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Trends in increased tuberculosis infection and a fatality rate of �23% have necessitated the search for alternative
biomarkers using newly developed postgenomic approaches. Here we provide a systematic analysis of Mycobacterium
tuberculosis (Mtb) by directly profiling its gene products. This analysis combines high-throughput proteomics and
computational approaches to elucidate the globally expressed complements of the three subcellular compartments (the
cell wall, membrane, and cytosol) of Mtb. We report the identifications of 1044 proteins and their corresponding
localizations in these compartments. Genome-based computational and metabolic pathways analyses were performed and
integrated with proteomics data to reconstruct response networks. From the reconstructed response networks for fatty acid
degradation and lipid biosynthesis pathways in Mtb, we identified proteins whose involvements in these pathways were
not previously suspected. Furthermore, the subcellular localizations of these expressed proteins provide interesting
insights into the compartmentalization of these pathways, which appear to traverse from cell wall to cytoplasm. Results
of this large-scale subcellular proteome profile of Mtb have confirmed and validated the computational network
hypothesis that functionally related proteins work together in larger organizational structures.

INTRODUCTION

Tuberculosis (TB) is an airborne infection caused by the
bacterium Mycobacterium tuberculosis (Mtb). Its global inci-
dence is growing at �3 million cases per annum, and vari-
ous drug-resistant strains of Mtb are now emerging as new
threats (WHO, 2003). The genome of the virulent strain, Mtb
H37Rv, has been completely sequenced (Cole et al., 1998)
and this provides an important resource for our understand-
ing of the pathogenicity of this mycobacterium at the inte-
grated systems level. So far proteomic studies of Mtb and
other organisms have mainly involved two-dimensional
PAGE (2DGE) to resolve proteins followed by mass spec-
trometry (MS) to identify them (Kaji et al., 2000; Taoka et al.,
2000; Mattow et al., 2001a, 2001b;). However, because of the
limitations of 2DGE-based separation methods, only 341
proteins have so far been identified in the Mtb proteome
(Mollenkopf et al., 1999; Mattow et al., 2001a, 2001b) thus far,
compared with the 3924 protein coding sequences (CDS)
predicted from the genome (Camus et al., 2002). Only re-
cently has SDS-PAGE been used to separate membrane pro-
teins of Mtb for further liquid chromatography (LC)-MS/MS
analyses (Gu et al., 2003a). Automated two-dimensional,

capillary high-performance LC coupled with MS (2DLC/
MS) has proven to be very efficient in the analysis of com-
plex protein/peptide mixtures (Isobe et al., 1991). The unbi-
ased nature of this technique has allowed the identification
of different protein classes, including both hydrophobic and
membrane proteins. It has been previously used for the
sequence analysis of protein complexes and the proteomic
profiling of other organisms (Takahashi et al., 1985; Link et
al., 1999; Washburn et al., 2001; Kaji et al., 2003; Mawuenyega
et al., 2003). Using 2DLC/MS we provide a comprehensive
subcellular analysis of the protein complements isolated
from the cell wall, membrane and cytosol of the Mtb H37Rv
virulent strain. We further integrated this data with a com-
prehensive bioinformatic approach in a systematic investi-
gation of possible functional networks/pathways critical for
Mtb pathogenicity. These networks were initially drawn and
predicted from previously known genetic and biochemical/
metabolic information using a computational method called
protein functional networks (Marcotte et al., 1999). On the
basis of the proteins identified in the corresponding Mtb
subcellular locations, we have redefined the functional con-
text of these networks/pathways. Thus, our proteomic
study reveals both the existence and localization of �25% of
the Mtb proteome and validates these genome-based net-
work predictions. The availability of the subcellular distri-
butions of the global protein expression profile also allowed
us to reconstruct certain functional networks responsible for
lipid synthesis and degradation, a characteristic feature of
this organism. This systematic analysis may lead to the
identification of new targets (individual proteins or func-
tional links) or virulence factors responsible for Mtb persis-
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tence and pathogenicity, which can be used both in the
diagnosis of TB and for proteomics based vaccine develop-
ment.

MATERIALS AND METHODS

Mtb Cell Culture and Sample Preparation
Mtb strain H37Rv was cultured in 2 L of glycerol alanine salts medium
(Takayama et al., 1975) in roller bottles for 14 d at 37°C with gentle agitation,
washed with phosphate-buffered saline (PBS) pH 7.4, and inactivated by
gamma-irradiation. The culture supernatant and cells were first separated by
filtration through a 0.22-mm membrane before the cells were disrupted in a
French press. The disrupted cells were separated into cell wall, membrane,
and cytosolic fractions by differential-centrifugation as previously described
(Hirschfield et al., 1990; Lee et al., 1992) and as illustrated in Figure 1. To
remove protein components that may be simply sticking together during the
purification procedure, the cell wall and membrane pellets were washed with
ice-cold PBS, then Tween 80, and then PBS again. Approximately 190 mg of
cell wall protein, 13 mg of cell membrane protein, and 100 mg of cytosolic
protein were recovered. The proteins in each of the fractions were deglyco-
sylated with PNGase F as described by the manufacturer (New England
Biolabs, Beverly, MA), treated with acetone to remove lipids, and digested
with trypsin as previously described (Mawuenyega et al., 2003). The tryptic
digests were dried in a speedvac and reconstituted in water twice and then in
5% acetonitrile, 0.1% formic acid solution, pH 3.0. The precipitates thus
formed were removed by centrifugation and the various samples were sub-
jected immediately to 2DLC-MS/MS analyses.

