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Abstract

Cancer immunotherapy can induce long lasting responses in patients with metastatic cancers of a 

wide range of histologies. Broadening the clinical applicability of these treatments requires an 

improved understanding of the mechanisms limiting cancer immunotherapy. The interactions 

between the immune system and cancer cells are continuous, dynamic and evolving from the 

initial establishment of a cancer cell to the development of metastatic disease, which is dependent 

on immune evasion. As the molecular mechanisms of resistance to immunotherapy are being 

elucidated, actionable strategies to prevent or treat them may be derived to improve clinical 

outcomes for patients.

Introduction

Metastatic cancers remain an incurable disease for the great majority of patients, as the 

intrinsic genomic instability common to all cancers facilitates the escape from cytotoxic or 

targeted therapies. The recent breakthroughs in the understanding of tumor immune-biology 

and the development of newer generation of cancer immunotherapies have opened a brand 

new chapter in the war against cancer. This change in landscape is based on the discovery of 

cancer immune checkpoints and the success of checkpoint inhibitors, as well as the advances 

in technology to generate genetically modified immune cells (Miller and Sadelain, 2015). 

The focus of treatment has shifted from the tumor itself to the host’s immune system, to 

mobilize immune cells to recognize and eventually eliminate the cancer cells. A hallmark of 
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immunotherapy is the durability of responses, likely due to the memory of the adaptive 

immune system, which translates into long-term survival for a subset of patients.

The early efforts to harness the immune system in cancer control pioneered by Dr. William 

B. Coley in the 1890’s (Coley, 1910) were overlooked due to the lack of consistency in 

response and were soon overwhelmed by the development of more effective treatments such 

as radiotherapy and chemotherapy. However, investigations persisted to unravel and 

elucidate the interactions between the immune system and cancer cells. The concept of 

cancer immunosurveillance, which was proposed by Paul Ehrlich (Ehrlich, 1956) and 

enriched by Burnet and Thomas (Burnet, 1971) in the 1950’s, stated that the emergence of 

malignant cells is a frequent event but is suppressed by the host’s natural immunity, that 

cancer develops when this immunity is weakened, and that lymphocytes are responsible for 

this process. Finally, the cancer immune-editing concept was elucidated by Schreiber et al in 

2002 (Dunn et al., 2002), recognizing a dual role of the host’s immunity, both as an extrinsic 

tumor suppressor and a facilitator of tumor growth and progression, acting across three 

sequential phases, elimination, equilibrium and escape, through constant interactions 

between tumor cells, immune cells and the tumor microenvironment. Importantly, host 

immune responses and tumor genomics are tightly related, as illustrated by the notion that 

neoantigens arising from genomic mutations may shape immune responses (Schumacher 

and Schreiber, 2015), however these responses may prove ineffective against a 

heterogeneous and evolving tumor microenvironment.

The process of T cell activation involves antigen presentation by the major 

histocompatibility complex (MHC) molecules on the antigen presenting cells (APC) to the 

corresponding T cell receptor (TCR) on naïve T cells. The interaction of costimulatory 

molecules CD28 and B7 is required for full activation, which is tightly regulated by 

inhibitory checkpoints to avoid collateral damage and autoimmunity. The CTLA-4 receptor 

on activated effector T cells and regulatory T cells (Treg) was discovered in the 1980’s 

(Brunet et al., 1987). Seminal work by James Allison and colleagues showed that CTLA-4 

competes with CD28 for B7 ligands and inhibits proliferation and IL-2 secretion by T cells 

(Krummel and Allison, 1995), and CTLA-4 blocking antibodies could treat tumors in 

immune competent animal models (Leach et al., 1996). Subsequent clinical testing resulted 

in the approval of ipilimumab for treatment of advanced melanoma in 2011, the first in class 

CTLA-4 checkpoint inhibitor approved by the US Food and Drug Administration (FDA) 

(Hodi et al., 2010; Robert et al., 2011). Pooled data from clinical trials of ipilimumab 

confirmed durable clinical responses with a plateau in the survival curve beginning around 

year 3, lasting 10 years or more in a subset of approximately 21% of patients (Schadendorf 

et al., 2015). In 2015, ipilimumab was also approved by the FDA as adjuvant therapy for 

locally advanced melanoma. Due to enhanced immune responses, possibly during early 

stages of T cell activation, significant immune-related toxicities have been observed but 

most can be managed by systemic steroid therapy.

Another checkpoint receptor expressed by activated T cells, programed death 1 (PD-1), was 

cloned in 1992 (Ishida et al., 1992), and subsequently its ligand PD-L1 was characterized 

(Dong et al., 1999; Freeman et al., 2000). PD-L1 expression can be constitutive or induced 

in many tumors to evade immune attack. Since PD-L1 expression can be induced by IFNγ, 
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which is expressed during an active anti-tumor immune response, it has been referred to as a 

mechanism of adaptive immune resistance (Table 1). Antibodies blocking the PD-1/L1 

inhibitory axis can unleash activated tumor-reactive T cells and have been shown in clinical 

trials to induce durable anti-tumor responses in increasing numbers of tumor histologies, 

including the tumor types that are not traditionally considered “immunotherapy sensitive” 

(Okazaki et al., 2013; Zou et al., 2016). This led to the approval of two anti-PD1 antibodies 

(pembrolizumab and nivolumab) and one anti-PD-L1 antibody (atezolimumab) for the 

treatment of advanced melanoma, non-small cell lung cancer (NSCLC), renal cell carcinoma 

(RCC), head and neck squamous carcinoma (HNSCC), Hodgkin’s lymphoma, and bladder 

cancer. Currently there are over ten anti-PD-1/PD-L1 antibodies in various stage of clinical 

testing in many different tumor types. Interestingly, there have been thousands of patients 

receiving PD-1 blockade therapy thus far, with similar immune related toxicities as observed 

for anti-CTLA-4 but with generally lower frequency, possibly since the PD-1/L1 checkpoint 

may act later in the T cell response resulting in a more restricted T cell reactivity towards 

tumor cells, with the majority of patients tolerating treatment well (Larkin et al., 2015c). 

