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The anatomical placode in reptile scale
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morphogenesis indicates shared ancestry among
skin appendages in amniotes

Nicolas Di-Poi’2 and Michel C. Milinkovitch'-3*

Most mammals, birds, and reptiles are readily recognized by their hairs, feathers, and scales, respectively. However,
the lack of fossil intermediate forms between scales and hairs and substantial differences in their morphogenesis and
protein composition have fueled the controversy pertaining to their potential common ancestry for decades. Central
to this debate is the apparent lack of an “anatomical placode” (that is, a local epidermal thickening characteristic of
feathers’ and hairs’ early morphogenesis) in reptile scale development. Hence, scenarios have been proposed for
the independent development of the anatomical placode in birds and mammals and parallel co-option of similar
signaling pathways for their morphogenesis. Using histological and molecular techniques on developmental se-
ries of crocodiles and snakes, as well as of unique wild-type and EDA (ectodysplasin A)-deficient scaleless mutant
lizards, we show for the first time that reptiles, including crocodiles and squamates, develop all the characteristics
of an anatomical placode: columnar cells with reduced proliferation rate, as well as canonical spatial expression
of placode and underlying dermal molecular markers. These results reveal a new evolutionary scenario where
hairs, feathers, and scales of extant species are homologous structures inherited, with modification, from their
shared reptilian ancestor’s skin appendages already characterized by an anatomical placode and associated

signaling molecules.

INTRODUCTION

Extant amniotes exhibit lineage-specific skin appendages: hairs in
mammals, feathers (and feet scales) in birds, and various types of scales
in reptiles. With the exception of face and jaw scales in crocodilians,
which form through a process analogous to material cracking (1), the
development of all reptilian scales is preceded by the patterning of the
skin into discrete developmental units through reaction-diffusion (2), a
mechanism also observed for the development of mammalian hair and
bird feathers. However, whether this very general process suffices to
demonstrate the homology among amniote skin appendages has been
debated for years (3-9). Hairs, feathers, and scales exhibit substantial
developmental specificities, blurring evolutionary relationships among
the processes involved. One primary example of developmental
divergence among skin appendage types is that hairs, feathers, and avian
and turtle scutate scales develop from a characteristic local thickening of
the epidermis [the anatomical placode (10-14)], whereas all authors
agree that scales in squamates (snakes and lizards) form from regular
dermoepidermal elevations without exhibiting placodes (3, 9, 14-17).
Later developmental stages are even more divergent as hair and feather
placodes are associated with a dermal condensation and further develop
into follicular organs characterized by substantial downward growth
(hair follicle) or outgrowth (feather follicle) of the epidermis, whereas
mature scales typically develop by asymmetrization of the initial dermo-
epidermal elevations without showing any apparent sign of dermal
condensation.

Several studies (9, 18-23) have shown that conserved signaling path-
ways, evidenced by the expression of the Sonic hedgehog (Shh), B-catenin
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(Ctnnbl), ectodysplasin A receptor (Edar), and/or bone morphogenetic
protein (Bmp) genes, are involved in skin patterning and early morpho-
genesis of all amniote skin appendages, including avian and crocodilian
scales, turtle scutes, mammalian hairs, mammary glands, and avian
feathers. This led to the recent proposition (9) that placodes should
be defined as localized molecular signaling centers (hence, these should
be considered homologous in all amniote skin appendages) that can
form without the presence of an “anatomical placode.” Conversely, oth-
er authors (3, 5, 8) argue that skin appendages have evolved indepen-
dently in reptiles, birds, and mammals and that similarities in signaling
are due to independent co-option of these molecular pathways.

Here, we show for the first time that the development of scales in
different reptilian lineages, including squamates, is actually associated
with the presence of an anatomical placode presenting all the character-
istics observed in avian and mammalian placodes: (i) an epidermal
thickening with columnar cells exhibiting reduced proliferation rate;
(i) typical spatial expression of placode molecular markers such as
Shh, Ctnnbl, and Edar; and (iii) localized and conserved signaling in
the dermis underlying the placode, such as Bmp4, readily suggesting
an evolutionary developmental link with the dermal condensate observed
in birds and reptiles. We show that anatomical placodes in reptiles have
been overlooked in previous studies, most likely because they form very
transitorily in time and nonconcurrently in space; that is, they are difficult
to identify on any specific embryo because they establish multiple tracts
whose developmental timing and locations vary across the body.

