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Abstract

Objective—In pediatric ARDS, lung injury is mediated by immune activation and severe 

inflammation. Therefore, we hypothesized that patients with elevated pro- and anti-inflammatory 

cytokines would have higher mortality rates and that these biomarkers could improve risk-

stratification of poor outcomes.

Design—Multicenter prospective observational study.

Setting—We enrolled patients from 5 academic PICUs between 2008–2015.

Patients—Patients were 1 month to 18 years old, used noninvasive or invasive ventilation, and 

met the American European Consensus Conference definition of ARDS.

Interventions—None.

Methods—Eight pro-inflammatory and anti-inflammatory cytokines were measured on ARDS 

day 1 and correlated with mortality, ICU morbidity as measured by survivor PELOD score, and 

biomarkers of endothelial injury, including angiopoietin-2, von Willebrand Factor, and soluble 

thrombomodulin.

Measurements & Main Results—We measured biomarker levels in 194 patients, including 38 

ARDS nonsurvivors. IL-6, IL-8, IL-10, IL-18, and TNF-R2 were each strongly associated with all-

cause mortality, multiple markers of ICU morbidity, and endothelial injury. A multiple logistic 
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regression model incorporating OI, IL-8, and TNF-R2 was superior to a model of OI alone in 

predicting the composite outcome of mortality or severe morbidity (AUROC 0.77 [0.70–0.83] vs. 

0.70 [0.62–0.77], p=0.042).

Conclusions—In pediatric ARDS, pro- and anti-inflammatory cytokines are strongly associated 

with mortality, ICU morbidity, and biochemical evidence of endothelial injury. These cytokines 

significantly improve the ability of the OI to discriminate risk of mortality or severe morbidity and 

may allow for identification and enrollment of high-risk subgroups for future studies.

Keywords

Intensive care units; cytokines; acute lung injury; hematopoietic stem cell transplantation; 
interleukins

INTRODUCTION

Pediatric acute respiratory distress syndrome (ARDS) is a clinically heterogeneous disorder 

characterized by injury to the alveolar-capillary interface, resulting in significant impairment 

of oxygenation (1, 2). This syndrome is associated with 15–20% mortality as well as 

substantial morbidity among survivors (3, 4), yet imprecision in identifying high-risk 

patients early in their course limits the application of experimental therapies that might 

further improve outcomes. While triggering events include both local and systemic insults, a 

common pathway is the resultant inflammatory cascade that mediates both pulmonary 

endothelial and alveolar epithelial damage (5, 6).

A principal component of this inflammatory cascade is the release of chemokines such as 

IL-8 and macrophage inflammatory protein 1β (MIP-1β) by local antigen presenting cells 

and endothelial cells, leading to migration of activated neutrophils to the lungs (7, 8) and 

subsequent release of cytokines such as IL-6 and TNF-α (9, 10). In concert, these 

mechanisms lead to an increase in lung endothelial permeability and ongoing immune 

activation, which can further propagate the cycle of cell damage (11, 12). We have 

previously identified evidence of this cell damage in pediatric ARDS patients by correlating 

mortality with circulating markers of endothelial cell injury, including angiopoietin-2, von 

Willebrand Factor, and soluble thrombomodulin (13, 14). To date, however, little direct 

evidence exists linking systemic immune activation with pediatric ARDS outcomes or 

markers of endothelial damage.

We therefore undertook this study to correlate circulating pro- and anti-inflammatory 

cytokine levels in pediatric ARDS patients with mortality, morbidity, and biomarkers of 

endothelial injury. We used a commercially available multiplex panel of 21 cytokines related 

to macrophage, neutrophil, T-cell, and B-cell activation (Supplemental Figure 1), retained 

only those reliably detected above the lower limit of quantitation (LLOQ), and then analyzed 

the performance characteristics of these biomarkers according to consensus guidelines for 

biomarker development (15–18). We hypothesized that elevated cytokine levels would 

correlate with clinical outcomes and markers of endothelial damage in pediatric ARDS and 

might augment the prognostic utility of the OI in predicting mortality and morbidity.