Due to the non-overlapping mechanism of action of anti-CTLA4 and anti-PD1 antibodies 

(Das et al., 2015; Gubin et al., 2014), clinical testing of the combination of these two classes 

of checkpoint inhibitors showed improved clinical response (up to 60%) in melanoma at the 

expense of significantly increased frequency of toxicities (Larkin et al., 2015b). The 

combination of CTLA4 and PD-1/L1 checkpoint blockade has been approved as front line 

therapy for advanced melanoma patients, and is being tested in other tumor types with 

different dose levels and intervals of anti-CTLA4 to reduce toxicity.

Cell-based immunotherapy was pioneered by many investigators including Alex Fefer, Phil 

Greenberg, Zelig Eshhar, Steven Rosenberg and colleagues in the 1980’s, inspired by the 

correlation of the number of tumor infiltrating lymphocytes (TIL) and survival in some 

cancers. This process required TILs to be isolated from the patient’s surgical specimen, 

expanded in vitro and re-infused back to the lymphocyte-depleted patient. In these studies, 

sufficient TILs could not be isolated or expanded from tumors of approximately 50–60% of 

patients, which limited the number of patients who could be treated. For patients who could 

be treated with the expanded TILs, the reported response rate was 50% for melanoma, 

including 20% complete responses, and 95% of these complete responders had more than 5 

years of survival (Rosenberg et al., 2011). This approach, however, requires large surgical 

samples, experienced academic centers, and tumors enriched with anti-tumor T cells, which 

is a rare event for most tumor types. The recent advance of gene transfer technologies and T 

cell engineering has enabled more versatile approaches including adoptive cell transfer 

(ACT) of the patient’s peripheral T cells that are genetically modified to target cancer 

specific antigens, via physiological TCR or chimeric antigen receptors (CAR) (Sadelain, 

2016; Yang and Rosenberg, 2016). TCR are usually cloned from TILs that are reactive to 

specific cancer antigens having no or very limited expression in normal adult tissue but are 

widely expressed by cancer cells. Such TCR recognize tumor antigen presented in the 

context of major histocompatibility complex (MHC). Clinical success has been documented 

(Yee et al., 2015). The TCR approach allows intracellular antigen target but is MHC 

restricted, and can be subject to treatment failure for tumors that have down-regulated their 

MHC surface expression. CAR technology was first developed by Eshhar et al, by 
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genetically engineering T cells with chimeric genes linking single chain antibodies (scFv) 

targeting tumor cell surface antigens to intracellular signaling adaptors for TCR – in the first 

iteration to the T cell specific activating ζ chain of the CD3 complex. Subsequent 

modification with co-stimulatory molecules CD28 (second generation) and 4-1BB (third 

generation) has enabled the expansion of T cells while retaining function upon repeated 

antigen exposure. CAR T cell does not require MHC restriction and can be engineered to 

enhance T cell function. Recent clinical success with CD19 targeting CAR to treat CD19+ B 

cell malignancy has shown great success, with a remarkable 90% complete remission (CR) 

in a cohort of 30 patients with relapsed or refractory pediatric acute lymphoblastic leukemia 

(ALL), and two thirds of these patients remained in remission after 6 months (Maude et al., 

2014). The biggest challenge facing the field of ACT is the identification of target tumor 

antigens that are not expressed by normal tissues, both to maximize specificity and efficacy, 

and to minimize toxicity (Fesnak et al., 2016). A commonly seen toxicity in ACT therapy is 

cytokine release syndrome which can be life-threatening, and requires prompt management 

with steroids and IL-6 receptor antibody (tocilizumab).

Despite the unprecedented durable response rates observed with cancer immunotherapies, 

the majority of patients do not benefit from the treatment (primary resistance) and some 

responders relapse after a period of response (acquired resistance). Several common cancer 

types have shown very low frequency of response (breast, prostate, colon) and 

heterogeneous responses have been seen even between distinct tumors within the same 

patient (Figure 1). For the purposes of this review article, we categorized primary, adaptive 

and acquired resistance as described in Table 1, in keeping with the most typical 

conceptualization for practicing clinicians. However, in considering resistance mechanisms 

to immune-based therapies, it is important to remember that the immune response is 

dynamic and constantly evolving in each patient, either as a result of the patient’s own 

environmental and genetic factors or as a result of treatment interventions, including surgery, 

chemotherapy, radiation therapy and immunotherapy. Anti-tumor immune responses that are 

ongoing throughout the course of a patient’s disease may be affected by many of these 

factors, and the establishment of resistance mechanisms relevant to immunotherapeutic 

failure may pre-date immunotherapy challenge. Without recourse to detailed immune and 

tumor characterization, these resistance mechanisms can be divided clinically into those that 

prevent a patient ever from responding to an immunotherapy or those that facilitate relapse 

after an initial response. Thus, although resistance to immunotherapies may manifest at 

different times, in many cases similar or overlapping mechanisms enable tumor cells to 

evade anti-tumor immune responses. We discuss known resistance mechanisms and provide 

rationale for combination therapies to overcome resistance.

Primary and Adaptive Resistance to Immunotherapy

Patients who have primary resistance to checkpoint inhibitors do not respond to the initial 

therapy. Ongoing studies indicate that both tumor cell-intrinsic and tumor cell-extrinsic 

factors contribute to the resistance mechanisms (Table 2). The most straightforward reason 

why a tumor would not respond to immune checkpoint therapy or ACT is lack of recognition 

by T cells because of absence of tumor antigens (Gubin et al., 2014). Alternatively, cancer 

cells may have tumor antigens but develop mechanisms to avoid presenting them on the 
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surface restricted by MHC, either due to alterations in the antigen presenting machinery 

such as proteasome subunits or transporters associated with antigen processing (TAP), 

beta-2-microglobulin (B2M) or MHC itself (Marincola et al., 2000; Sucker et al., 2014). 

B2M is required for HLA class I folding and transport to the cell surface, and its genetic 

deficiency would lead to lack of CD8 T cell recognition (Figures 2 and 3).

Tumor Cell-Intrinsic Factors for Primary and Adaptive Resistance

Tumor cell-intrinsic factors that contribute to immunotherapy resistance include expression 

or repression of certain genes and pathways in tumor cells that prevent immune cell 

infiltration or function within the tumor microenvironment. These mechanisms may exist at 

the time of initial presentation, which highlight primary resistance mechanisms, or these 

mechanisms may evolve later, which highlight adaptive resistance mechanisms. Multiple 

tumor-intrinsic mechanisms have recently been identified and include: 1) signaling through 

the mitogen-activated protein kinase (MAPK) pathway and/or loss of PTEN expression, 

which enhances PI3K signaling; 2) expression of WNT/β-catenin signaling pathway; 3) loss 

of interferon-gamma (IFNγ) signaling pathways; and 4) lack of T cell responses due to loss 

of tumor antigen expression.

