Skip to main content
. 2017 Apr 14;3(4):e1602564. doi: 10.1126/sciadv.1602564

Fig. 2. Differences when recovering optically rough objects.

Fig. 2

Previous FP methods, particularly transmissive geometries, have assumed that the scene consists of smooth objects with a flat phase. Left: Simulation of recovering a smooth resolution target in a transmissive geometry, adapted from Holloway et al. (32). The recovered Fourier magnitude (shown on a log scale) follows a nicely structured pattern with a peak at the dc component and decaying magnitudes for high spatial frequencies. Right: Simulation of recovering a rough resolution target in a reflective geometry. Diffuse objects spread Fourier information more uniformly, and the Fourier magnitude does not exhibit any meaningful structure. The difference in Fourier patterns is evident in the captured images taken from the same locations in both modalities. The diffuse reflectance results in captured and reconstructed images that contain speckle.