Abstract
We measured changes in the molar concentration of cytosolic Ca2+ ([Ca2+]i) in individual astrocytes in culture produced by the glutamate analog quisqualate (QA) and related substances by using fura-2 digital fluorescence microscopy. In cells cultured from the cortex, hippocampus, and cerebellum, the QA analog alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA; 10 microM) produced a slow increase in [Ca2+]i that was modest in amplitude (approximately 200 nM). These effects were completely abolished by 10 microM 6-nitro-7-cyano-quinoxaline-2,3-dione (CNQX). In cerebellar astrocytes, similar effects were produced by QA. However, in cortical and hippocampal astrocytes, the response to QA was much more complex. In these cells, QA produced an initial [Ca2+]i spike that was followed by a sustained influx of Ca2+ ("plateau"). In the absence of extracellular Ca2+, this plateau was abolished but the spike remained. CNQX did not block the spike and only slightly reduced the size of the plateau in some cells. Ni2+ (10 microM) but not nimodipine (10 microM) reduced the amplitude of the plateau. Pretreatment with 100 nM phorbol 12-myristate 13-acetate for 15 min abolished the spike but not the plateau portion of the QA response. Treatment with pertussis toxin at 250 ng/ml for 12-16 hr failed to alter the response. In some instances, the latency of the QA response differed considerably for individual cells in a group. It appeared that the response began in one cell and then spread to neighboring cells. Thus, QA appears to trigger a complex response in some astrocytes consisting of Ca2+ mobilization from intracellular stores and also Ca2+ influx resulting from the activation of AMPA-sensitive and -insensitive pathways.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Backus K. H., Kettenmann H., Schachner M. Pharmacological characterization of the glutamate receptor in cultured astrocytes. J Neurosci Res. 1989 Mar;22(3):274–282. doi: 10.1002/jnr.490220307. [DOI] [PubMed] [Google Scholar]
- Barres B. A., Chun L. L., Corey D. P. Calcium current in cortical astrocytes: induction by cAMP and neurotransmitters and permissive effect of serum factors. J Neurosci. 1989 Sep;9(9):3169–3175. doi: 10.1523/JNEUROSCI.09-09-03169.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barres B. A., Chun L. L., Corey D. P. Ion channel expression by white matter glia: I. Type 2 astrocytes and oligodendrocytes. Glia. 1988;1(1):10–30. doi: 10.1002/glia.440010104. [DOI] [PubMed] [Google Scholar]
- Benham C. D., Tsien R. W. A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature. 1987 Jul 16;328(6127):275–278. doi: 10.1038/328275a0. [DOI] [PubMed] [Google Scholar]
- Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
- Booher J., Sensenbrenner M. Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat and human brain in flask cultures. Neurobiology. 1972;2(3):97–105. [PubMed] [Google Scholar]
- Bowman C. L., Kimelberg H. K. Excitatory amino acids directly depolarize rat brain astrocytes in primary culture. Nature. 1984 Oct 18;311(5987):656–659. doi: 10.1038/311656a0. [DOI] [PubMed] [Google Scholar]
- Bridges R. J., Nieto-Sampedro M., Kadri M., Cotman C. W. A novel chloride-dependent L-[3H]glutamate binding site in astrocyte membranes. J Neurochem. 1987 Jun;48(6):1709–1715. doi: 10.1111/j.1471-4159.1987.tb05727.x. [DOI] [PubMed] [Google Scholar]
- Byron K. L., Villereal M. L. Mitogen-induced [Ca2+]i changes in individual human fibroblasts. Image analysis reveals asynchronous responses which are characteristic for different mitogens. J Biol Chem. 1989 Oct 25;264(30):18234–18239. [PubMed] [Google Scholar]
- Choi D. W. Glutamate neurotoxicity and diseases of the nervous system. Neuron. 1988 Oct;1(8):623–634. doi: 10.1016/0896-6273(88)90162-6. [DOI] [PubMed] [Google Scholar]
- Dermietzel R., Traub O., Hwang T. K., Beyer E., Bennett M. V., Spray D. C., Willecke K. Differential expression of three gap junction proteins in developing and mature brain tissues. Proc Natl Acad Sci U S A. 1989 Dec;86(24):10148–10152. doi: 10.1073/pnas.86.24.10148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunwiddie T. V., Lynch G. The relationship between extracellular calcium concentrations and the induction of hippocampal long-term potentiation. Brain Res. 1979 Jun 15;169(1):103–110. doi: 10.1016/0006-8993(79)90377-9. [DOI] [PubMed] [Google Scholar]
- Fain J. N., Wallace M. A., Wojcikiewicz R. J. Evidence for involvement of guanine nucleotide-binding regulatory proteins in the activation of phospholipases by hormones. FASEB J. 1988 Jul;2(10):2569–2574. doi: 10.1096/fasebj.2.10.2838362. [DOI] [PubMed] [Google Scholar]
- Hallam T. J., Rink T. J. Receptor-mediated Ca2+ entry: diversity of function and mechanism. Trends Pharmacol Sci. 1989 Jan;10(1):8–10. doi: 10.1016/0165-6147(89)90092-8. [DOI] [PubMed] [Google Scholar]