Zinter et al. Page 2

Crit Care Med. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



METHODS

Patients

Daily screening occurred at five PICUs between 2008–2015. Inclusion criteria were (1) 30 

days < age ≤18 years, (3) respiratory support of either CPAP, BiPAP, or invasive mechanical 

ventilation, and (3) ARDS or acute lung injury as defined by the American European 

Consensus Conference (19). Exclusion criteria were corrected gestational age <36 weeks 

and limitation of care precluding endotracheal intubation. This study was approved by the 

Institutional Review Board at each center with consent obtained from each patient/surrogate.

Measurements

All cytokine measurements were carried out on plasma samples collected within 24 hours of 

onset of ARDS (hereafter referred to as ARDS day 1). As daily pediatric phlebotomy 

restrictions limited available blood volume for research, we used a multiplex immunoassay 

to measure IFN-γ, IL-1α, IL-1β, IL-1RA, IL-2, IL-3, IL-4, IL-5, IL-6 IL-7, IL-8, IL10, 

IL-12, IL-15, IL-17, IL-18, IL-23, MIP-1α, MIP-1β, TNF-α, and TNF-R2 and an 

Ultrasensitive Immunoassay to repeat measurement of TNF-α (Myriad RBM, Austin, TX, 

USA; Supplemental Content). Only cytokines measured above the lower limit of 

quantitation (LLOQ) in ≥75% of patients were included in the analysis.

Primary Outcomes

We measured associations between cytokines and two primary outcomes: (1) all-cause 

hospital mortality and (2) survivor morbidity, estimated by the highest survivor Pediatric 

Logistic Organ Dysfunction score (PELOD) of measurements taken on days 1–7, 14, 21, and 

28 (20). To optimize statistical power for multivariable regression, we combined these two 

outcomes into a composite outcome of either mortality or severe morbidity, defined as the 

top quartile of survivor PELOD score.

Secondary Outcomes

We measured associations between cytokines and day 1 ARDS severity, estimated by the 

PaO2/FiO2 ratio (P/F ratio), the oxygenation index (OI), and the Pediatric Risk of 

Mortality-3 score (PRISM-3), the latter solely in cases where ARDS day 1 coincided with 

PICU day 0 or 1 (Supplemental Content) (21). When an arterial line was not present, PaO2 

was imputed from SpO2 ≤97% according to a log-linear equation (22). Finally, we measured 

associations between day 1 cytokines and three biomarkers of endothelial injury (Ang-2, 

vWF, and sTM) (13, 14).

Confounding Variables

To account for underlying variation in cytokine levels due to demographic diversity, we 

adjusted for age, sex, and patient-reported race (23–25). We also tested for relationships with 

a history of hematopoietic cellular transplantation (HCT), which we have previously shown 

to significantly impact pediatric ARDS outcomes and plasma biomarkers (26–28).
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Statistics

Selection of variables for logistic regression models used the least angle regression 

methodology, which employs forward stagewise selection to identify and rank regression 

variables according to their correlation with outcome, and then maximizes parsimony by 

identifying among equally robust models the model with the least prediction error (29). 

Multivariable models were validated using 5-fold internal cross-validation, which minimizes 

overfitting by deriving the model in a randomly-selected 90% of subjects then repeating the 

process 5 times and averaging the results (Supplemental Content) (30).