Automated 2DLC-MS/MS Analysis of Peptides
Each of the fractionated samples was separated on the 2DLC and subse-
quently analyzed using MS. The automated 2DLC separation of tryptic di-
gests was carried out on a capillary 2DLC system per manufacturer’s instruc-
tions (Micro-Tech Scientific, Sunnyvale, CA). In brief, the chromatography
was carried out using strong cation exchange (SCX) in the first dimension,
followed by reversed phase (RP) LC. The first SCX-LC was performed on a
polysulfoethyl A, 320 �m id � 100 mm L, 5-�m particles column (PolyLC,
Ellicott City, MD), and the second RP-LC was on Biobasic C18, 150 �m id �
100 mm L, 300 �m particles column (Thermo Hypersil-Keystone, Bellefonte,
PA). The entire LC-MS system was controlled through Thermo Finnigan’s
Xcalibur software with a MicroTech Scientific’s driver for the LC control.
Approximately 20 �g of each fraction was loaded onto the columns and
analyzed as described (Mawuenyega et al., 2003). The eluted peptides were
sprayed into the LCQDECA mass spectrometer, equipped with a microflow
electrospray interface. The total analysis time for a complete run on a sample
was �17 h, after which bioinformatic searches and data processing were
carried out to identify the proteins.

Protein Identification from Tandem Mass Spectrometry
and Data Analyses
Electrospray ionization mass spectrometry was carried out using a Finnigan
LCQDECA ion-trap mass spectrometer (Thermo Finnigan, San Jose, CA) that
was operated by the method files in the sequence setup window of Xcalibur
software. The temperature of the heated capillary was maintained at 200°C for
3 microscans at an injection time of 30 msec, in the TunePlus window. The
instrument was operated in a data-dependent mode, with dynamic exclusion
analysis set for a repeat count of 2 and a repeat duration of 0.5 min, in an
exclusion list size of 25, with a 1.5-min exclusion duration window. A full MS
scan was acquired between 300 and 1800 m/z followed by an MS/MS scan of
the four most intense ions with collision energy of 35%. Amino acid sequences
of peptides were inferred from the MS/MS spectra and the Bioworks/Tur-
boSequest software (Thermo Finnigan) automated this process. A peptide
was considered to be a match by utilizing the criteria described (Link et al.,
1999; Washburn et al., 2001). Also, the database searches were repeated with
a reversed Mtb H37Rv genome sequence database to validate the identified
proteins and eliminate false positives. Often multiple peptides from the same
protein were detected, which permitted completely unambiguous protein
identification with a minimal examination of spectra.

Network/Pathway Construction and Analysis
A cellular network is described by a connected graph (i.e., labeled or color
coded), with nodes (vertices) coding for genes and proteins that are connected
by edges. These edges refer to different types of interactions, such as a
physical contact between two proteins, or an interaction through chemical
reactions. Small chemicals connected by edges in typical biochemical textbook
pathways are nodes in the cellular networks. Conversely, chemicals that are
nodes in the biochemical reaction network are edge-labels in the cellular
network. A method was developed to identify the so-called “response net-
works” in cellular interaction networks, which are subgraphs of a larger
network spanned by preselected “root nodes.” This method (Forst, 2004)
(Mawuenyega, Forst, Dobos, Belisle, J. Chen, E. M. Bradbury, A.R.M. Brad-
bury, X. Chen, unpublished results) reconstructs cellular networks from ge-
nome-context data and external sources.

In detail, we represented the cellular network with proteins as nodes and
interactions as edges. We labeled the interactions according to specific types
(protein-protein interactions, or the name of chemical that is used in a sub-
sequent reaction between the two proteins that are connected by this partic-
ular edge). To construct a cellular network from genomic data, we used the
following approach. We first identified all genes that code for proteins. For
this purpose we used the 2002 revised annotation provided by Cole et al.
(1998). In a first iteration of the construction of a cellular network we inten-
tionally included as many proteins as possible, consisting of annotated genes
with known functions as well as conserved unknown proteins and hypothet-
ical genes. In successive iterations we refined our criteria and restricted our
set of proteins to those proteins with known interactions with other proteins.
We used essentially two distinct computational methods to identify func-
tional links between proteins from genomic data, the first being the Rosetta
approach and the second a metabolic reaction method using enzyme anno-
tations.

With respect to protein-protein interaction we used the Rosetta approach
developed by Marcotte et al. (1999). Their hypothesis is based on the obser-
vation that individual genes in one organism that are fused in another
organism into a single chain, the Rosetta sequence, probably have a functional
relationship and may interact physically with each other. Huynen et al. (2000)
performed a statistical analysis on Mycoplasma genitalium to study the signif-
icance of functional links identified among genes through the Rosetta method.
They concluded that the identification of genes in one organism that match a
fused gene in a second organism provide an 80% statistically significant
evidence of a similar function of the gene pairs, a presence in a protein
complex by 70%, and a physical interaction by 60%. By restricting predicted
protein-protein interactions to interactions with absolute Z-scores of three or
lower, Enright et al. (1999) utilized nonoverlapping sequence-domains and
showed that no false positives exist in these cases. A Z-score is a statistical
measure, indicating the distance and direction of a particular measurement
from the mean, in units of standard deviations. Thus our prediction of true
protein-protein interactions from fusion genes is statistically significant and
close to 100% reliability. Second, we also combined the metabolic reaction
data of Mtb from the BioCyc (Krieger et al., 2004) and KEGG databases (Ogata
et al., 1999) with the protein interaction network of Mtb. These two metabolic
network databases provide information on the annotated Mtb genome, en-
zyme, and reaction data as well as biochemical pathway and network infor-
mation. Although the reaction and network information bases on almost a
century long of experimental knowledge of biochemical pathways, the spe-
cific metabolic network information for Mtb found in these databases were
constructed by computational means and thus are used with caution. Never-
theless, we are using this network information in this article and have verified
the expression of the genes by our proteomic profile outlined in the results
section. The full construction process yielded a network of �1000 unique
nodes (proteins) and 70,000 unique interactions between these nodes. To
construct a network with metabolic reactions relevant to fatty acid/lipid

