models have to be run on a desktop computer that has 

limited computing capacity. As a result, we further restrict to a random sample of 1,000 

participants to alleviate memory and computation issues. Our models would be feasible to 

run with larger datasets on a high performance cluster.

Figure 4 (a) shows the correlation between maternal-reported and adolescent-reported 

maternal age at birth. This example is appropriate to our objective of correcting for 

differential measurement error. Adolescents in disadvantaged neighborhoods are slightly 

more likely to overestimate the age of their mother than adolescents in nondisadvantaged 

neighborhoods (i.e., the “treatment” shifts the measurement error mean away from zero by a 

constant), and less reliable in reporting their mother’s age (i.e., the measurement error 

variance exhibits heteroscedasticity by “treatment” status). In general though, the 

adolescent’s report correlates very highly with the mother’s report, correlation=0.95. 

Because of the little difference between the adolescent’s and mother’s report, for illustration 

purpose, we simulated additional systematic, heteroscedastic, and mixed measurement error 

as shown in Figure 4 (b), (c), and (d), respectively.

Suppose Wobs denotes the observed W. Since the reliability between X and Wobs is close to 

1, to decrease reliability we add pure noise to Wobs, namely N (0, 4). We call the noisy 

version of W Wnoise and the reliability between X and Wnoise becomes 0.87. Based on 

Wnoise, we simulate additional differential measurement errors for the treated group as 

follows:

(6)

(7)

(8)

where Wsys, Whet, and Wmix denote the simulated W under each scenario, and are plotted in 

Figure 4 (b), (c), and (d), respectively. Note that Wsys, Whet, and Wmix equal Wnoise for the 

untreated group. Finally, we standardize Wsys, Whet, and Wmix for all analyses to improve 
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convergence and computation time. In both heteroscedastic and mixed cases, the 9.3 

variance of additional error results in δ = 0.5 and 0.73 reliability in the treated group. The 

reliability in the untreated group is 0.84.

The propensity for living in a disadvantaged neighborhood is estimated as a function of 

adolescent gender, age, race/ethnicity, maternal age at birth, family income, and region of 

the country and urbanicity status of the adolescent’s residence. We estimate the ATE, the 

average effect of living in a disadvantaged neighborhood on probability of having a drug use 

or dependence disorder. We control for confounding using IPTW.

We use STAN (Stan Development Team, 2014) for the data analysis because it handles 

categorical variables better than JAGS. We use 100,000 iterations, the first 50,000 of which 

were the burn-in period, and 2 chains. Convergence is assessed with visual checks for 

adequate mixing using trace plots and by the R̂ statistic.

We compare the ATE estimated using various methods: 1) using the mother-reported age, X, 

“Truth”; 2) simply using the adolescent-reported age, W, “Naïve”; 3) using W in the 

Bayesian joint modeling approach with informative priors for γ~N(−2/sd(W), 3) and 

δ~Uniform(0.05, 3), “Joint_inf”; 4) using W in the Bayesian joint modeling approach with 

an informative prior for δ~Uniform(0.05, 3) and different point mass prior values for γ: −3/

sd(W), −2.5/sd(W), −2/sd(W), −1.5/sd(W), −1/sd(W) = −0.46, −0.38, −0.31, −0.23, −0.15 

for “Joint_S1”, “Joint_S2”, “Joint_S3”, “Joint_S4”, and “Joint_S5”, respectively; 5) using 

W in the Bayesian joint model modeling approach with an informative prior for γ~N(−2/
sd(W), 3) and different point mass prior values for δ: = 0, 0.25, 0.5, 0.75, 1 for “Joint_H1”, 

“Joint_H2”, “Joint_H3”, “Joint_H4”, and “Joint_H5”, respectively; 6) using W in the 

Bayesian joint modeling approach with point mass priors for γ = −0.31 and δ = 0.5, 

“Joint_SH”; and 7) using W in the Bayesian two-step modeling approach with point mass 

priors for γ =−0.31 and δ = 0.5, “TS_SH”. All other regression coefficients have a N(0, 100) 

prior. We use M = 1000 for our data analysis.

5.2 Results

Figure 5 shows the ATE estimates for each method using Wmix. The pattern of results is 

similar for Wsys and Whet, and these results are given in the supplementary material. Using 

mother-reported age, X, as the truth, the mean posterior ATE is 0.014, 95% CI: 0.005, 0.027. 