RESULTS

Patient Characteristics and Outcomes

Of 284 enrolled patients, 194 had adequate plasma available for cytokine measurements and 

were included in this study (Supplemental Table 1). Of these 194, 107 were male (55%), 135 

were Caucasian (70%), and the median age was 4.9 years (IQR 0.9–11.5, Table 1). Patients 

were admitted to the PICU a median of one day before ARDS onset (IQR 0–2) and on the 

first day after ARDS onset (ARDS day 1), the median P/F ratio was 136.5 (IQR 90.1–218), 

the median OI was 9.4 (IQR 5.3–18.3), and 176 patients received conventional mechanical 

ventilation (91%). All-cause hospital mortality occurred in 38 patients (20%) and median 

survivor PELOD score and ICU LOS were 20 (IQR 11–30) and 12 days (IQR 8–19).

Elevations in Inflammatory Cytokines Are Strongly Associated with Mortality

Five pro-inflammatory cytokines (IL-6, IL-8, IL-18, MIP-1β, TNF-α) and three anti-

inflammatory cytokines (IL-1RA, IL-10, and TNF-R2) were measured above the LLOQ in 

≥75% of patients and were included in subsequent analyses. Univariate Analysis: When 

stratified by mortality, non-survivors had significantly higher levels of IL-6, IL-8, IL-18, 

IL-10, and TNF-R2 than survivors (Figure 1, Table 2). The AUROCs for discriminating 

mortality for the 8 cytokines ranged from 0.53–0.68 and was highest for IL-8 (0.68, 95% CI 

0.60–0.77); none were significantly different than that of the OI (0.70, 95% CI 0.62–0.77, 

Supplemental Table 2). Adjusted Analysis: In order to account for potential confounders to 

these relationships, we adjusted for age, sex, race, OI, and history of HCT, the latter being 

associated with significantly higher levels of multiple inflammatory markers including IL-8, 

IL-18, and TNF-R2 (Supplemental Tables 3). After adjustment, elevated IL-6 and IL-8 

remained significantly associated with increased odds of mortality (Supplemental Table 4). 

All 8 assessed biomarkers were each positively correlated with the OI and PRISM-3 sore, 

and IL-6, IL-8, IL-18, IL-1RA, IL-10, and TNF-R2 were each negatively correlated with the 

P/F ratio (Supplemental Table 5, Supplemental Figure 2).

Elevations in Inflammatory Cytokines Are Associated with Survivor ICU Morbidity

To assess morbidity in survivors, we examined the relationships between day 1 cytokines, 

survivor PELOD score, and ICU LOS. Day 1 IL-6, IL-8, IL-18, MIP-1β, TNF-α, IL-10, and 

TNF-R2 were each strongly associated with elevated PELOD score after adjustment for age, 

sex, and race (Supplemental Table 6). The strongest correlation was observed between 

PELOD and TNF-R2 (ρ=0.430, p<0.001). Increasing quartile of survivor PELOD was 
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significantly associated with greater levels of all cytokines (Supplemental Figure 3). 

Elevated MIP-1β and TNF-R2 were weakly associated with increased survivor ICU LOS.

Elevations in Inflammatory Cytokines Are Associated with Biomarkers of Endothelial 
Injury

In order to associate cytokines with biochemical evidence of endothelial injury, we measured 

correlations between cytokines and plasma Ang-2, vWF, and sTM. IL-6, IL-8, TNF-α, 

IL-10, and TNFR-2 were each positively correlated with Ang-2, and IL-8, IL-1RA, IL-10, 

and TNF-R2 were each positively correlated with sTM (Supplemental Table 7). The 

strongest correlations were observed between IL-6 and Ang-2 (ρ=0.463, p<0.001) and 

between IL-8 and Ang-2 (ρ=0.443, p<0.001).

Elevations in Inflammatory Cytokines Help Distinguish Risk of Mortality or Severe 
Morbidity

Given this evidence, we used the least angle regression methodology to select variables for a 

regression model that would improve risk-stratification of the OI ratio by incorporating 

biomarker levels. To maximize statistical power, we combined our two primary outcomes 

into a composite outcome of either mortality or severe morbidity, defined as the top quartile 

of survivor PELOD score (PELOD ≥30). The model with maximum parsimony and 

minimum prediction error included the OI, IL-8, and TNF-R2 and predicted the composite 

outcome with a 5-fold internally cross-validated AUROC of 0.77 (95% CI 0.70–0.83). 