Figure 1. Subcellular fractionation of Mtb cell lysate. Differential
centrifugation was utilized to obtain three subcellular compart-
ments: the cell wall, a membrane fraction, and a cytosolic fraction.
The cell wall, a membrane fractions were extensively washed to
remove loosely attached and potential contaminant proteins. The
separation method is illustrated in the figure.
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metabolism we applied a two-step process. First, we only considered meta-
bolic reactions involving unambiguous substrates. Thus, ambiguous sub-
strates, such as water, ATP, NADH, and ammonia (top 20 listed in Supple-
mentary Figure 2), that function in many different reactions and, so, have a far
higher degree of connectivity (�10) than specific substrates, were ignored.
Consistent with this, we ignored reactions involving acyl-CoA, even though
this substance possesses a relevant role in fatty acid/lipid metabolism. The
acyl-CoA substance class is used in �270 reactions in our network and its
inclusion obscures prominent visual features of the identified subnetworks
without adding further information (the acyl-CoA network is available as
Supplementary Figure 1). Protein interactions were labeled with assigned
Z-scores that refer to statistical measures of similarity for each pair of inter-
acting proteins (Marcotte, 2000; Enright and Ouzounis, 2001). Second, we
pruned the large, computationally obtained network data by utilizing the
proteomics profile information. For this purpose, we developed a method to
identify experimentally relevant subnetworks (so-called response networks) in
large cellular networks (Forst, 2004). The principal idea of this method is the
superimposition of a large computed cellular network on a biological data,
such as a catalogue of identified proteins through proteomic techniques. This
method in itself is capable of scoring subnetworks in cellular networks, by
using a variety of experimental data, e.g., expression profiles. However, we
did not take this approach, but explored the method’s capability to identify
pathways and subnetworks by “tagging” specific, experimentally identified
proteins and by finding pathways in the network between these tagged
proteins. In detail, we chose a set of identified proteins, 33 and 8, respectively,
from our proteomics profile, shown to be involved in fatty acid degradation
and lipid biosynthesis pathways, and tagged the corresponding nodes in the
network. We referred to these tagged nodes as “root nodes and are differently
colored in Figure 6. By a graph-theoretical approach, we then identified
pathways between all possible pairs of root nodes. Specifically we used the
method of finding ”k-shortest paths“ between a pair of nodes using the
Recursive Enumeration Algorithm (REA) by Jiménez and Marzal (Jiménez,
1999). For the purpose of finding k-shortest paths, without further experimen-
tal data such as expression values (see above), we considered all edges in the
network as of equal importance, e.g., length � 1. The REA algorithm essen-
tially provides us with the shortest and alternative longer paths between two
root-node pairs. To control the complexity of the obtained k-shortest paths, we
introduced a pathway length restriction. Whenever the length of a computed
pathway exceeds a particular, predefined length l, this particular path is
disregarded and not included in the subnetwork. The collective set of all
identified pathways between these root nodes then defines a subnetwork in
the larger cellular network.

In summary, the algorithm described in the sections “Response Network
Analysis” and “Network Scoring” is used to perform the following proce-
dure: i) construct a large biological network from genomic information and
interaction data, ii) compile a list of root nodes, iii) compute all possible pairs
of root nodes from above list, iv) calculate shortest and k-shortest paths
between each pair of root nodes using Dijkstra and REA algorithms with a
restricted maximal path-length l, v) record all nodes and edges on identified
paths with desired and provided maximal path-length, vi) filter, i.e., delete or
hide all other nodes and edges that are not on the selected paths, and vii)
reiterate the procedure for refinement. Figure 2 shows a simple flow diagram
of the algorithm with references to the individual steps.

By mathematical means, the above procedure yields a subnetwork within
the large biological network that is spanned by root nodes and the pathways
between each pair of root nodes that hold the provided properties of k-
shortest paths with maximal, overall path length l. Because of the compre-
hensive proteomic analysis, most of the proteins along a particular pathway
between tagged proteins have been identified and thus added value to the
constructed network. However, we did find proteins in the subnetwork
predictions that were not identified in our proteomic profile (proteins not
colored in Figure 6), but are true predictions of the computationally based
network construction method.

Response Network Analysis
The following definitions are used.

Definition 1. A “typical” graph � � (V, E) � (V(�), E(�)) consists of a
vertex set V with vertices (or nodes) v � V and an edge set E � V with
edges � � E.

Populating a graph � with biological information defines a biological
network N with following definition:

Definition 2. Let N � N(V, E, �( )) be a network with vertices (nodes) v � V
and edges � � E as well as a function �: X3 P that maps vertices and edges,
onto their respective properties, p � P, X �{V, E}.

In the case of biological networks, depending on the particular network
representation, node properties include gene, protein or chemical names,
edge properties may refer to specific interactions, such as binding or catalysis.

The mapping �: X 3 P is at least subjective, because for all p � P, there
exists an x � X with �(x) � p.

Network Scoring
Network scoring uses experimental values (such as expression values or
uniform weights as in our case) as metrics for weighted edges in the network.
Depending on the coding of the biological network as graph, either genes,
which expression are measured, are coded as edged in the graph, or genes are
represented as nodes and an edge is weighted by the mean expression value
of the two genes that are connected by the particular edge. In the case that the
biological network is represented as edge graph, edges representing genes,
proteins and other cellular components and nodes referring to interactions, in
a node graph, genes, proteins and other cellular components are coded as
nodes in the biological network, connected by edges. Because the subnetwork
filter algorithm assumes weights on edges for scoring, such edge-weights
have to be calculated from node scores.