Oncogenic signaling through the MAPK pathway results in the production of VEGF and 

IL-8, among many other secreted proteins, which have known inhibitory effects on T cell 

recruitment and function (Liu et al., 2013). Similarly, loss of PTEN, which enhances PI3K 

signaling and is a common phenomenon across several cancers, including 30% of 

melanomas, was found to be associated with resistance to immune checkpoint therapy (Peng 

et al., 2016). PTEN loss in tumors of the Cancer Genome Atlas (TCGA) melanoma dataset 

correlated with significantly decreased gene expression of IFNγ, granzyme B, and CD8+ T 

cell infiltration; importantly, the frequency of PTEN deletions and mutations was higher in 

non-T cell–inflamed tumors as compared to T cell–inflamed tumors. In a murine model, 

PTEN-knockout tumors were less susceptible to adoptive cell therapy than PTEN-expressing 

tumors.

The potential of oncogenic signaling pathways to induce T cell exclusion from cancers has 

also been described through the stabilization of β-catenin resulting in constitutive WNT 

signaling (Spranger et al., 2015). In a murine model, tumors with elevated β-catenin lacked a 

subset of DCs known as CD103+ DCs, due to decreased expression of CCL4, a chemokine 

that attracts CD103+ DCs. In addition, murine tumors lacking β-catenin responded 

effectively to immune checkpoint therapy whilst β-catenin-positive tumors did not. Non-T-

cell-inflamed human melanoma tumors, which lacked T cells and CD103+ DCs in the tumor 

microenvironment, had significantly higher expression of tumor intrinsic β-catenin signaling 

genes.

Cancer cells that constitutively express immunosuppressive cell surface ligands like PD-L1 

may actively inhibit antitumor T cell responses. A genetic amplification of a locus in 

chromosome 9 that contains the genes for the two ligands of PD-1 - PD-L1 and PD-L2 - and 

the interferon gamma receptor signaling molecule Janus kinase 2 (JAK2) is termed the PDJ 

amplicon (Ansell et al., 2015b; Green et al., 2010; Rooney et al., 2015). PDJ is amplified in 
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the malignant Reed-Sternberg cells in Hodgkin’s disease, and anti-PD-1 therapy results in 

objective responses in over 80% of patients with chemotherapy-refractory Hodgkin’s disease 

(Ansell et al., 2015a). Other mechanisms that have been described to lead to constitutive PD-

L1 expression by cancer cells include PTEN deletions or PI3K/AKT mutations (Lastwika et 

al., 2016; Parsa et al., 2007), EGFR mutations (Akbay et al., 2013); MYC overexpression 

(Casey et al., 2016), CDK5 disruption (Dorand et al., 2016), and an increase in PD-L1 

transcripts stabilized by truncation of the 3-untranslated region (UTR) of this gene (Kataoka 

et al., 2016). It is currently unclear if constitutive PD-L1 expression resulting from these 

oncogenic signaling processes results in decreased or increased likelihood of responding to 

anti-PD-1/L1 therapy, but it may indeed result in lack of response to other cancer 

immunotherapy strategies by actively inhibiting antitumor T cells.

The interferon-gamma pathway is emerging as a key player in primary, adaptive and 

acquired resistance to checkpoint blockade therapy (Gao et al., 2016; Pardoll, 2012; Ribas, 

2015; Shin et al., 2016; Zaretsky et al., 2016). It has both favorable and detrimental effects 

on antitumor immune responses. Interferon-gamma produced by tumor-specific T cells that 

have recognized their cognate antigen on cancer cells or antigen presenting cells induces an 

effective antitumor immune response through: 1) enhanced tumor antigen presentation that 

occurs as a result of increased expression of proteins, such as MHC molecules, involved in 

antigen presentation; 2) recruitment of other immune cells; and 3) direct anti-proliferative 

and pro-apoptotic effects on tumor cells (Platanias, 2005). But continuous interferon-gamma 

exposure can lead to immunoediting of cancer cells resulting in immune escape (Benci et al., 

2016; Shankaran et al., 2001). One mechanism by which cancer cells could escape the 

effects of interferon gamma is by downregulating or mutating molecules involved in the 

interferon gamma signaling pathway, which goes through the interferon gamma receptor 

chains, JAK1/2 and the signal transducer and activators of transcription (STATs) (Darnell et 

al., 1994). In cell line and animal models, mutations or epigenetic silencing of molecules in 

the interferon receptor signaling pathway results in loss of the anti-tumor effects of 

interferon gamma (Dunn et al., 2005; Kaplan et al., 1998). Analysis of tumors in patients 

who did not respond to therapy with the anti-CTLA-4 antibody ipilimumab revealed an 

enriched frequency of mutations in the interferon gamma pathway genes interferon gamma 

receptor 1 and 2 (IFNGR1/2), JAK2 and interferon regulatory factor 1 (IRF1) (Gao et al., 

2016). Any of these mutations would prevent signaling in response to interferon gamma and 

give an advantage to the tumor cells escaping from T cells, thereby resulting in primary 

resistance to anti-CTLA-4 therapy. Mutations in this pathway would additionally result in 

lack of PD-L1 expression upon interferon gamma exposure, thereby resulting in cancer cells 

that would be genetically negative for inducible PD-L1 expression. In such a scenario, 

blocking PD-L1 or PD-1 with therapeutic antibodies would not be useful, and these would 

be patients who are primary resistant to anti-PD-1 therapy (Shin and Ribas, 2015; Shin et al., 

2016).

An additional cancer cell-intrinsic mechanism of primary resistance to immunotherapy is 

expression of a certain set of genes that were found to be enriched in tumors from patients 

who did not respond to anti-PD-1 therapy, which was termed innate anti-PD-1 resistance 

signature or IPRES (Hugo et al., 2016). These genes that lead to lack of response are related 

to mesenchymal transformation, stemness and wound healing, and are preferentially 
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expressed by cancers that seldom respond to PD-1 blockade therapy, such as pancreatic 

cancer.