Compared to the OI alone (AUROC 0.70, 95% CI 0.62–0.77), this model had significantly 

greater fit (likelihood ratio test p<0.001) and AUROC (p=0.042, Figure 2).

We then used the least angle regression methodology to test an expanded set of variables 

including the OI, HCT status, any of the 8 measured cytokines, and any of the 3 biomarkers 

of endothelial injury. The expanded model with maximum parsimony and minimum 

prediction error included the OI, HCT status, IL-6, IL-8, IL-10, and TNF-R2, predicted 

mortality or severe morbidity with an internally cross-validated AUROC of 0.79 (95% CI 

0.72–0.86) and was well-calibrated over each quartile (Hosmer-Lemeshow goodness-of-fit 

p=0.903, Supplemental Table 8). Compared to the OI alone, this expanded model had 

significantly greater fit (likelihood ratio test p<0.001) and AUROC (p=0.011).

When we divided patients into quartiles of risk according to the expanded model, we found 

that 74% of those in the highest quartile of risk died or had severe morbidity (sensitivity 

74%, specificity 72%, likelihood ratio 2.7 [95% CI 2.0–3.7]). This was significantly greater 

than the 64% rate of death or severe morbidity for those in the top quartile of risk according 

to the OI alone (sensitivity 64%, specificity 69%; likelihood ratio 2.0 [95% CI 1.5–2.8], 

McNemar’s p=0.025). The majority of patients who reached the outcome of death or severe 

morbidity did so in the first 2 weeks of ICU stay (Supplemental Figure 4).

Elevations in Inflammatory Cytokines Improve PALICC Risk-Stratification

The next goal was to assess whether risk-stratification according to Pediatric Acute Lung 

Injury Consensus Conference (PALICC) defined ARDS severity could be improved by the 

addition of cytokine levels (31). ARDS severity on day 1 was strongly associated with both 
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mortality (10% for mild [9/86], 21% for moderate [10/47], and 31% for severe [19/61], 

p=0.007) and the composite outcome of mortality or severe morbidity (24% for mild 

[21/86], 40% for moderate [19/47], and 61% for severe [37/61], p<0.001). For each of the 3 

ARDS severities, we then further stratified patients according to whether their day 1 IL-8 

level was above or below the cohort median (116 pg/uL). In both the moderate ARDS group 

and the severe ARDS group, patients with day 1 IL-8 levels above the cohort median had 

significantly greater rates of mortality or severe morbidity than patients with day 1 IL-8 

levels below the cohort median (57% [16/28] vs. 16% [3/19], p=0.005 among those with 

moderate ARDS; and 70% [28/40] vs. 43% [9/21], p=0.039, among those with severe 

ARDS; Figure 3). We found similar results in analogous comparisons using IL-10 and TNF-

R2 (Supplemental Table 9).

DISCUSSION

In this study, we measured plasma levels of pro- and anti-inflammatory cytokines in 194 

pediatric ARDS patients. We found a strong relationship between mortality and elevated 

plasma levels of both pro-inflammatory (IL-6, IL-8, IL-18, MIP-1β, TNF-α) and anti-

inflammatory cytokines (IL-1RA, IL-10, and TNF-R2). These cytokines were also 

associated with ICU morbidity as measured by survivor PELOD score, early physiologic 

evidence of lung and multi-organ injury, as evidenced by P/F ratio, OI, and the PRISM-3 

score, and biochemical evidence of endothelial injury, including elevated plasma Ang-2 and 

sTM. Finally, we found that the addition of inflammatory cytokines to the OI improves risk-

stratification in a heterogeneous ARDS population.