This suggests that living in a disadvantaged neighborhood is associated with a slightly 

higher and statistically significant probability of having a drug use or dependence disorder in 

the past 12 months. The naïve approach, using adolescent-reported age, W, as if it were the 

truth also results in a mean posterior ATE of 0.006 but this association is no longer 

statistically significant as the 95% CI now crosses zero: −0.003, 0.017. Although statistical 

significance changes depending on whether X or W is used, the naïve approach actually 

results in very little bias. This is because maternal age at birth is a weak confounder in these 

data.

Using correctly specified point mass priors in the joint Bayesian model (Joint_SH) results in 

a similar estimate and statistically significant inference as obtained using the true X. In 

contrast, using informative non-point mass priors for either or both γ and δ results in more 
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variable estimates, rendering the association no longer significant. Results are more sensitive 

to using a non-point mass prior for γ than δ, as was seen in the simulation. When an 

informative non-point mass prior is used for γ (Joint_H) bias and variance are much larger 

than when an informative non-point mass prior is used for δ (Joint_S). The two-step model 

using correctly specified point mass priors (TS_SH) produces wider confidence intervals 

than any other method.

6 Discussion

In this paper, we consider a scenario of covariate measurement error that is differential by 

treatment status. We implement joint and two-step Bayesian models that address this 

measurement error in the context of a propensity score approach. We propose and evaluate 

their performance via simulation and a data example. The results show that using a Bayesian 

framework provides flexible approaches for addressing measurement error but prior 

distributions should be carefully specified. Our proposed approaches can straightforwardly 

handle complex measurement error models such as when measurement error is differential 

across treatment groups.

In the simulation study, when a strong predictor of outcome X is mismeasured, the Bayesian 

joint model works best while the two-step model performs poorly because the posterior 

distribution of X does not incorporate information from the relationship between X and the 

outcome. When X is a weak predictor of the outcome, fitting our Bayesian models does not 

improve the bias and MSE of ATE estimates much compared to the naïve model (though 

always improves coverage probability). Webb-Vargas and others (2015) show similar results 

that when X is strongly related to the outcome, using the outcome in the imputation with 

external calibration data to handle classical measurement error makes propensity score 

approaches work better. However, when X is only weakly related to the outcome using such 

an approach does not change inferences. In addition, we found that checking balance on the 

imputed X can be misleading because the balance on the imputed X may or may not reflect 

the balance on the true X. However, checking balance on the true X might not be possible in 

real data examples as the true X is usually not available, and a diagnostic tool should be 

developed for future work.

Considering the data analysis, we find little difference between the naïve and true models in 

estimating the average effect of living in a disadvantaged neighborhood of drug abuse or 

dependence disorder, although the statistical inference is changed. This is likely due to 

maternal age at birth being weakly related to the outcome, conditional on the other 

confounding variables. Thus, this data example is most similar to the low X-Y association 

scenario considered in the simulation. We recommend that, in low X-Y association 

scenarios, using the joint Bayesian approach as a sensitivity analysis by comparing estimates 

specifying various plausible point mass priors for γ and δ may be the most informative 

strategy. Specifying point mass priors for γ and δ can be informed by referring to external 

validation data that contain W, X, and treatment status. To use such external validation data, 

we need to assume transportability between the study data and validation data, meaning that 

the measurement error model estimated from the external validation data generalizes to the 

study data (Pearl and Bareinboim, 2011).
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When estimating propensity score weights, extreme weights can be a problem in some 

situations. In our data analyses and our simulation studies with moderate imbalance on X 
between treated and control groups, we do not have extreme weights. In practice, one 

common approach to handle extreme propensity score weights is trimming large weights 

downward and this approach performs well with misspecified propensity score models (Lee, 

Lessler, and Stuart, 2011). Although not needed in the analyses in this paper that approach 

could also be considered in the context of differential covariate measurement error.