Epigenetic modification of the DNA in cancer cells may lead to changes in gene expression 

of immune related genes, which can impact antigen processing, presentation and immune 

evasion (Karpf and Jones, 2002; Kim and Bae, 2011). Therefore, demethylating agents may 

enable re-expression of immune related genes, with potential for therapeutic impact, 

especially in the setting of combination treatment with immunotherapy. (Héninger et al., 

2015). Histone deacetylase (HDAC) inhibitors led to increased expression of MHC and 

tumor-associated antigens, which synergized with adoptive cell transfer therapy to improve 

anti-tumor responses in a murine melanoma model (Vo et al., 2009a; Vo et al., 2009b). 

Similarly, in a lymphoma model, hypomethylating agents were found to increase CD80 

expression on tumor cells, with concomitant increase in tumor-infiltrating CD8+ T cells 

(Wang et al., 2013). These pre-clinical data indicate the potential to reverse the epigenetic 

changes in cancer cells, which may enable enhanced immune recognition and response to 

immunotherapy.

Tumor Cell-Extrinsic Factors for Primary and Adaptive Resistance

Tumor cell-extrinsic mechanisms that lead to primary and/or adaptive resistance involve 

components other than tumor cells within the tumor microenvironment, including regulatory 

T cells (Tregs), myeloid derived suppressor cells (MDSCs), M2 macrophages and other 

inhibitory immune checkpoints, which may all contribute to inhibition of anti-tumor 

immune responses.

Regulatory T cells (Tregs), which can be identified by expression of the FoxP3 transcription 

factor, have a central role in maintaining self-tolerance (Rudensky, 2011). The existence of 

suppressor T cells that could downregulate immune responses of antigen-specific T cells 

was first identified nearly four decades ago in thymectomized, lethally irradiated, bone 

marrow reconstituted mice (Gershon and Kondo, 1970). Tregs are known to suppress 

effector T cell (Teff) responses by secretion of certain inhibitory cytokine such as IL-10, 

IL-35 and TGF-β or by direct cell contact (Oida et al., 2003; Sakaguchi et al., 2008; 

Sundstedt et al., 2003). Published data indicate that many human tumors are infiltrated by 

Tregs (Chaudhary and Elkord, 2016; Ormandy et al., 2005; Woo et al., 2002). A vast number 

of murine studies have shown that the depletion of Treg cells from the tumor 

microenvironment can enhance or restore anti-tumor immunity (Linehan and Goedegebuure, 

2005; Viehl et al., 2006). In murine models, response to anti-CTLA-4 therapy was shown to 

be associated with an increase in the ratio of Teff to Tregs (Quezada et al., 2006). This shift 

in the ratio of Teff to Tregs was found to be a result of both an increase in Teff and depletion 

of Tregs in a murine tumor model (Simpson et al., 2013a). These data suggest that tumors 

for which immunotherapy is unable to increase Teff and/or deplete Tregs to increase the 

ratio of Teff to Treg are likely to be resistant to treatment, either initially or during the 

relapsed disease setting. However, it is possible that tumor-infiltrating Tregs may coexist 

with other immune cells, indicating a potentially immune-responsive tumor. A retrospective 

study of patients treated with anti-CTLA-4 reported that a high baseline expression of 

FoxP3+ Tregs in the tumor was associated with better clinical outcomes (Hamid et al., 
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2011). Additional studies are ongoing to determine the impact of tumor-infiltrating Tregs on 

clinical outcomes to multiple immunotherapy strategies.

Myeloid-derived suppressor cells (MDSCs) have emerged as major regulators of immune 

responses in various pathological conditions including cancer. MDSCs were initially defined 

in murine models and were characterized by the expression of CD11b (CR3A or integrin 

αM) and Gr-1 markers (Bronte et al., 1998; Talmadge and Gabrilovich, 2013). Human 

MDSCs express markers such as CD11b+and CD33+, but are mostly negative for HLA-DR 

and lineage specific antigens (Lin) including CD3, CD19 and CD57. Monocytic MDSCs are 

HLA-DR-, CD11b+, CD33+ and CD14+; granulocytic MDSC are HLA-DR-, CD11b+, 

CD33+, CD15+; however, mature monocytes express HLA-DR (Wesolowski et al., 2013). 

MDSCs have been implicated in promoting angiogenesis, tumor cell invasion, and 

metastases (Yang et al., 2004; Yang et al., 2008). Furthermore, clinical findings have shown 

that the presence of MDSCs correlates with reduced survival in human cancers including 

breast cancer and colorectal cancer (Solito et al., 2011). Reports suggest that the presence of 

MDSCs in the tumor microenvironment correlates with decreased efficacy of 

immunotherapies, including immune checkpoint therapy (Meyer et al., 2014), adoptive T 

cell therapy (Kodumudi et al., 2012) and DC vaccination (Laborde et al., 2014). Therefore, 

eradicating or reprogramming MDSCs could enhance clinical responses to immunotherapy. 

Indeed, in melanoma, breast cancer and head & neck murine tumor models, selective 

inactivation of macrophage PI3Kγ synergized with immune checkpoint inhibitors to 

promote tumor regression and increase survival (De Henau et al., 2016; Kaneda et al., 2016). 

In one study, the investigators demonstrated that mice lacking PI3Kγ or tumor-bearing mice 

treated with PI3Kγ inhibitors (TG100-115 or IPI-549) had reduced tumor growth, which 

was associated with enhanced expression of pro-inflammatory cytokines and inhibition of 

immune-suppressive factors in the tumors (Kaneda et al., 2016). Moreover, genes and 

proteins associated with immune activation were upregulated in macrophages that were 

treated with PI3Kγ inhibitors or those from mice lacking PI3Kγ. These data established 

PI3Kγ as a molecular switch that regulates macrophage function. The investigators also 

demonstrated that a PI3Kγ inhibitor (TG100-115) plus anti-PD-1 led to improved tumor 

rejection and survival of tumor-bearing mice (Kaneda et al., 2016). In a second study, tumor-

bearing mice treated with triple-combination therapy, a PI3Kγ inhibitor (IPI-549) plus anti-

CTLA-4 and anti-PD-1, had improved tumor regression and long-term survival as compared 

to dual therapy with anti-CTLA-4 plus anti-PD-1 (De Henau et al., 2016). These pre-clinical 

studies highlight inhibitors of PI3Kγ as a therapeutic potential for combination strategies 

with immune checkpoint therapy in cancer patients.