To calculate a total score of the subnetwork N we then sum the weighted
edges zm over all m given the constraint of the k-shortest paths with maximal
path-length l between each two root nodes in N. As mentioned above in our
case of a protein network without specific expression values all zm are set to 1:

zN �
1

�m �
shortest N�k,l�

zm

Given a particular set of root nodes, the shortest path approach already
guarantees a best scored subnetwork.

RESULTS

Comparative Proteomics View of the Mycobacterium
Subcellullar Compartments
Each fraction was analyzed twice under the same conditions
and we report those nonredundant proteins that were iden-
tified on both occasions. We used a fully integrated and
automatic analytical platform for the gel-free, large-scale
identification of 1044 nonredundant proteins that gave 703
(67%) more proteins than those found by 2DGE approaches
(Supplementary Table). For example, the most acidic protein
(PE_PGRS, Rv3512) has an isoelectric point (pI) of 3.89,
whereas the most basic (rps2, a 30S ribosomal protein) has a
pI of 12.18. We also identified low molecular mass (Mr)
proteins and those at the extremes of high Mr range; e.g., the
230,621-Da polyketide synthase (ppsC). Based on these find-
ings and others (unpublished data), the 2DLC-MS/MS ap-
proach should ideally be able to detect more than 99% of
Mtb gene products, on the basis of predicted Mr and pI
(Mawuenyega et al., 2003). Our dataset represents a first step

Figure 2. Flow diagram of the Dijkstra and REA algorithms used
to identify response networks. Small cap roman numbers at each
subprocess refer to specific tasks discussed in the text.
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toward an exhaustive analysis of the mycobacterial proteins
at the extremes of pI and Mr. Although 2DGE should be able
to detect proteins with an Mr between 8 and 200 kDa and a
pI between 4 and 10, previous 2DGE studies of the Mtb
proteome have identified only �30 proteins larger than 50
kDa and an even smaller number of proteins with pI values
higher than 9 (Jungblut et al., 1999). In a recent study of the
Mtb membrane fraction using the SDS-PAGE LC-MS/MS
approach, the number of membrane proteins identified, 739
(Gu et al., 2003a), compares very well with the 705 proteins
identified in the membrane fraction in this study. This is
evident in the wide range of proteins identified at the ex-
tremes of pI (�3.5–12 in both cases) and molecular mass (�6
to 300 kDa in both cases). The number of proteins identified
in the three fractions is summarized in Figure 3. Interest-
ingly, the 705 proteins in the membrane fraction represented
more than half of the total number of proteins identified,
and shared �20% of its proteins with other fractions. Of the
705 membrane proteins, 464 were unique. In comparison,
306 and 356 proteins were identified in the cell wall and
cytosol fractions, respectively. As shown in Figure 3, the cell
wall fraction had 131 unique proteins, whereas the cytosolic
fraction had 173. Only 47 proteins, representing �4.5% of
the total proteins identified, were found in all three fractions
showing a very low probability of cross-contamination. In
summary, 1044 nonredundant Mtb H37Rv proteins, repre-
senting 26% of the coding sequences (CDSs) predicted from
the genome, were profiled from these three subcellular com-
partments. We did not include a very large number of
proteins identified with one peptide, as their validity could
not be verified. Also, hundreds of MS/MS spectra remain
unassigned, due to their failure to meet the TurboSequest
results acceptance criteria. We hope to eliminate these short-
comings with on-going projects to “mass-tag” the Mtb pro-
teome and these peptides by metabolic incorporation of
specific stable isotope amino acids. Therefore, more proteins
may be amenable to identification (Gu et al., 2002, 2003b).

Functional Characterization of the Proteins Expressed in
Individual Cellular Compartments
All the identified proteins (Supplementary Table) were ar-
ranged according to their cellular localizations and sorted
based on the hierarchical list of predicted protein-coding
genes organized by functional category and summarized in
Table 1 (The Wellcome Trust Sanger Institute). The H37Rv
strain has a total of 3924 protein CDSs (Cole et al., 1998) of
which �40% have predicted biological roles and another
44% have similarity to proteins in other species. The remain-
ing 16% are unique to mycobacteria. For each functional
category in Table 1, the number of proteins identified in the
cytosol, membrane, and cell wall fractions were compared
with the predicted products of the CDSs in the Mtb genome.
In most cases, the percentages of identified functional pro-
teins mirrored those of the functional groups predicted for
the genome as a whole (Table 1 and Figure 4). However,
gene products characterized as “unknown,” “hypothetical
conserved” or as belonging to the PE/PPE family were
significantly under-represented (11 vs. 15%, 19 vs. 23%, and
1 vs. 4%, respectively), whereas those identified as being
involved in energy metabolism, synthesis and modification
of macromolecules, and degradation were all overrepre-
sented (10 vs. 7%, 11 vs. 5%, and 7 vs. 4%, respectively). For
those predicted CDSs, which were undetected by MS, their
low abundances might be beyond the detection limit of our
current methods, or they may not be expressed under the
experimental conditions used. Furthermore, under-repre-
sentation may reflect erroneous prediction.