Our Bayesian models use a “subjective” Bayes approach, where the prior quantifies what is 

known by the investigators before the data is collected especially for parameters in the 

measurement error model. Other alternatives include “empirical” Bayes where the prior is 

estimated from the data itself, and “objective” Bayes where the choice of prior is based on 

certain mathematical properties (Carlin and Louis, 2009). However, our Bayesian models do 

not perform well with non-point mass priors on measurement error parameters because those 

parameters are hard to identify with limited information (i.e., absence of validation data) and 

present challenges in approximating a posterior distribution. To resolve this issue, we have 

some parametric assumptions such as specifying a structure of measurement error. Another 

possible solution is to have internal validation data (although it is rarely available). Our next 

research topic is to investigate the impact of using internal validation data on controlling for 

differential measurement error. In addition, Gustafson and others (2010) provide several 

recommendations to deal with nonidentified models: limit the number of hyperparameters 

and priors to be specified, or redefine unobserved parameters to update parameters involved 

in the likelihood separately from those not involved in the MCMC algorithm.

A limitation of the Bayesian joint model is that the outcome model must be combined with 

the propensity score model to consistently estimate the ATE. Our joint models allow “model 

feedback” between the outcome and propensity score models. That is, the outcome values 

are indirectly used to impute the true covariate and then the imputed true covariate 

contributes information to the propensity score model. This negates an advantage of 

propensity scores, which is that propensity score model fit is typically optimized without 

looking at the outcome–thus reflecting their role in the design stage of the study and 

preventing researchers from modifying their analysis to get desired results in terms of the 

effect estimates (Stuart, 2010). Recently, Zigler and others (2013) point out that the 

propensity score adjustment approach can result in model feedback that biases ATE 

estimates. Our joint models use a propensity score weighting approach and perform better in 

imputing the true covariate than two-step models. However, we do not rigorously assess the 

potential negative impact of model feedback when using IPTW and this is beyond the scope 

of this paper.

In this paper, we did not consider the case where measurement error is differential across 

groups given by a binary covariate, not the treatment assignment. We think that our proposed 

models can be applied to such a case, but we expect that differential measurement error 

across groups given by a covariate would cause less bias when estimating the ATE than does 

differential measurement error across treatment groups. In addition, measurement error in 

outcomes is another related and interesting topic, but it is beyond the scope of this paper 

(Yanez, Kronmal, and Shemanski, 1988).
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In summary, we propose Bayesian approaches to estimate treatment effects when a single 

covariate is mis-measured and the measurement error is differential by treatment 

assignment. More methods need to be developed to handle differential measurement error on 

multiple covariates and researchers should further study which approaches work best under 

what scenarios.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Data generating mechanism
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Figure 2. 
Estimated ATE from simulation under various differential measurement error scenarios with 

low or high level of X-Y association.
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Figure 3. 
True Xi and posterior median of imputed Xi under the Joint_PM model from a case study 

with systematic measurement error.
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Figure 4. 
Scatter plots of mother-reported age and adolescent-reported age with a 45 degree dotted 

line under differential covariate measurement error scenarios: (a) no additional measurement 

error added, (b) systematic measurement error added, (c) heteroscedastic measurement error 

added, and (d) both systematic and heteroscedastic measurement error added. N=4,792.
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Figure 5. 
Estimated ATE and 95% CI by method in the illustrative example using Wmix. The ATE is 

the average effect of living in a disadvantaged neighborhood on probability of past-year drug 

abuse or dependence. N=1,000.

Hong et al. Page 23

Psychometrika. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hong et al. Page 24

Table 1

Parameter setup of measurement error for simulation study

Control group Treated group

W | X, A = 0 Reliability W | X, A = 1 Reliability

Systematic N(X, 0.43) 0.7 N(X + 1, 0.43) 0.7

Heteroscedastic N(X, 0.43) 0.7 N(X, 0.43(1.5)2) 0.4

Mixed N(X, 0.43) 0.7 N(X + 1, 0.43(1.5)2) 0.4
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Table 2

Fitted models and prior setup for simulation study

Model Prior for γ Prior for δ

Systematic Joint_inf γ~N(0, 3)

Joint_PM γ ≡ 1

TS_PM γ ≡ 1

Heteroscedastic Joint_inf σw | x,a=0, σw | x,a=1~Uniform(0.01, 3)

Joint_PM δ ≡ 0.5

TS_PM δ ≡ 0.5

Mixed Joint_inf γ ~ N(0, 3) σw | x,a=0, σw | x,a=1~Uniform(0.01, 3)

Joint_S γ ≡ 1 σw | x,a=0, σw | x,a=1~Uniform(0.01, 3)

Joint_H γ ~ N(0, 3) δ ≡ 0.5

Joint_SH γ ≡ 1 δ ≡ 0.5

TS_SH γ ≡ 1 δ ≡ 0.5
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