Tumor-associated macrophages (TAMs) are another subset of cells that seem to affect 

responses to immunotherapy. TAMs include both M1 macrophages, which are involved in 

promoting anti-tumor immunity, and the M2 macrophages, which possess pro-tumorigenic 

properties (Chanmee et al., 2014). M1 and M2 macrophages can be distinguished based on 

the differential expression of transcription factors and surface molecules and the disparities 

in their cytokine profile and metabolism (Biswas and Mantovani, 2010; Hu et al., 2016). 

Clinical studies have shown an association between higher frequencies of TAMs and poor 

prognosis in human cancers (Hu et al., 2016). In a chemically induced mouse model of lung 

adenocarcinoma, depletion of TAMs reduced tumor growth as a result of down-regulation of 
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M2/TAM recruitment, possibly due to the inactivation of CCL2/CCR2 signaling (Fritz et al., 

2014). Likewise, depletion of M2 macrophages in various murine tumor models including 

cutaneous T cell lymphoma (Wu et al., 2014), colon cancer, lung cancer, breast cancer (Luo 

et al., 2006) and melanoma (Ries et al., 2014; Ruffell et al., 2014; Tham et al., 2015) have 

shown similar results. Several reports have discussed the role of macrophages in mediating 

therapeutic resistance in cancer (De Palma and Lewis, 2013; Ruffell et al., 2014; Ruffell and 

Coussens, 2015). Reports suggest that macrophages can directly suppress T cell responses 

through programmed death-ligand 1 (PD-L1) in hepatocellular carcinoma (Kuang et al., 

2009) and B7-H4 in ovarian carcinoma (Kryczek et al., 2006). To overcome the potential 

resistance mechanism of macrophages, investigators tested blockade of CSF-1R, a receptor 

for macrophage-colony stimulating growth factor, in a murine model of pancreatic cancer 

and demonstrated decreased frequencies of TAMs, with subsequent increase in interferon 

production and restrained tumor progression. Importantly, neither PD-1 nor CTLA-4 

blockade could significantly reduce tumor growth in the murine model, which was similar to 

findings from single agent studies in patients with pancreatic cancer (Le et al., 2013; Zhu et 

al., 2014). However, CSF1R blockade in combination with either an antibody against PD-1 

or CTLA-4, in addition to gemcitabine, led to improved tumor regression (Zhu et al., 2014). 

These data suggest that CSF-1R blockade induced reduction of TAMs, which enabled 

response to immune checkpoint therapy. Similarly, in a melanoma model, CSF-1R inhibitor 

was shown to synergize with ACT therapy (Mok et al., 2014). Several early phase clinical 

trials are underway to testing the combination of CSF-1R inhibition with checkpoint 

inhibitors.

The immune response is dynamic and signals that enhance anti-tumor immune responses 

also tend to turn on inhibitory genes and pathways in order to tightly regulate the immune 

response. For example, initial T cell activation, via T-cell receptor signaling and CD28 co-

stimulation, eventually leads to increased expression of the inhibitory CTLA-4 immune 

checkpoint (Leach et al., 1996). Similarly, effector T cell responses such as increased IFNγ 
production leads to increased expression of the PD-L1 protein on multiple cell types, 

including tumor cells, T cells and macrophages, which can engage the PD-1 receptor on T 

cells to suppress anti-tumor immunity (Chen, 2004; Dong et al., 2002). Apart from this, 

IFNγ may additionally promote the expression of immunosuppressive molecules such as 

indolaimine-2, 3-deoxygenase (IDO), a tryptophan-metabolizing enzyme that can contribute 

to peripheral tolerance and can have a direct negative effect on effector T-cell function 

(Gajewski et al., 2013). Similarly, carcinoembryonic antigen cell adhesion molecule-1 

(CEACAM1), seems to be another inhibitory molecule that is induced by IFNγ (Takahashi 

et al., 1993), (Gray-Owen and Blumberg, 2006). Therapeutic antibodies blocking 

CEACAM1 (Ortenberg et al., 2012) and TIM-3 have resulted in enhanced anti-tumor 

immune responses (Pardoll, 2012; Sakuishi et al., 2010). A recent study in an 

immunocompetent mouse model of lung adenocarcinoma demonstrated that recurrent 

tumors after anti-PD-1 treatment were due to increased expression of TIM-3 on T cells. 

Notably, anti-PD-1 plus anti-TIM-3 led to improved responses in the tumor bearing mice. 

Similarly, two lung cancer patients who developed recurrent disease after anti-PD-1 

treatment were found to have increased TIM-3 expression on T cells (Koyama et al., 2016). 

Immune suppressive cytokines are often released by tumor or macrophages for local 
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suppression of anti-tumor immune responses. Transforming growth factor-β (TGFβ) is a 

cytokine that plays important roles in angiogenesis and immunosuppression by stimulating 

Tregs (Lebrun, 2012). Increased level of TGFβ is associated with poor prognosis in multiple 

different tumor types (Lin and Zhao, 2015; Massague, 2008). Preclinical models have shown 

synergy combining TGF-β receptor kinase inhibitor I with anti-CTLA-4 and inhibited tumor 

growth in a melanoma model (BRAFV600EPTEN−/−) (Hanks et al., 2014) or fractionated 

radiation therapy by enhance T cell priming (Vanpouille-Box et al., 2015). Adenosine was 

shown to inhibit T cell proliferation and cytotoxic function via the A2A receptor on T cells 

(Zhang et al., 2004) as well as promote metastasis via the A2B receptor on tumor cells 

(Mittal et al., 2016). In addition, CD73 is the enzyme that dephosphorylates adenosine 

monophosphate (AMP) to form adenosine, thus also suppressing immune function and 

promoting tumor cell metastasis (Stagg et al., 2010), as well as stimulates angiogenesis 

(Allard et al., 2014). High expression of CD73 is associated with poor prognosis in different 

cancer types (Leclerc et al., 2016; Loi et al., 2013; Turcotte et al., 2015). CD73 is also a 

potential biomarker for anti-PD-1 therapy, with high expression limiting anti-PD-1 efficacy, 

which can be rescued by concomitant A2A blockade (Beavis et al., 2015).