These results are additionally supported by our analysis of a scaleless
phenotype in the bearded dragon (Pogona vitticeps), a codominant mu-
tation that we identify as an in-frame deletion of 14 amino acids in a
highly conserved tumor necrosis factor (TNF) motif of the EDA pro-
tein. Comparing skin morphogenesis and signaling in wild-type and
scaleless dragons, we demonstrate that the latter fail in the development
of placodes, both as anatomical entities and as signaling centers,
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confirming the requirement of an anatomical placode for proper mor-
phogenesis of all skin appendages in amniotes.

This set of new results coherently and conclusively indicates that
most skin appendages in amniotes are homologous; that is, they all
evolved from a shared common ancestor that exhibited appendages de-
veloping from an anatomical placode and expressing a set of signaling
molecules still involved in the development of scales, hairs, and feathers
of extant species.

RESULTS

Reptilian scales develop from an anatomical placode

Our serial sectioning and histological analyses of skin developmental
series (Fig. 1A) in crocodiles (Crocodylus niloticus), bearded dragon liz-
ards (P. vitticeps), and corn snakes (Pantherophis guttatus) confirm the
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results of previous studies (I, 4, 6, 24) that indicate that early scale mor-
phogenesis in reptiles consists of regular dermoepidermal elevations
that typically further develop into oriented asymmetrical scales with
various levels of overlap, depending on the species and body area. In
addition, we show for the first time that each of these dermoepidermal
elevations that generate scales in crocodiles, lizards, and snakes occurs at
the location of a transient developmental unit that exhibits the character-
istics (Fig. 1B) of the mammalian and avian anatomical placode. First,
the epidermis shows distinctive columnar upright cells that generate the
characteristic epidermal thickening also observed in hair and feather
placodes (10, 11). Second, our proliferating cell nuclear antigen (PCNA)
analyses indicate a reduced proliferation rate of the placode epidermal
cells as observed in mouse and chicken (25, 26). Third, using whole-
mount in situ hybridization (WMISH) with species-specific probes,
we show that crocodile, lizard, and snake placodes all exhibit spatial
expression of Shh in a nested subpopulation of the CtnnbIl-expressing

0 Snake dorsum

Fig. 1. Development of epidermal scales during reptilian embryogenesis. (A) Hematoxylin and eosin (H&E) staining of skin sections from dif-
ferent body regions (indicated with red arrows on the top insets with lateral views of corresponding embryos) of C. niloticus (crocodile; top row),
P. vitticeps (lizard; two middle rows), and P. guttatus (snake; bottom row) embryos at various developmental stages [indicated as embryonic days (E)
after oviposition]. White arrowheads indicate the anatomical placode. Scale bars, 100 um. (B) Anatomical placodes in C. niloticus (left panels),
P. vitticeps (middle panels), and P. guttatus (right panels) embryos. For each species, the whole-embryo WMISH with Sonic hedgehog (Shh) is shown
(left panel) as well as, from top to bottom, high magnification of H&E-stained placode sections (white arrowheads indicate placode columnar cells),
immunohistochemistry with PCNA (proliferation marker; epidermal-dermal junction indicated by dashed white lines), and parasagittal cryosections
of placodes after Shh or B-catenin (Ctnnb1) WMISH. Bmp4 is also shown for lizard. Red double-headed arrows indicate the body region processed for
sectioning.
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epidermal cells, as previously observed in mammalian hair and bird
feather placodes (27, 28). Fourth, using in situ hybridization, we show
BMP4 signaling in the dermis underlying the lizard scale placode (Fig.
1B). Although we could not unambiguously confirm it in snakes, this re-
sult in lizards suggests that dermal BMP signaling under the placode is
an ancestral characteristic for all amniotes and that it preceded the devel-
opment of a dermal condensate in birds and reptiles during evolution.

Multiple scale tracts generate macropatterning of
reptilian scales
In chicken, feathers are organized into discrete tracts associated to dif-
ferent body areas (29). This macropatterning is particularly visible, even
at the adult stage, by the presence of bare skin between the tracts. Our
WMISH experiments, with early developmental scale markers, such as
Shh and Ctnnb1, on developmental series of Nile crocodiles and bearded
dragon lizards clearly indicate (Fig. 2, A and B) that scales over the body
initiate with a similar anatomical placode [except for crocodilian facial
and jaw scales (I)] and that macropatterning of scales involves multiple
tracts whose spatiotemporal development is highly similar between the
two species. Several of these tracts (caudal, spinal, cervical, ventral, hu-
meral, and femoral) could be argued homologous to those characterized
in chicken (29-32).