- Hansson E., Eriksson P., Nilsson M. Amino acid and monoamine transport in primary astroglial cultures from defined brain regions. Neurochem Res. 1985 Oct;10(10):1335–1341. doi: 10.1007/BF00964976. [DOI] [PubMed] [Google Scholar]
- Hansson E. Transport of monoamine and amino acid neurotransmitters by primary astroglial cultures. Neurochem Res. 1985 May;10(5):667–675. doi: 10.1007/BF00964405. [DOI] [PubMed] [Google Scholar]
- Kuno M., Gardner P. Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes. Nature. 1987 Mar 19;326(6110):301–304. doi: 10.1038/326301a0. [DOI] [PubMed] [Google Scholar]
- Lewis R. S., Cahalan M. D. Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current in human leukemic T cells. Cell Regul. 1989 Nov;1(1):99–112. doi: 10.1091/mbc.1.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipton S. A., Kater S. B. Neurotransmitter regulation of neuronal outgrowth, plasticity and survival. Trends Neurosci. 1989 Jul;12(7):265–270. doi: 10.1016/0166-2236(89)90026-x. [DOI] [PubMed] [Google Scholar]
- MacVicar B. A., Baker K., Crichton S. A. Kainic acid evokes a potassium efflux from astrocytes. Neuroscience. 1988 May;25(2):721–725. doi: 10.1016/0306-4522(88)90272-2. [DOI] [PubMed] [Google Scholar]
- Milani D., Facci L., Guidolin D., Leon A., Skaper S. D. Activation of polyphosphoinositide metabolism as a signal-transducing system coupled to excitatory amino acid receptors in astroglial cells. Glia. 1989;2(3):161–169. doi: 10.1002/glia.440020305. [DOI] [PubMed] [Google Scholar]
- Murphy S. N., Miller R. J. Regulation of Ca++ influx into striatal neurons by kainic acid. J Pharmacol Exp Ther. 1989 Apr;249(1):184–193. [PubMed] [Google Scholar]
- Murphy S. N., Miller R. J. Two distinct quisqualate receptors regulate Ca2+ homeostasis in hippocampal neurons in vitro. Mol Pharmacol. 1989 May;35(5):671–680. [PubMed] [Google Scholar]
- Nicoletti F., Meek J. L., Iadarola M. J., Chuang D. M., Roth B. L., Costa E. Coupling of inositol phospholipid metabolism with excitatory amino acid recognition sites in rat hippocampus. J Neurochem. 1986 Jan;46(1):40–46. doi: 10.1111/j.1471-4159.1986.tb12922.x. [DOI] [PubMed] [Google Scholar]
- Nicoletti F., Wroblewski J. T., Fadda E., Costa E. Pertussis toxin inhibits signal transduction at a specific metabolotropic glutamate receptor in primary cultures of cerebellar granule cells. Neuropharmacology. 1988 Jun;27(6):551–556. doi: 10.1016/0028-3908(88)90174-8. [DOI] [PubMed] [Google Scholar]
- Pearce B., Albrecht J., Morrow C., Murphy S. Astrocyte glutamate receptor activation promotes inositol phospholipid turnover and calcium flux. Neurosci Lett. 1986 Dec 23;72(3):335–340. doi: 10.1016/0304-3940(86)90537-9. [DOI] [PubMed] [Google Scholar]
- Penner R., Matthews G., Neher E. Regulation of calcium influx by second messengers in rat mast cells. Nature. 1988 Aug 11;334(6182):499–504. doi: 10.1038/334499a0. [DOI] [PubMed] [Google Scholar]
- Perney T. M., Miller R. J. Two different G-proteins mediate neuropeptide Y and bradykinin-stimulated phospholipid breakdown in cultured rat sensory neurons. J Biol Chem. 1989 May 5;264(13):7317–7327. [PubMed] [Google Scholar]
- Ritchie T., Cole R., Kim H. S., de Vellis J., Noble E. P. Inositol phospholipid hydrolysis in cultured astrocytes and oligodendrocytes. Life Sci. 1987 Jul 6;41(1):31–39. doi: 10.1016/0024-3205(87)90553-4. [DOI] [PubMed] [Google Scholar]
- Sagi-Eisenberg R. GTP-binding proteins as possible targets for protein kinase C action. Trends Biochem Sci. 1989 Sep;14(9):355–357. doi: 10.1016/0968-0004(89)90001-7. [DOI] [PubMed] [Google Scholar]
- Shinozaki H. Pharmacology of the glutamate receptor. Prog Neurobiol. 1988;30(5):399–435. doi: 10.1016/0301-0082(88)90009-3. [DOI] [PubMed] [Google Scholar]
- Siesjö B. K. Historical overview. Calcium, ischemia, and death of brain cells. Ann N Y Acad Sci. 1988;522:638–661. doi: 10.1111/j.1749-6632.1988.tb33410.x. [DOI] [PubMed] [Google Scholar]
- Sladeczek F., Pin J. P., Récasens M., Bockaert J., Weiss S. Glutamate stimulates inositol phosphate formation in striatal neurones. Nature. 1985 Oct 24;317(6039):717–719. doi: 10.1038/317717a0. [DOI] [PubMed] [Google Scholar]
- Sugiyama H., Ito I., Hirono C. A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature. 1987 Feb 5;325(6104):531–533. doi: 10.1038/325531a0. [DOI] [PubMed] [Google Scholar]
- Sugiyama H., Ito I., Watanabe M. Glutamate receptor subtypes may be classified into two major categories: a study on Xenopus oocytes injected with rat brain mRNA. Neuron. 1989 Jul;3(1):129–132. doi: 10.1016/0896-6273(89)90121-9. [DOI] [PubMed] [Google Scholar]
- Sáez J. C., Connor J. A., Spray D. C., Bennett M. V. Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2708–2712. doi: 10.1073/pnas.86.8.2708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Usowicz M. M., Gallo V., Cull-Candy S. G. Multiple conductance channels in type-2 cerebellar astrocytes activated by excitatory amino acids. Nature. 1989 Jun 1;339(6223):380–383. doi: 10.1038/339380a0. [DOI] [PubMed] [Google Scholar]