Specific chemokines and chemokine receptors are important for trafficking of MDSCs and 

Tregs to the tumor. For example, tumors secret ligands CCL5, CCL7, and CXCL8, bind to 

their receptors CCR1 or CXCR2 expressed on subtypes of MDSCs (Highfill et al., 2014), 

and attract MDSCs in the tumor microenvironment. Inhibitors of these chemokine receptors 

could abrogate immune evasion and improve antitumor T cell responses. CCR4 is highly 

expressed by Tregs in the blood and tumors (Sugiyama et al., 2013) and anti-CCR4 inhibits 

Treg recruitment as well as promotes antibody-dependent cell-mediated cytotoxicity 

(ADCC), further reducing the Treg population (Chang et al., 2012). CXCR4 is a receptor for 

the chemokine CXCL12 has been shown to promote an immunosuppressive tumor 

microenvironment through several mechanisms including Treg localization (Gil et al., 2014).

Acquired Resistance to Immunotherapy

A hallmark of cancer immunotherapy has been the induction of long lasting tumor 

responses. However, with higher activity and broader use of immunotherapies the 

denominator of patients with a tumor response has increased and the chances of finding 

patients who responded for a period of time and then progressed, termed acquired resistance, 

increases. It is becoming clear that approximately one fourth to one third of patients with 

metastatic melanoma who have objective responses to checkpoint blockade therapy with 

anti-CTLA-4 or anti-PD-1 will relapse over time even despite receiving continued therapy 

(Schachter J, 2016). The potential mechanisms of relapse include loss of T cell function, 

lack of T cell recognition by downregulation of tumor antigen presentation, and 

development of escape mutation variants in the cancer (Figure 2 and 3). There is evidence 

for each of these mechanisms can lead to acquired resistance to checkpoint inhibitor therapy 

or ACT.

If the antitumor T cells change their functional phenotype and stop exerting their cytotoxic 

activity, then a patient who responded to immunotherapy may develop a tumor relapse even 

if everything else continues to be the same. Acquired resistance to TCR engineered ACT is 
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rather frequent, where the high initial antitumor response is followed by a high frequency of 

tumor relapses within months. This has been evident with the ACT of T cells expressing 

TCRs to melanosomal antigens (MART-1, gp100) and to cancer testis antigens (NY ESO-1) 

(Chodon et al., 2014; Morgan et al., 2006; Robbins et al., 2011). By studying how the TCR 

transgenic T cells change their functionality after ACT to humans, it has been reported that 

the initial highly cytolytic profile when administered shifts over time to a Th2-type cytokine 

release and lack of cytotoxic functions in late time points when recovered from patients at 

the time of tumor relapse (Ma et al., 2013; Ma et al., 2011).

Already in the 1990s it was well documented that some patients who initially responded to 

cancer immunotherapies with IL-2 or TIL ACT may develop acquired resistance through 

loss of the shared component of all HLA class I molecules, B2M, which led to absence of 

surface expression of HLA class I (D’Urso et al., 1991; Restifo et al., 1996). B2M is 

required for HLA class I folding and transport to the cell surface, and its genetic deficiency 

would lead to lack of CD8 T cell recognition. This mechanism of acquired resistance has 

also been documented in a case of late acquired resistance to anti-PD-1 therapy, where the 

resistant cells had a new and homozygous truncating mutation in B2M leading to lack of 

surface expression of HLA class I (Zaretsky et al., 2016). In two other cases of tumor relapse 

there were copy number neutral loss-of-function mutations in JAK1 or JAK2 concurrent 

with loss of heterozygosity due to deletion of the wild-type allele, which were absent in the 

baseline biopsies. These mutations allowed the cancer cells to escape from the anti-

proliferative effects of interferon gamma (Zaretsky et al., 2016). Additional evidence of loss 

of antigen presenting machinery leading to acquired resistance to cancer immunotherapy is 

provided by a case of a patient with metastatic colorectal carcinoma who responded to TIL 

ACT. The therapeutic TIL recognized mutated KRAS G12D presented by HLA-C*08:02 

resulting in an objective tumor response for 9 months, followed by an isolated relapse in a 

lesion that had lost HLA-C*08:02 in chromosome 6 (Tran et al., 2016). Therefore, acquired 

resistance to anti-PD-1 therapy and ACT could be mediated through genetic mechanisms 

that altered antigen presenting machinery and interferon gamma signaling.

As antitumor T cells are specific for cancer cells that express their cognate antigen, it is 

possible that cancers may develop acquired resistance through decreased expression or 

mutations in these tumor antigens. Data suggests that antitumor T cells turned on by 

checkpoint blockade therapy primarily recognize mutational neoantigens (Schumacher and 

Schreiber, 2015; van Rooij et al., 2013). Therefore, genetic deletions, mutations or 

epigenetic changes that would lead to loss of expression of these mutational neoantigens 

presented by MHC molecules may result in acquired resistance to checkpoint blockade 

therapy. However, thus far there has not been evidence of such mechanisms in the clinic. 

CAR T cells are also antigen-specific, but they rely on the whole protein expression on the 

cancer cell surface. In some cases of patients with acute lymphoblastic leukemia who 

responded initially to CD19 CAR T cell ACT it has been documented that the epitope in the 

CD19 protein sequence that is recognized by the CAR can be selectively deleted at 

progression (Ruella et al., 2016), and that preexisting alternatively spliced CD19 isoforms 

may predispose to acquired resistance (Sotillo et al., 2015). Therefore, there is evidence 

from the clinic that loss of the target of the antitumor T cells can result in progression to 

cancer immunotherapy.
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This yin and yang of the immune response that results in immune editing and eventually 

immune escape is clearly a factor as we administer immunotherapeutic agents and attempt to 

drive anti-tumor immune responses, which may encounter a multitude of inhibitory 

pathways, either during initial treatment or at the time of relapsed disease. Additional 

inhibitory immune checkpoints that are often expressed in the tumor microenvironment 

include LAG-3, TIGIT, VISTA and many more that are being identified in ongoing studies 

(Topalian et al., 2015). Several clinical trials are currently underway to test antibodies 

against these inhibitory pathways, both as monotherapy and combination therapy strategies 

(Anderson et al., 2016; Sharma and Allison, 2015). To date, the combination of anti-

CTLA-4 (ipilimumab) plus anti-PD-1 (nivolumab) has demonstrated improved clinical 

outcomes as compared to monotherapy and this combination was recently FDA-approved 

for patients with metastatic melanoma (Larkin et al., 2015a). We will need data from 

ongoing and future clinical trials to determine whether combination therapies targeting other 

inhibitory pathways, either as doublets or triplets in concurrent or sequential treatment 

strategies, will effectively overcome the resistance mechanisms that act to regulate immune 

responses and provide additional clinical benefit.