Despite these similarities, lineage-specific scale tracts also exist as
illustrated by the presence and absence of a lateral tract that corresponds

Fig. 2. Macropatterning of developing scales in reptiles. (A and B)

to lateral spines in bearded dragon lizards (Fig. 2B) and in Nile croco-
diles (Fig. 2A), respectively (see below). The most marked and derived
macropatterning of skin in reptiles is observed in snakes (Fig. 2C). We
show that this lineage exhibits a highly simplified spatiotemporal devel-
opmental dynamic that involves only two tracts of developing scales: a
ventral tract that shows an anteroposterior sequence of development and
alaterodorsal tract that exhibits a superposed anteroposterior and ventro-
dorsal progression. The development of reptilian scales in a specific
sequence within each tract adds to the difficulty of capturing the transient
anatomical placode stage; proper observation of placodes requires
sampling the skin along the ordered developmental series of a single tract.

EDA-deficient scaleless lizards do not develop

anatomical placodes

Using breeding experiments, we confirm that scaleless bearded dragons
(Fig. 3A), which are available in the pet trade, are homozygous for a
codominant mutation. Homozygous scaleless mutants (Sca/Sca) lack
all scales on the body (ventral/dorsal scales and lateral spines; Fig. 3A)
and femoral glands (Fig. 3B), and exhibit reduced dentition and (para-
doxically) longer claws at birth (Fig. 3C). Such an ectodermal dysplasia
syndrome is reminiscent of similar phenotypes in other vertebrates be-
cause of impairments of the EDA receptor (EDAR; a member of the TNF
family) (18) or its ligand EDA, indicating a conserved role of this path-
way in reptiles as well. Reduced expression or structural mutations of
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WMISH with Ctnnb1 in C. niloticus and P. vitticeps embryos at various de-

velopmental stages. Arrowheads indicate the initiation sites of scale tracts and arrows indicate the directions of scale tracts. Colors correspond to
different tracts schematically represented in the right panels (dots, initiation sites; arrows, directions of development). (C) WMISH with Shh in P. guttatus
embryos at various developmental stages. Arrowheads with white borders indicate tract initiation sites, and arrowheads with black borders indicate the
boundaries of Shh expression at different developmental stages, showing the different anteroposterior (a/p) and ventrodorsal (v/d) gradients (see sche-

matic in the right panel).
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Fig. 3. Characterization of mutant scaleless P. vitticeps lizards. (A) Dorsal views of adult wild-type (WT) and scaleless (Sca) P. vitticeps lizards. The white
arrowhead indicates the presence of large lateral spines in the WT. (B) Ventral views of WT and Sca adult males showing the absence of femoral pores
(arrowheads) in mutant lizards. (C) Micro x-ray computed tomography scan virtual sections of the skull (left) and magnified views of the autopod (right)
of WT and Sca dragons at birth. White frames indicate the position of the pleurodont regenerating teeth, and double-headed arrows show the relative sizes of
claws. (D) Diagram of WT (EDAY") and mutant scaleless (EDA®) active EDA proteins. The conserved collagen and TNF domains are shown as black and gray
boxes, respectively. The most conserved TNF motif [17 amino acids (aa) in WT] is shown in red. The mutant EDA protein has an in-frame deletion of 14 amino
acids, as shown by the alignment of EDA protein sequences from mouse, chicken, and WT and Sca P. vitticeps (lower panel). Black numbers represent amino
acid position. (E) Upper panel: diagram showing the genomic structure (from exon 7 to 8) of the P. vitticeps Eda gene. Intron length and splice donor (gt) and
acceptor (ag) sites are indicated. Blue arrows show the positions of primers used for reverse transcription polymerase chain reaction (RT-PCR) analyses. In the
scaleless mutant genome, a transposon of 5.7 kb starting with an alternative splice donor site is inserted in the 3' end of exon 7, thus leading to an alternative
splicing (red dashed lines) of the mutant Eda®** gene in comparison to the splicing of the Eda"’” gene (black dashed lines). Lower panels: RT-PCR analysis (g, on
genomic DNA; ¢, on skin cDNA) of WT and Sca animals using the indicated primer combinations. (F) Top row: H&E staining of skin sections from dorsal and
lateral body regions of adult WT and scaleless dragons. Middle row: immunofluorescent staining of a-keratins (0-k) and B-keratins (8-k) or laminin (lam;
arrowhead shows convoluted basal membrane) in dorsal skin of adult WT and scaleless animals. Bottom row: Toluidine blue (TB) staining of dorsal skin
sections and scanning electron microscopy (SEM) images of skin molts from adult WT and scaleless lizards. is, interscale region; os, outer scale region.
Scale bars, 50 um. (G) H&E staining of dorsal skin sections of scaleless P. vitticeps embryos at various developmental stages (indicated as embryonic days
after oviposition); red arrows in the top insets indicate the locations of skin sections on lateral views of the corresponding embryos. Scale bars, 100 um.
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members of the EDA/EDAR pathway generate absence or abnormal
development of hairs, sweat glands, mammary glands, nails, teeth, and
dermal bones in mammals (32-35), and of scales, fins, plates, spines,
teeth, and facial bones in fish (36, 37).