In terms of significance, this is to our knowledge the largest multicenter study of 

inflammatory pathways in pediatric ARDS and the first of its size to identify significant 

early systemic cytokine perturbations in pediatric ARDS nonsurvivors. This important 

finding builds upon work done in both adult clinical studies and animal models, which have 

identified alveolar neutrophilic infiltration and cytokine release as hallmark findings of 

ARDS (10, 32–36). While several studies in pediatrics have associated cytokinemia with 

meconium aspiration, influenza, and sepsis, this is the first to study a broad range of pro- 

and anti-inflammatory cytokines in a rigorously defined ARDS framework (37–39).

In terms of prognostic information, we identified significantly improved risk-stratification 

when OI was combined with day 1 cytokines. For example, among patients with PALICC-

defined severe ARDS, those with IL-8 levels above the cohort median had nearly twice the 

rate of mortality or severe morbidity than those with IL-8 levels below the cohort median 

(p=0.039). Also, when the top quartile of risk according to OI, IL-6, IL-8, IL-10, TNF-R2, 

and HCT was compared to the top quartile of risk according to OI alone, there was a 15% 

increase in relative risk for death or severe morbidity (McNemar’s p=0.025). If applied in a 

prospective fashion in our cohort, this expanded model would have identified an additional 5 

children out of 47 in the top quartile days-to-weeks before the development of death or 

severe morbidity, allowing for enrollment in research protocols of experimental therapies.

Ultimately, improved risk-stratification is crucial for the identification of candidate high-risk 

subgroups for the development of new therapeutics, particularly in pediatrics where a major 
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challenge of clinical trials has been attainment of goal accrual. Once they become widely 

available, rapid molecular assays could make bedside risk-stratification for clinical trials 

enrollment a feasible goal and could represent a paradigm shift for pediatric ICU research.

Our study is part of a growing body of pediatric critical care research to use a composite 

outcome combining mortality and morbidity (40, 41). Neither the mortality rate in our 

cohort (38/194) nor in that of Yehya et al (37/283) (42) is sufficiently high to power a 

multivariable logistic regression associating mortality with OI and multiple cytokines. 

Therefore, we generated a composite outcome of mortality or severe morbidity, defined as 

the top quartile of survivor PELOD (≥30). This outcome was met by 77/194 patients and 

facilitated an appropriately powered logistic regression allowing us to show that the 

composite biomarker of OI, IL-8, and TNF-R2 outperformed the model of OI alone 

(p=0.042). The composite outcome of mortality or severe morbidity is biologically 

appropriate, clinically relevant, and meets recent PALICC and CPCCRN recommendations 

for attention to morbidity as a significant PICU outcome (41).

In terms of subgroup phenotyping, we identified higher levels of IL-8, IL-18, IL-10, and 

TNF-R2 in HCT ARDS patients relative to than non-HCT ARDS patients. Recent data 

suggest that HCT patients may have unique inflammatory derangements after transplantation 

that might differentiate mortality risk (43, 44). Clinical experience with pulmonary 

dysfunction during neutrophil engraftment as well as early success of TNF-α inhibition 

support the exaggerated role of inflammation in this population (45, 46). Although our 

ability to draw further conclusions was limited by the size of this subgroup, this analysis is 

an important first step in identifying clinically-validated molecular markers that differentiate 

subgroups of risk. Further work in identifying unique molecular phenotypes is critical to 

understanding the pathophysiologic heterogeneity of pediatric ARDS.

Our study has several strengths. First, given the cohort size and diversity of patient 

characteristics, our results likely have external validity with respect to other academic 

PICUs. Second, in addition to assessing mortality, we assessed ICU morbidity and 

biochemical evidence of endothelial injury. The former has been recently emphasized by the 

PALICC and is particularly important given the lower mortality rates in children in 

comparison to adults (41, 47), whereas the latter lends biologic and mechanistic plausibility 

to our findings. Third, we increased our sample size by 15% by imputing PaO2 from SpO2 

≤97% in 26 patients lacking an arterial line but otherwise meeting enrollment criteria.