Monitoring Resistance Mechanisms

There are significant efforts underway to identify reliable predictive biomarkers of response 

and resistance to checkpoint inhibitors in baseline tumor biopsies in patients on immune 

checkpoint blockade. To date, the best predictive biomarkers identified include total tumor 

mutational load (Roszik et al., 2016; Snyder et al., 2014) as well as markers of an effective 

immune infiltrate within a tumor signifying a “hot” tumor microenvironment, typified by 

increased number of CD8+ cytotoxic T lymphocytes in proximity to programmed death 

receptor ligand-1 (PD-L1) positive cells (Taube et al., 2014; Tumeh et al., 2014). Mutational 

load is highly relevant, as tumors with a higher mutational load exhibit higher levels of 

neoantigens capable of inducing anti-tumor immune responses – translating into a higher 

likelihood of response to immune checkpoint blockade across several cancer types (Rizvi et 

al., 2015; Snyder et al., 2014; Van Allen et al., 2015). In addition to genomic markers and 

immune regulatory gene expression profiles (Hugo et al., 2016), immune markers in pre-

treatment biopsies including the density and distribution of CD8+ T lymphocytes, PD-L1 

expression, and T cell clonality (Taube et al., 2014; Tumeh et al., 2014) have also been 

associated with differential responses to immune checkpoint blockade, although significant 

limitations exist when each of these biomarkers is assessed in isolation. Integrative 

approaches incorporating analysis of several of these features have also been developed such 

as the cancer immunogram – which incorporates analysis of 7 distinct features within the 

tumor microenvironment: tumor sensitivity to immune effectors, tumor foreignness, general 

immune status, immune cell infiltration, absence of checkpoint molecule expression, 

absence of soluble inhibitors such as interleukin-1 and interleukin-6, and absence of 

inhibitory tumor metabolism (Blank et al., 2016). These efforts are critical and will 

ultimately contribute to more personalized treatment strategies for cancer immunotherapy.

An emerging strategy in elucidating mechanisms of response and resistance to immune 

checkpoint blockade involves the assessment of longitudinal tumor samples throughout the 

course of treatment. This approach is powerful, as it transcends conventional analysis of 
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static time points and seeks to identify superior predictive biomarkers by assessing dynamic 

responses to cancer treatment. Such an approach has been employed to better understand 

response and resistance to immune checkpoint blockade (Chen et al., 2016; Hugo et al., 

2016; Madore et al., 2015; Tumeh et al., 2014), and has yielded important information that 

would not have been elucidated through analysis of static unpaired biopsies. A key example 

is in a recent report describing immune markers in longitudinal tumor samples of patients on 

immune checkpoint blockade, demonstrating that while pre-treatment markers were largely 

non-predictive, immune markers in early on-treatment samples were highly predictive of 

treatment response (Chen et al., 2016). In addition to this, resistance mechanisms were 

identified via pairwise comparison of gene expression profiles in pre- to on-treatment tumor 

samples of responders versus non-responders, including defects in interferon signaling as 

well as antigen processing and presentation (Chen et al., 2016). This approach is currently 

under-utilized but is gaining traction in light of advantages over assessment of static baseline 

biomarkers (Figure 4), as well as an increasing need to better understand responses to a 

growing number of immunotherapeutic approaches. However nuances exist with regard to 

immune monitoring in the tumor microenvironment (Wargo et al., 2016), and an 

appreciation of the importance of concurrent monitoring in the peripheral blood is growing – 

though the ideal assays to perform are still being elucidated.

Overcoming Resistance to Immunotherapy

Based on insights gained (Hugo et al., 2016; Snyder et al., 2014; Van Allen et al., 2015), 

efforts are currently underway to derive actionable strategies to combat therapeutic 

resistance to immunotherapy. This includes fundamental efforts to transform 

immunologically “cold” tumors into “hot” tumors through the use of several approaches 

(Corrales et al., 2015; Holmgaard et al., 2013; Tang et al., 2016), and also involves tactics to 

either enhance endogenous T cell function (Gubin et al., 2014; Hodi et al., 2010; Miller et 

al., 2002; Redmond et al., 2007; Ribas et al., 2015; Weber et al., 2015) or to adoptively 

transfer antigen-specific T lymphocytes via ex vivo expansion of tumor-infiltrating 

lymphocytes (Rosenberg et al., 2011) or via administration of antigen-specific engineered T 

cells (via transduction with chimeric antigen receptors or T cell receptors) (Beatty et al., 

2014; Kalos et al., 2011).

Though some of these approaches involve treatment with drugs as monotherapy (including 

monoclonal antibodies), the majority of contemporary approaches focus on combination 

strategies in an effort to overcome resistance associated with treatment with single-pronged 

efforts (Hicklin et al., 1998; Moon et al., 2014; Ninomiya et al., 2015). A prime example of 

enhanced efficacy with combination therapy is the use of combined therapy with blocking 

antibodies against 2 key immune checkpoints – CTLA-4 and PD-1, which results in 

significantly higher response rates to therapy and improved survival in patients with 

metastatic melanoma (Larkin et al., 2015b; Postow et al., 2015; Wolchok et al., 2013). The 

rationale for this combination approach is several fold, as blocking several checkpoints on 

anergized tumor-specific T cells has been shown to be more efficacious (Berrien-Elliott et 

al., 2013; Curran et al., 2010; Redmond et al., 2014; Spranger et al., 2014) and CTLA-4 

blockade may itself facilitate the conversion of a tumor microenvironment from “cold” to 

“hot.” (Simpson et al., 2013b). Indeed, each of these checkpoint inhibitors has been shown 
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to have both overlapping and unique effects on tumor-specific T cells (Gubin et al., 2014), 

substantiating the use of these in combination. Numerous other strategies combining 

immune modulation of the tumor microenvironment with immune checkpoint inhibitor 

therapy are currently being tested in clinical trials (Puzanov et al., 2016) (NCT02263508, 

NCT02626000; NCT02565992, NCT02043665; NCT02501473). Vaccine strategies against 

identified neoantigen epitopes are also being combined with immunotherapeutic approaches 

– though mature data are not available regarding efficacy.