We therefore used complementary DNA (cDNA) prepared from
skin samples of homozygous wild-type and scaleless bearded dragons
to amplify and sequence both their EDAR and EDA transcripts. Our
analyses indicate that the scaleless mutation in bearded dragons is
caused by an in-frame deletion of 14 amino acids within the most highly
conserved TNF motif of the EDA protein (Fig. 3D) (38). To uncover the
origin of this deletion, we amplified the 3’ end of exon 7 and its 3" ad-
jacent intron from genomic DNA in wild-type and scaleless individuals.
Sequencing results indicate that the Sca allele contains a 5" 688-base
pair (bp) insertion (Fig. 3E), most of which is recognized as a transposon
of the LTR-Gypsy family, which generates a new splice donor site (gt)
42 bases upstream of the wild-type donor site, thus generating a 14—
amino acid deletion in the corresponding transcript (Fig. 3D).

H&E, immunohistological, and TB staining analyses indicate that
scaleless dragons maintain the o-keratin layer but virtually lack both
the B-layer of the epidermis and the uppermost layer of the dermis (su-
perficial loose dermis; Fig. 3F). This indicates that the entire skin of
scaleless dragon is similar in structure and composition to the narrow
hinge regions (that is, the skin in between scales) of wild-type scales (Fig.
3F). In addition, laminin immunostaining shows that the epidermis ba-
sal membrane is abnormally circumvolved in Sca/Sca individuals. Scale-
less dragons show an irregular skin surface with the initiation of some
dermoepidermal undulations of the skin (Fig. 3G), indicating that this
phenomenon does not fully require the presence of anatomical placodes.

The sca mutation precludes placode proper signaling

Scaleless dragons do no exhibit any Shh expression in the skin (Fig. 44,
lower panels), whereas the Shh expression dynamic in wild-type dragons
is first restricted at the center of the placode before it spreads in a larger

and more posterior domain (Fig. 4A, upper panels). Similarly, Ctnnbl
and Edar, two other placode markers, also show marked differences in
expression between wild-type and scaleless dragons. In both phenotypes,
expression of these two genes is first ubiquitous across the whole epider-
mis before becoming restricted to the placodes in wild-type individuals
only (Fig. 4B). These results indicate that expression of each of these three
placode markers in reptiles is similar to the expression dynamic of the
corresponding genes in mammals (27) and birds (20, 28, 39). On the
other hand, the absence of an anatomical placode in scaleless dragons
coincides with the inability of signaling pathways to pattern the skin,
similar to what is observed in mice deficient in Eda/Edar (40). Note that
both the functional Eda in wild-type dragons and the dysfunctional Eda
in scaleless dragons are both expressed in the dermis [as in birds (31)],
but the former remains diffused in scaleless lizards (Fig. 4C).

Finally, similar in situ hybridization analyses indicate the presence
and total absence of Bmp4 dermal expression in wild-type and scaleless
dragons, respectively (Fig. 4C); this expression in wild-type dragons is
additionally restricted in the dermis underlying placodes. These results
indicate that all three characteristics (epidermal thickening, expression
of epidermal placode markers, and expression of dermal Bmp4), that is,
the presence of an anatomical placode, are required for proper develop-
ment of scales in reptiles.