Our procedure for subcellular fractionation described in
Figure 1 has proved to be effective and reproducible in
separating the cell wall and membrane proteins from those
of the cytosol, with known protein markers being found in
their appropriate compartments. An attractive feature of the
subcellular fractionation is that it identified the cellular lo-
calization of proteins and protein complexes, regardless of
their solubility. However, it was found that the isolated
membrane fraction also contained membrane proteins from
the cytoplasm and the outer lipid layer. Similarly, the cyto-
solic fraction contained soluble material released from the
cell wall during disruption of the bacilli (Takayama et al.,
1975; Hirschfield et al., 1990; Lee et al., 1992). With the
exception of these documented incidences, great care was
taken to maintain the cellular localization of the proteins in
their subcellular compartments. The presence of proteins at
unexpected cellular localizations may have biological signif-
icance, e.g., cross-trafficking, rather than be a result of cross-
contamination during fractionation. Cross-contamination
was shown by the presence of 47 proteins (4.5%) in all
compartments. Most of these were housekeeping proteins
involved in macromolecule metabolism pathways, such as
macromolecule synthesis and modifications (12 proteins in
functional class II.A), polyketide and nonribosomal peptide
synthesis (5 proteins in the class I.I), hypothetical conserved
proteins (5 proteins in the class V), and others. The
polyketide synthases mentioned above were probably re-
leased into the cytosolic and membrane fractions because of
their solubility in the protein extraction buffer. These are
highly expressed proteins that produce phthiocerol dimyco-
cerosate, a very abundant small molecule in the cell wall. As
stated above, these proteins account for �5% of all proteins
identified in all three fractions and, therefore, are not a
significant number. In the following sections we describe
representative proteins identified from each subcellular frac-
tion, inferred to be involved in the persistence/pathogenic-
ity of Mtb.

Figure 3. A Venn diagram indicating the distribution of proteins
identified. Peptides identified from the analysis of each fraction
were matched to 1044 nonredundant proteins. The number of pro-
teins detected in the cytosolic fraction was 356 (173 unique), cell
wall 306 (131 unique), and the membrane 705 (464 unique).
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Cytosol
The cytosolic fraction contains mainly cytoplasmic soluble
proteins together with those released from the membrane
and cell wall during the disruption of the bacilli. The unique
proteins were largely involved in energy metabolism (17%).
This finding is reasonable as most of the proteins involved in
energy metabolism are located in the cytosol. In the cyto-
plasm’s profile, these consist of NADH dehydrogenases and
other miscellaneous oxidoreductases and oxygenases. A few
transmembrane (TM) proteins were detected in all three
fractions, e.g., (MmpL11 [TM 12] and mmpL10 [TM 11]), and
some such as the cation-transporting P-type ATPases ctpB
(TM 7) and ctpH (TM 5), were found in both the membrane
and cytosol. Of note were those TM proteins found only in
the cytosol, which also appeared to have intact signaling
peptides, e.g., mmpL5 (TM 12), mmpL12 (TM 11), and
mmpL8 (TM 12), required to locate those proteins to their
target functional site in either the cell membrane or the cell
wall. These TM proteins, as well as an additional 16 cell-
envelope proteins detected in the cytosol may be recently
synthesized products on route to localization from the cy-
tosol.

Membrane
Membrane proteins comprise two broad classes; integral
and peripheral, based on the nature of the membrane-pro-

tein interactions. Integral membrane proteins include trans-
membrane proteins and lipid-anchored proteins. In the Mtb
membrane, lipids form a gradient in membrane fluidity so
that the region of highest fluidity lies at the outside surface
of the pathogen (Liu et al., 1995). Thus the most fluid side of
the membrane communicates with the outside world
through the temporal association of peripheral membrane
macromolecular complexes. Therefore, it is of no surprise
that in our study, more than half of the proteins we identi-
fied were found in the membrane profile. Of these, the
largest class of proteins identified is involved in small-mol-
ecule metabolism, in which fatty acid degradation is prom-
inent. Another unique class of membrane proteins was in-
volved in cell processes such as the binding and
transportation of amino acids, ions, carbohydrates, and or-
ganic acids across the lipid bilayer. Three drug-efflux pro-
teins (Rv1145, Rv1250, and Rv1819c) were also found in the
membrane.

Applying TMHMM, a transmembrane protein prediction
program based on a hidden Markov model (Krogh et al.,
2001) to the 705 membrane proteins in our profile, 80 pro-
teins were predicted as having two or more TM segments.
For the entire Mtb proteome dataset, this number rose to 104
proteins. Consideration of proteins with at least one TM-
helix increases the number of TM proteins to 144. In addi-
tion, 26 others appear to have signal peptides and, therefore,

Table 1. Functional profiles of expressed MTB proteins

Cellular roles Cell wall Membrane Cytosol Proteome (%) Genome (%)

V Hypothetical conserved 54 131 51 195 (19) 915 (23)
V.I Unknown 34 65 40 111 (11) 606 (15)
II.C Cell envelope 23 55 27 83 (8) 360 (9)
I.B Energy Metabolism 31 71 45 109 (10) 292 (7)
II.A Synthesis and modification of macromolecules 51 77 48 117 (11) 215 (5)
I.J Broad regulatory functions 11 34 18 52 (5) 187 (5)
IV.C PE and PPE families 2 8 2 10 (1) 167 (4)
I.A Degradation 12 50 20 68 (7) 163 (4)
IV.B IS elements, Repeated sequences, and Phage 10 18 11 28 (3) 135 (3)
III.A Transport/binding proteins 4 24 8 27 (3) 123 (3)
I.G Biosynthesis of cofactors, prosthetic groups and carriers 5 22 9 32 (3) 117 (3)
I.D Amino acid biosynthesis 11 26 12 33 (3) 95 (2)
II.B Degradation of macromolecules 5 16 9 25 (2) 87 (2)
I.H Lipid Biosynthesis 9 12 6 18 (2) 66 (2)
IV.H Miscellaneous transferases 3 14 3 15 (1) 61 (2)
I.F Purines, pyrimidines, nucleosides and nucleotides 4 13 7 18 (2) 60 (2)
I.C Central intermediary metabolism 4 9 5 16 (2) 45 (1)
I.I Polyketide and non-ribosomal peptide synthesis 9 18 10 19 (2) 41 (1)
IV.A Virulence 1 8 2 10 (1) 38 (1)
III.F Detoxification 1 5 5 8 (1) 22 (1)
IV.F Cytochrome P450 enzymes 1 2 1 4 (�1) 22 (1)
III.C Cell division 5 6 4 11 (1) 19 (�1)
IV.I Miscellaneous phosphatases, lyases, and hydrolases 2 2 2 6 (1) 18 (�1)
III.B Chaperones/Heat shock 6 9 4 10 (1) 16 (�1)
III.D Protein and peptide secretion 2 4 3 6 (1) 14 (�1)
IV.D Antibiotic production and resistance 0 1 0 1 (�1) 14 (�1)
III.E Adaptations and atypical conditions 3 4 0 6 (1) 12 (�1)
IV.J Cyclases 1 1 2 2 (�1) 6 (�1)
IV.E Bacteriocin-like proteins 0 0 2 2 (�1) 3 (�1)
IV.G Coenzyme F420-dependent enzymes 0 0 0 0 3 (�1)
IV.K Chelatases 1 0 0 1 (�1) 2 (�1)
I.E Polyamine synthesis 1 0 0 1 (�1) 1 (�1)