Another combination strategy with strong clinical and pre-clinical rationale involves the use 

of molecularly targeted therapy in conjunction with immunotherapy. The most extensively 

studied cancer type treated with this strategy is melanoma, though the concept is now being 

widely extended across solid and liquid tumors. The rationale for combining these 

treatments is that treatment with molecularly targeted therapy can have a substantial effect 

on anti-tumor immunity with potential synergy when used with immunotherapy (Homet 

Moreno et al., 2016; Hu-Lieskovan et al., 2015; Koya et al., 2012). Perhaps most illustrative 

of this is oncogenic BRAF in melanoma. Though treatment with BRAF-targeted therapy 

alone provides limited durable disease control (Chapman et al.; Hauschild et al.), it is 

associated with favorable effects in the tumor microenvironment – with increased antigen 

(Boni et al., 2010) and HLA expression (Bradley et al., 2015), increased T cell infiltrate, and 

reduced immunosuppressive cytokines (Frederick et al., 2013; Wilmott et al., 2012), with T 

cell function (Comin-Anduix et al., 2010). Thus treatment with molecularly targeted therapy 

may indeed help convert a “cold” microenvironment to a “hot” one, with resultant increased 

expression of PD-L1 via the phenomenon of adaptive resistance (Taube et al., 2012) – 

further supporting a multi-modality treatment approach. Emerging strategies to enhance 

responses to immunotherapy are being developed based on novel insights into T cell and 

overall immune function. Examples of this include insights into metabolic reprogramming of 

T cells to enhance therapeutic responses (Buck et al., 2016; Chang and Pearce, 2016) and 

via modulation of the gut microbiome to augment responses to cancer immunotherapy 

(Sivan et al., 2015; Vetizou et al., 2015).

Complexities exist with validating these combination strategies, as the extent of possible 

combinations far outnumbers the human and technical resources available. There is an 

urgent need to test these combinations in appropriate pre-clinical models and expedite 

clinical translation through novel approaches to clinical trial design. In addition, we need to 

have a deep understanding of the kinetics of the immune response to each of these agents in 

isolation as well as in combination in order to narrow the search space of biologically 

promising and optimal combination strategies. Immune responses to targeted agents may be 

short-lived (Cooper et al., 2014), thus proper timing and sequence of therapy must be 

strongly considered.

Conclusions

Great advances occurred in the field of cancer immunotherapy due to elegant research work 

conducted to elucidate the mechanisms that regulate anti-tumor T cell responses, with 

eventual translation of these concepts to the clinic. This has allowed the rational design and 

clinical development of treatment strategies that may result in tumor regression and long-
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term survival for patients with metastatic cancer. However, the benefit, to date, has been 

limited to a minority of patients with certain cancer types. In addition, as a result of more 

successful immunotherapy treatments we now have a significant subset of patients who 

initially respond but eventually relapse. Bringing clinical benefit to the majority of patients 

requires a complete understanding of the mechanisms that would lead to an effective anti-

tumor response and the different tumor cell-intrinsic and extrinsic factors that would result 

in primary, adaptive and acquired resistance to immunotherapy. Elucidation of these 

mechanisms will reveal important clues to the next steps that need to be taken to potentially 

overcome resistance to immunotherapy.
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Figure 1. Clinical scenarios of primary, adaptive and acquired resistance to immunotherapy
A) Patient’s tumor is resistant to immunotherapy with no active immune response. B) 

Patient’s tumor is resistant to immunotherapy; active anti-tumor immune response but turned 

off by checkpoints or other adaptive resistance mechanisms. C) Patient has an initial 

response to immunotherapy but later progressed – heterogeneous population and selection of 

resistant clones that were present before treatment started. D) Patient has an initial response 

to immunotherapy but later progressed, true acquired resistance during the immunotherapy.
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Figure 2. Known intrinsic mechanisms of resistance to immunotherapy
A) Intrinsic factors that lead to primary or adaptive resistance including lack of antigenic 

mutations, loss of tumor antigen expression, loss of HLA expression, alterations in antigen 

processing machinery, alterations of several signaling pathways (MAPK, PI3K, WNT, IFN) 

and constitutive PD-L1 expression. B) Intrinsic factors that are associated with acquired 

resistance of cancer, including loss of target antigen, HLA, altered interferon signaling, as 

well as loss of T cell functionality.
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Figure 3. Known extrinsic mechanisms of resistance to immunotherapy
This includes CTLA-4, PD1 and other immune checkpoints, T cell exhaustion and 

phenotype change, immune suppressive cell populations (Tregs, MDSC, type II 

macrophages), cytokine and metabolite release in the tumor microenvironment (CSF-1, 

tryptophan metabolites, TGFβ, adenosine). LN: lymph node; TME: tumor 

microenvironment; APC: antigen presenting cells; MHC: major histocompatibility complex; 

TCR: T cell receptor; TLR: toll like receptor; Treg: regulatory T cell; MDSC: myeloid-

derived suppressor cell; Mϕ II: type II macrophage.
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Figure 4. Schema for analysis of baseline and longitudinal tumor, blood, and other samples
A) Baseline assessment of the tumor microenvironment typically involves molecular 

analysis for mutational load, driver mutations and gene expression, with immune profiling 

including analysis of CD8+ T cells, PD-L1 expression, and T cell clonality. B) Longitudinal 

evaluation of fresh serial human specimens (tumor, blood, serum, and microbiome) during 

treatment (at pre-treatment, early on-treatment, and progression time points) allows for deep 

analysis to unveil potential mechanisms of therapeutic resistance.
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Table 1

Terminology for different resistance mechanisms to immunotherapy

Term Description

Primary resistance A clinical scenario where a cancer does not respond to an immunotherapy strategy. The mechanistic basis of 
lack of response to immunotherapy may include adaptive immune resistance

Adaptive immune resistance A mechanism of resistance where a cancer is recognized by the immune system but it protects itself by adapting 
to the immune attack. Given the evolving nature of the immune/cancer cell interaction, this could clinically 
manifest as primary resistance, mixed responses or acquired resistance

Acquired resistance A clinical scenario in which a cancer initially responded to immunotherapy but after a period of time it relapsed 
and progressed
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