DISCUSSION

The fossil record lacks any evidence of intermediate forms (hence, of ho-
mology) between scales and hairs. In addition, hairs in mammals, feathers
and feet scales in birds, and scales in reptiles exhibit substantial differences
in morphogenesis. Finally, the presence and absence of B-proteins [a
family of proteins unrelated to a-keratins (41, 42)] in skin appendages
of sauropsids (birds and reptiles) and in those of synapsids (mammals),
respectively, only added to the confusion. All these considerations have,

Fig. 4. Absence of anatomical placodes in scaleless P. vitticeps skin. (A to C) WMISH showing the expression of early markers of epidermal appendage
development in WT and Sca bearded dragon embryos at various indicated developmental stages: (A) Shh; (B) Ctnnb1; and (C) Edar (left), Eda (center), and
Bmp4 (right). Left panels show the WMISH signal on the lateral skin region, and right panels show parasagittal cryosections of the corresponding regions.
Insets show high magnifications of the staining and indicate the presence/absence of placode formation in WT and mutant skin, respectively.
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for decades, fostered the debate on the homology, or lack thereof, among
these skin appendages and led some authors (3, 5, 8) to conclude that
homologous skin appendages do not exist beyond amniote classes (rep-
tiles, mammals, and birds); that is, mammalian hair and avian feather
would not have evolved from reptilian overlapping scales.

Several scenarios have been proposed to account for this hypothet-
ical lack of homology. One model suggests (3, 5) that mammalian hair
evolved as mechanosensory appendages in interscale regions of the skin
(that is, hinges of scales) of their reptilian ancestor and that more
derived representatives of mammals lost their scales entirely while re-
taining their bristles that then increased in density and acquired their
insulatory function. The second scenario (8) advocates that hair evolved
from the glandular structure of stem amniotes, whereas early sauropsids
lost these glandular structures and evolved a granulated B-keratinized
integument, an innovation that would have allowed the independent
evolution of squamate scales, crocodilian scutes, and avian feathers.

Both models assume that the development of an anatomical placode
and of a dermal papilla occurred, at a minimum, twice (once in birds
and once in mammals) through the independent parallel co-option of
the same set of signaling pathways (WNTs, B-catenin, EDAR, BMPs,
and SHH). Further fine-tuning of the expression levels of members of
these pathways would then explain the diversification of skin appendage
forms within lineages, such as the increase of B-catenin, causing the
transition from feathers to avian scales (19) or from sebocytes to hair
(43). Conversely, other authors argue that the similarities in molecular
signaling observed among all skin appendages suffice to support their
homology (9). Note that such placodal signaling centers have been re-
cently evidenced as underlying the development of Chelonia shell scutes
(23), although further analyses regarding the development of turtle
scales elsewhere on the body are warranted.

The data presented here put this debate to rest by demonstrating that
most skin appendages in amniotes, including snake and lizard
overlapping scales, not only share signaling pathways during morpho-
genesis but also truly develop from anatomical placodes. The squamate
anatomical placode, whose existence had remained undetected because
of its transitory developmental dynamic, exhibits all the major features
characterizing avian and mammalian placodes: local epidermal thicken-
ing with columnar cells and reduced proliferation rate, shared early spa-
tially restricted expression of epidermal molecular markers, and
localized conserved signaling in the underlying dermis. This latter point
indicates that proper development of the reptilian scale placode re-
quires, as for the avian and mammalian placodes, signaling interactions
between the dermis and epidermis. Inactivation of the EDA pathway in
the bearded dragon scaleless mutant disrupts these interactions, pre-
cluding scale morphogenesis.

In addition, the shared localized dermal signaling during the develop-
ment of placodes in all amniotes makes the independent evolution of a
dermal condensate in avian and mammalian follicles much less
surprising than previously anticipated. The development of dermal osteo-
derms (44), which are associated with some epidermal scales in crocodiles
and in some lizards, might even suggest that the dermal condensation abil-
ities of the dermis constitute a deep homology among all amniotes. This
hypothesis could be further tested by investigating, during reptile scale mor-
phogenesis, the potential expression of other signaling molecules known to
be dermal condensation markers in mammals and/or birds (12, 45, 46).

It has been previously hypothesized (47) that reptilian scales are more
similar to avian reticulate scales (covering the foot pad) than to both avian
scutate scales (covering the anterior metatarsal region) and feathers. Our

Di-Poi and Milinkovitch Sci. Adv. 2016;2:e1600708 24 June 2016

results argue against that hypothesis as, contrary to avian reticulate scales,
squamate scales, avian scutate scales, and avian feathers all form from an
anatomical placode and all exhibit dermal signaling. Our results are
consistent with the observation that reticulate scales are non-overlapping
and composed only of a-keratin, whereas avian scutate and reptilian
scales are mostly overlapping and composed of both a-keratins and
B-proteins. Note that previous studies in chicken (including the mutant
scaleless chicken) have shown that reticulate scales exhibit peculiar mor-
phogenesis with alteration of proliferation patterns and of conserved
signaling pathways (8, 25, 48), further suggesting that they are derived
structures with little developmental similarities to reptilian scales.