306 705 356 1044 (100) 3925 (100)

The identified proteins, arranged to reflect their cellular localizations in the Supplementary Table, were sorted into various functional classes
based on the hierarchical list of predicted protein-coding genes arranged by functional category at the The Wellcome Trust Sanger Institute,
UK. The number of nonredundant proteins identified in the three compartments were summed up into the proteome, expressed as a
percentage and compared with that of the genome. A graphical illustration is shown in Figure 4.
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are secreted or targeted to specific cellular localizations.
When the membrane proteins analyzed here were compared
with those identified by the integrated SDS-PAGE-LC-
MS/MS method (Gu et al., 2003a), there were 328 common
proteins out of which 30 transmembrane proteins were
found by both methods. The separation of proteins instead
of peptides by SDS-PAGE method has enabled a slightly
higher number of proteins to be identified in the membrane
fraction and a better sequence coverage for individual pro-
teins.

An analysis of the distribution of these different predicted
transmembrane proteins in the different subcellular com-

partments reveals that, as expected, most are found in the
membrane compartment, although a significant number are
also found in the cell wall and cytoplasm. A comparison of
the percentages of predicted membrane (and secreted) pro-
teins in the genome with those actually found in the pro-
teome (Figure 5), reveals that secreted proteins are equally
represented. Proteins with fewer than 7 TM-helices tend to
be under-represented, whereas those with 10, 11 or 12 TM-
helices (with a peak at 11 TM-helices) are somewhat over-
represented. Membrane proteins with 12 transmembrane
helices tend to be involved in the transport of ions or amino
acids, and as such may be more abundant, and so more
easily identified than transmembrane proteins with fewer
transmembrane segments. Coupled with the identification
of a unique class of membrane proteins involved in the
binding and transportation of small molecules across the
lipid bilayer discussed above, and the prominence of pro-
teins responsible for fatty acid metabolism, we hypothesize
that the degradation of fatty acids may be occurring between
the cytosol and membrane and the end products transported
across the lipid bilayer for lipid biosynthesis in the cell wall.

The Cell Wall
In our proteomic profile of the cell wall fraction, three abun-
dant components involved in lipid biosynthesis were iden-
tified; antigen 85A mycolyltransferase (fbpA) and beta-keto-
acyl-acyl-carrier-protein synthases 1 and 2 (kasA and kasB;
Supplementary Table). The lipids and covalently associated
mycolic acids of the cell wall produced by these highly
abundant proteins form the primary hydrophobic barrier by
packing into a tight, closely packed lipid layer (Liu et al.,
1995). This finding is consistent with the fact that the resis-
tance of the pathogen to chemical injury, dehydration, and
certain antibiotics is directly related to the low permeability
of the unique wall to small hydrophilic molecules (Jarlier
and Nikaido, 1994; Trias and Benz, 1994; Liu et al., 1995;
Barry, 2001). Importantly, large numbers of the enzymes
responsible for fatty acid metabolism such as acyl-CoA syn-
thases (fadD) and enoyl-CoA hydratase/isomerase (echA)
were also profiled in both the cell wall and the membrane
fractions (Supplementary Table and Figure 6). Further, the
presence of large numbers of unique lipoproteins such as
beta-hexosaminidase A, conserved large membrane pro-
teins, surface epimerases such as UDP-glucose-4-epimerase,
and antigenic proteins such as antigen 84 (aka wag31) add to
the unique complexity of the Mtb cell wall. This complex
nature of the cell wall accounts for many of the spore-like
intrinsic properties of the genus (Brennan and Nikaido,

Figure 4. The plot of variations in functional distribution of genome-
encoded proteins compared with those of the proteome. The numerical
labels on the pie charts correspond to the functional classes shown on
the right-hand side. The sizes of the various pies of the chart show
varying percentages of proteins predicted in the genome or identified
in our proteome profile. Functional classes listed in Table 1 that did not
vary in both the genome and proteome were grouped together and
listed under “Others,” which include (I.J) Broad regulatory functions,
(IV.B) IS elements, Repeated sequences, and Phage, (III.A) Transport/
binding proteins, (I.G) Biosynthesis of cofactors, prosthetic groups and
carriers, (II.B) Degradation of macromolecules, (I.H) Lipid Biosynthe-
sis, (I.F) Purines, pyrimidines, nucleosides and nucleotides, (IV.A) Vir-
ulence, (III.F) Detoxification, (IV.D) Antibiotic production and resis-
tance, (IV.J) Cyclases, (IV.E) Bacteriocin-like proteins, (IV.G) Coenzyme
F420-dependent enzymes, (IV.K) Chelatases, and (I.E) Polyamine syn-
thesis.

