Skip to main content
. 2017 Mar 13;94(2):199–210. doi: 10.1007/s11524-017-0142-5

Table 3.

Invasive female breast cancers (n = 4935): main effects logistic regression with random intercept

Fixed effects B 0 p value Odds ratio Adjusted predictions
Outcome: late stage
Intercept 0.14 0.318
Age category (reference: 21–46) All: <0.0001
 21–46 Ref Ref 1.00 50.1
 47–52 −0.32 <0.001 0.72 42.2
 53–59 −0.39 <0.001 0.68 40.5
 65+ −0.50 <0.001 0.61 38.1
Year of rating (reference: 2008–2012) All: 0.0745
 2008–2012 Ref Ref 1.00 42.2
 2004–2007 0.13 0.062 1.14 45.4
 2000–2003 −0.03 0.696 0.97 41.6
Race/ethnicity (reference: White) All: 0.0039
 White Ref Ref 1.00 40.8
 Black 0.28 0.001 1.32 47.4
 Other 0.16 0.262 1.17 44.5
 Hispanic 0.24 0.117 1.27 46.5
Insured (reference: no insurance) All: <0.0001
 No insurance Ref Ref 1.00 49.8
 Medicaid 0.22 0.227 1.24 55.1
 Other insured −0.32 0.011 0.73 42.0
Disadvantage score (per unit increase) 0.0082 0.052 1.0082
 At −8.0 [Q1] 41.0
 At −5.3 [Q2] 41.5
 At −0.6 [Q3] 42.4
 At 13.1[Q4] 45.1
Standard deviation of random intercept ∼0

Likelihood ratio test comparing this model vs. nested logistic regression without random intercept was not significant, p = 1.000