Skip to main content
. 2017 May 1;237-238:246–256. doi: 10.1016/j.agrformet.2017.02.025

Table 6.

The statistical results generated from the regression, Student’s t-test, error and modeling efficiency between simulated and measured values using ORYZA (v3) and ORYZA2000 (v2.13) for simulations.

Statisted variablea N
Y
X
a
b
r2
P(t)
RMSEn
Meff
ORYZA (v3)
WAGT 341 4.75 4.75 0.32 0.95 0.98 0.92 12.34 0.98
WSO 161 2.89 2.88 0.20 0.91 0.98 0.43 23.23 0.96
WST 341 1.87 1.89 0.22 0.95 0.92 1.00 24.33 0.90
WLVD 175 0.80 0.86 0.14 0.69 0.85 1.00 48.06 0.78
WLVG 341 1.05 1.04 0.21 0.84 0.91 0.96 28.44 0.86
Yield 60 4.39 4.54 0.17 0.93 0.96 0.91 14.76 0.92
LAI 341 2.19 1.10 0.74 0.86 0.84 1.00 43.78 0.62
Leaf_N 168 1.09 1.10 0.39 0.63 0.72 0.38 29.57 0.50
AWD2 480 16.20 14.88 4.09 0.81 0.72 0.96 95.33 0.33
AWD3 + Aerobic3 1258 11.26 11.27 −0.01 1.00 1.00 1.00 1.06 1.00
AWD4 633 4.74 7.64 1.32 0.45 0.95 1.00 63.24 0.49
AWD5 639 6.87 6.88 0.00 1.00 1.00 0.33 0.93 1.00
AWD6 356 5.48 4.51 0.55 1.09 0.75 1.00 55.34 −0.12



ORYZA2000 (v2.13)
WAGT 341 4.99 4.75 0.37 0.96 0.97 0.99 22.51 0.95
WSO 161 2.65 2.88 0.42 0.89 0.96 0.95 28.19 0.91
WST 341 2.05 1.89 0.21 0.96 0.93 1.00 31.86 0.86
WLVD 175 0.71 0.86 0.15 0.73 0.85 0.98 55.19 0.72
WLVG 341 1.06 1.04 0.18 0.84 0.90 0.16 37.63 0.81
Yield 60 4.31 4.54 −0.19 0.99 0.93 0.94 20.48 0.84
LAI 341 2.46 2.05 0.69 0.79 0.84 1.00 48.64 0.69
Leaf_N 168 0.80 1.10 0.24 0.52 0.60 1.00 41.97 −0.12
AWD2 480 13.09 14.88 4.60 0.68 0.33 0.32 99.23 0.14
AWD3 + Aerobic3 1258 9.54 11.27 8.13 0.10 0.33 1.00 97.76 0.13
AWD4 633 12.91 7.64 3.61 1.04 0.28 0.99 400.20 −11.89
AWD5 639 7.56 6.88 5.38 0.32 0.31 0.99 93.02 −0.47
AWD6 356 9.92 4.51 5.27 0.67 0.55 1.00 74.87 −0.75
a

The crop growth involved in the statistical analysis were WAGT: total above-ground biomass (t ha−1), WSO: panicle biomass (t ha−1), WST: stem biomass (t ha−1), WLVG: green leaf biomass (t ha−1), LAI: leaf area index, Leaf_N: nitrogen content of green leaves (g N m−2 leaf), and Yield: grain yield (t ha−1). The soil variables used for statistical analysis were AWD2, AWD4, AWD5 and AWD6: soil water potential in the 2nd, 4th, 5th and 6th soil layers AWD experiment, respectively, and AWD3 + Aerobic3: the water potential of the 3rd soil layer in AWD and ARE experiments.