Figure 5. Number of TM-helices in membrane proteins
identified in the different cellular compartments as they
compare to predicted domains in the genome. The differ-
ent profiles were color-coded as shown above. The per-
centage of occurrence of membrane proteins domains with
a given number of TM-helices were expressed as a per-
centage of the respective number of proteins found in each
category. The relative number of TM proteins identified in
the proteome corresponds with that of Mtb H37Rv ge-
nome, which possesses a large number of proteins with a
smaller number of TM-helices, i.e., �7, and the number of
proteins with �7 TM-helices decreases drastically. Also,
proteins with TM-helices �10 predominate in the pro-
teomics profile, which has the highest number of TM
proteins in the membrane compartment, as expected, fol-
lowed by cytosolic membrane proteins and then TM pro-
teins found in the cell wall. SP, secreted proteins.
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1995; Barry et al., 1998; Daffe and Draper, 1998). The system-
atic identification and prominence of these proteins provides
a solid basis for reconstructing the response networks in-
volved in fatty acid degradation and lipid biosynthesis path-
ways that may reveal the mechanisms of Mtb persistence in
its hosts (see Figure 6). Other unique proteins found in the
cell wall may play a role in more subtle biological processes
including those responsible for the synthesis and modifica-
tion of macromolecules, as well as those involved in protein
and peptide secretion (such as the protein-export membrane
protein SecF), adaptations and atypical conditions (such as
spore coat protein SA [otsA] and cold shock protein A
[cspA]). Because of their locations in the cell wall, these
unique proteins and their complexes may interact directly
with components of the host cells.

Fatty Acid Degradation and Lipid Biosynthesis Response
Networks
The comprehensive subcellular protein profile provided a
solid basis to construct and refine cellular networks that
control the survival of the mycobacterium or its persistence
against host defense mechanisms. By employing the Rosetta
Stone approach (Marcotte, 2000; Enright and Ouzounis,
2001) we identified 113 possible interacting gene products
derived from the Mtb genome and used further for the
construction of a functional linkage subnetwork (green con-
nections in Figure 6). In Figure 6, black connections denote
interactions through biochemical reactions with restrictions
on ambiguous chemicals or substrates (see Supplementary
Figure 2) outlined in the methods section, whereas the gene
products are represented as nodes of different shapes. After
validation of proteins, removal of the ambiguous chemicals

and their links, the constructed cellular network of the
whole Mtb genome consisted of 671 nodes (proteins) and
4153 edges (protein functional links). After determining 33
and 8 experimentally identified proteins involved in fatty
acid degradation and lipid biosynthesis pathways, respec-
tively, and tagging these proteins as root nodes in the net-
work, we identified a connected subgraph of 47 and 12
nodes and 83 and 23 edges, respectively, within the Mtb
cellular networks represented in Figure 6. Thus, the root
nodes make up 70 and 67%, respectively, of the proteins
involved in the subnetworks in Figure 6. Exceptions and
thus computational predictions of functional proteins in the
network are the proteins shown in Table 2. Twelve proteins
were predicted, out of which 5 were not previously anno-
tated in the 2004 revision of the original publication by Cole
et al. (1998). The annotation shown in Table 2 was obtained
from the KEGG database and has been verified by a BLAST
search against the NCBI nr database with a conservative
E-value of 10	50 or smaller. Examples of such proteins are
Rv1136 and Rv2182c (Figure 6 and Table 2). Specifically we
have high confidence in our identifications with predicted
protein-protein links (green links in Figure 6) compared
with other experimentally identified proteins. In addition to
the Rosetta method, which only uses sequence information
without relying on error-prone annotation, we also used
predicted protein-protein linkages with assigned Z-scores,
and only when the corresponding Z-score of these predic-
tions lied between specific values. Enright et al. (1999) have
shown that with an absolute cutoff Z-score of three or less, as
we used in our network, the Rosetta method results in
virtually no false positive prediction. Thus the confidence in
the predicted protein-protein interactions is approximately

Figure 6. Response networks and subnetworks created by computational methods. The overview pathways were created for (A) the fatty
acid degradation and (B) lipid biosynthesis. In both networks, rectangular nodes represent proteins classified as belonging to the fatty acid
degradation pathway, oval nodes as belonging to the lipid biosynthesis (The Wellcome Trust Sanger Institute), and hexagonal nodes as
belonging to neither. Red node proteins were identified in the cytoplasm, blue in the cell wall, and green in the membrane. Proteins found
in both the cell membrane and cell wall were colored pale blue, and proteins found in both membrane and cytoplasm were colored orange.
No common proteins were found in the cell wall and cytoplasm, which validates the fractionation procedure and reflects a true compart-
mentalization of the proteins. White node proteins were not identified. Black connections represent those identified biochemically (Marcotte
et al., 1999), whereas green connections represent Rosetta Stone predictions (Marcotte, 2000; Enright and Ouzounis, 2001). The pathway
involving accA3, accD3, fabD, kasA, Rv2182c, kasB, and fabD was found in both networks in A and B.
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equal to 100%. On the other hand, proteins not experimen-
tally identified and otherwise predicted, but with well-es-
tablished annotation are already in known and established
metabolic reactions (black links).