MATERIALS AND METHODS

Animals

Fertilized eggs of Nile crocodiles (C. niloticus), corn snakes (P. guttatus),
and bearded dragons (P. vitticeps) were incubated on a moistened vermic-
ulite substrate at 29.5°C. Embryos were removed at different embryonic
days after oviposition and were staged on the basis of their external mor-
phology according to developmental tables available for crocodilians, liz-
ards, and snakes (49-51). Maintenance of and experiments on reptilians
were approved by the Geneva Canton ethical regulation authority (autho-
rization GE/82/14) and performed according to Swiss law.

Whole-mount in situ hybridization

Embryos at different developmental stages were fixed, and WMISH was
performed as previously described (24). Species-specific digoxigenin-
labeled antisense riboprobes correspond to Nile crocodile Shh [786 bp;
coding sequence (CDS) region], Nile crocodile Ctnnb1 [623 bp, 3’ un-
translated region (UTR)], corn snake Shh (843 bp; CDS region), corn
snake Ctnnbl (716 bp; CDS/3'UTR region), bearded dragon Shh (931 bp;
CDS region), bearded dragon Ctnnbl (872 bp; CDS/3'UTR region),
bearded dragon Bmp4 (670 bp; CDS region), bearded dragon Eda
(913 bp; CDS region), or bearded dragon Edar (1005 bp; CDS region).
Corresponding sense riboprobes were used as negative controls. After
WMISH, embryos were fixed in 4% paraformaldehyde, cryoprotected
in 30% sucrose, embedded in optimal cutting temperature compound,
and cryosectioned at 15 pm.

Histology and immunofluorescence

Embryonic skin tissues from different body locations were fixed,
sectioned (at 8 um), and stained (with H&E or TB) as previously de-
scribed (24). Immunofluorescence staining on skin paraffin sections
was carried out as previously described (24), with one of the following
primary antibodies known to recognize reptile and/or chicken epitopes:
anti-PCNA (1:300; AbD Serotec), anti-pan-o--cytokeratin (1:50; Thermo
Scientific), or anti-laminin Ab1 (1:100; Thermo Scientific). Last, incuba-
tion with the Alexa Fluor-conjugated secondary antibody (Alexa Fluor
488 or 568; Life Technologies) was performed for 1 hour. B-Proteins
were detected by autofluorescence of untreated epidermis. Samples were
mounted with DAPI (4',6'-diamidino-2-phenylindole)-containing
VECTASHIELD mounting medium (Vector Laboratories).

Scanning electron microscopy and

microcomputed tomography

For scanning electron microscopy, skin molts were mounted onto alu-
minum stubs with a conductive paste (carbon dag) and coated with
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gold using a Sputter Coater (JFC-1200, JEOL). Specimens were viewed
and photographed using a JEOL 6510LV scanning electron microscope
at an acceleration voltage of 10 kV. Micro-computed tomography scans
of the cranial skeleton of newborn bearded dragons were performed
using a SkyScan076 scanner with a pixel size of 18 um, and three-
dimensional reconstructions of the scans were generated using the
Imaris software (Bitplane).

Sequence analysis and semiquantitative RT-PCR

Genomic DNA and total RNA from embryonic wild-type and scaleless
bearded dragon tissues were isolated using the DNeasy and RNeasy kits
(Qiagen), respectively, according to the manufacturer’s instructions.
cDNA was generated by reverse transcription using 2.5 uM oligo(dT)
primer and 1 ug of total RNA (SuperScript kit, Invitrogen). The full-
length cDNA of wild-type and scaleless Eda was isolated by PCR using
sequences from the bearded dragon transcriptome (52) and by the sub-
sequent rapid amplification of DNA ends (RACE kit, Roche). Intronic
regions were obtained with PCR from genomic DNA using cDNA as a
reference sequence. Exon boundaries were obtained by comparing the
cDNA and genomic sequences. Semiquantitative PCRs on genomic
DNA or cDNA were performed with the FastStart PCR system (Roche).
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