DISCUSSION

The subcellular fractionation procedure described has been
evaluated for its capacity to generate discreet fractions on
several occasions (notably, the work conducted by Takayama
et al., 1975; Hirschfield et al., 1990; and Lee et al., 1992, in
addition to continued evaluation by members of the Belisle and
Brennan laboratories at CSU). The identification of proteins in
membrane and cell wall fractions usually presents major chal-
lenges for separation and detection methods. This is partially
overcome by the 2DLC-MS/MS analyses of peptides derived
from hydrophobic proteins. In this study, many hydrophobic
proteins were identified that are involved in important mem-
brane processes. It became clear from the results that fatty acid
degradation is prominent in the membrane (colored green in
Figure 6A), but occurs also in the cell wall and cytoplasm
(colored blue and red, respectively). Coupled with the identi-
fication of a unique class of membrane proteins involved in the
binding and transportation of small molecules across the lipid
bilayer discussed above, and the prominence of proteins re-
sponsible for fatty acid metabolism in the membrane, we hy-
pothesize that the degradation of fatty acids may be occurring
between the cytosol and membrane and the end products
transported across the lipid bilayer to the cell wall, where lipid
biosynthesis occurs. As predicted and shown in Figure 6, we
have identified those protein factors in a network governing
these reactions. Our comprehensive analysis of protein expres-
sion showed that most of the proteins found in the cytosol are
involved in energy metabolism and thus, the Mtb can respond
to a wide variety of growth conditions and changing metabolic
needs. In one predicted mechanism, the chromosomal cluster-
ing and coexpression of genes govern the cosynthesis of a large
number of proteins required to form a complex. This has been
demonstrated in the network of 52 proteins that were involved
in fatty acid metabolism and lipid biosynthesis (Figure 6).
Within this subnetwork, two features are prominent and both
involve the interactions of highly connected proteins. Rv2182c,
with 7 predicted connections in the lipid biosynthetic network,
and 17 in the fatty acid degradation network, has been anno-

tated as a hypothetical protein (Cole et al., 1998), although it has
sequence homologies with acyltransferases. It would appear
from an analysis of the networks shown in Figure 6 that this
protein plays an important role in both fatty acid degradation
and lipid synthesis, possessing functional links with FadD pro-
teins in the fatty acid degradation pathways, as well as with the
four kasA/B and plsB1/2 proteins in lipid biosynthesis, forming
the center of this latter subnetwork.

The second feature is the cluster formed around fadB2 and
fadB3 that exhibit strong functional linkages with the echA
proteins in the fatty acid degradation pathways. FadB2 and
fadB3 are both 3-hydroxyacyl-CoA dehydrogenases. These
global identifications of proteins in the Mtb proteome fur-
ther validate the computational network hypothesis that
functionally related proteins work together in larger orga-
nizational structures. Interestingly, some proteins previ-
ously identified as belonging to the lipid biosynthetic path-
way (e.g., kasA and kasB; The Wellcome Trust Sanger
Institute) are nevertheless well connected within the fatty
acid degradation pathway, due to their role in the initial
steps of lipid biosynthesis utilizing the fatty acid degrada-
tion product acetyl-CoA in the form of acetyl-Acyl carrier
protein. It is striking that the identified proteins involved in
fatty acid degradation (Figure 6A) were distributed between
the different cellular compartments in an almost exclusive
manner. For example, in the subnetwork centered on fadB2
and fadB3; echA16, echA9, echA3, fadB, fadB2, and echA10 are
found in the cytoplasm, echA7, echA12, echA17, echA20,
echA21, fadB2, and echA10 in the membrane, and echA4 and
echA6 in the cell wall, and fadB2, and echA10 being found in
two compartments (membrane and cytoplasm). A similar,
but slightly less striking, exclusive distribution is found in
the subnetwork centered around Rv2182c, with 16 of 21
proteins found in only one cellular compartment, and five
found in two (fadD9, kasA, fadD31, fadD11, fadD32). With one
exception (fadD9—membrane and cytoplasm), proteins
found in two compartments were found in cell wall and
membrane. This probably represents a true compartmental-
ization of the pathways themselves, with fatty acid degra-
dation, probably occurring mainly in the cytoplasm and
membrane, and lipid biosynthesis occurring in cell wall and
membrane, with proteins found in two compartments rep-
resenting functional links between those compartments.

Table 2. Computationally “predicted” Mtb Proteins shown in networks of Figure 6

Gene
Synonym

(ORF number) Protein

fadD4 Rv0214 Long-chain fatty acid CoA ligase
fadD30 Rv0404 Putative fatty acid CoA ligase
fabH Rv0533c 3-oxoacyl-
acyl-carrier-protein� synthase III

Rv0892 Probable monooxygenase
accD2 Rv0974c Propionyl-CoA carboxylase beta chain

Rv1136 Hypothetical protein (probable acyl-CoA hydratase)
fadD21 Rv1185c Putative fatty acid CoA ligase
fadD24 Rv1529 acyl-CoA synthase

Rv2182c Putative 1-acyl-sn-glycerol-3-phosphate O-acyltransferase
fabD Rv2243 malonyl CoA-acyl carrier protein transacylase

Rv3534c Putative 4-hydroxy-2-oxovalerate aldolase
Rv3536c Putative 2-keto-4-pentenoate hydratase

These proteins have not been identified in our proteomics profiles, but were predicted from computationally derived interactions with
identified proteins or with other predicted proteins (the only example for this latter case assembles fabH in Figure 6A) in the network. Gene
names are only shown if the annotation of The Wellcome Trust Sanger Institute, UK could be verified after a BLAST search.
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Also this functional compartmentalization may account for
the differential lipid fluidity in the membrane and cell wall.

In conclusion, this exhaustive analysis of the Mtb proteins
did not only elucidate the compartmentalization of func-
tional networks, but also enabled us to find unique proteins
in the cytosol, membrane, and cell wall. The resistance of the
microbial pathogen to chemical injury, dehydration, and
certain antibiotics is directly related to the low permeability
of the unique wall to small hydrophilic molecules, mostly
lipids. Interestingly, we have identified 3 genes (fadB2 fadB3,
and Rv2182c), around which fatty acid degradation and lipid
biosynthesis were centered. This, when validated will pro-
vide basis for arresting this microbial pathogen at an early
stage of development. There is still a long way to go before
the complete implications are understood, but this hypoth-
esis of protein-protein interactions shown in the responder
networks will invigorate research for the development of
new drugs, diagnostic probes or targets for vaccines.
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