Our study has some limitations. First, our models were derived in a large pediatric cohort but 

do require external validation. We attempted to address this by using 5-fold internal cross-

validation to minimize error without reducing sample size (30). Second, we did not mandate 

a uniform ventilator weaning protocol and could not account for variability in ventilator 

management patterns as they might influence our primary outcomes.

CONCLUSIONS

In conclusion, there was a significant association between mortality and elevated day 1 

plasma cytokines in children with ARDS. These cytokines were also associated of ARDS 
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illness severity, including the P/F ratio, OI, and PRISM-3 score; with ICU morbidity, 

including survivor ICU LOS and PELOD score; and with biochemical evidence of 

endothelial injury, including elevated plasma Ang-2 and sTM. These cytokines improve the 

prognostic performance of the OI in discriminating risk of mortality or severe morbidity and 

may allow for identification and enrollment of high-risk subgroups for future clinical trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Pro- and Anti-Inflammatory Cytokine Distributions in Pediatric ARDS
Legend: Distributions of pro-inflammatory (IL-6, IL-8, IL-18, MIP-1β, TNF-α) and anti-

inflammatory cytokines (IL-1RA, IL-10, TNF-R2). IL-6, IL-8, IL-18, IL-10, and TNF-R2 

were all greater in nonsurvivors than survivors. Upper (75th percentile + 1.5 IQR) and lower 

(25th percentile – 1.5 IQR) outliers not depicted.
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Figure 2. Receiver Operating Characteristics for Mortality or Severe Morbidity in Pediatric 
ARDS
Legend: The AUROC for the OI ratio (dotted line) was 0.70 (95% CI 0.62–0.77). The 

AUROC for the model including the OI, IL-8, and TNF-R2 (gray line) was of 0.77 (95% CI 

0.70–0.83). The AUROC for the expanded model including the OI, IL-6, IL-8, IL-10, TNF-

R2, and HCT history (black line) was of 0.79 (95% CI 0.72–0.86). Chi-squared test for 

difference in ROC curves p=0.032.
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Figure 3. Kaplan Meier Function for Mortality or Severe Morbidity According to PALICC 
ARDS Severity and IL-8 Level
Legend: A) Among patients with mild ARDS (4≤OI<8, n=86), mortality or severe morbidity 

trended towards being more common amongst those with day 1 IL-8 above the median 

(36%, 10/28) than those below the median (19%, 11/58, p=0.090). Log-rank test of equality 

of Kaplan Meier functions p=0.061. B) Among patients with moderate ARDS (8≤OI<16, 

n=47), mortality or severe morbidity was more common amongst those with day 1 IL-8 

above the median (57%, 16/28) than those below the median (16%, 3/19, p=0.005). Log-

Zinter et al. Page 13

Crit Care Med. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rank test of equality of Kaplan Meier functions p=0.006. C) Among patients with severe 

ARDS (OI≥16, n=61), mortality or severe morbidity was more common amongst those with 

day 1 IL-8 above the median (70%, 28/40) than those below the median (43%, 9/21, 

p=0.039). Log-rank test of equality of Kaplan Meier functions p=0.023.
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Table 1
Characteristics of Enrolled Patients with Biomarker Measurements

Legend: Associations tested with Fisher exact test for categorical variables and Wilcoxon rank sum for non-

normally distributed continuous variables. P/F ratio n=193 (1 patient excluded due to no arterial line and 

SpO2>97%), OI n=191 (1 patient excluded due to no arterial line and SpO2>97%; 2 patients excluded due to 

missing MAP), PRISM-3 n=126 (48 patients excluded due to PRISM-3 calculated >1 day before ARDS 

diagnosis; 20 patients excluded due to majority of PRISM-3 components not measured).

Characteristics All patients (n=194) Non-Survivors (n=38) Survivors (n=156) Significance

Age (median years, IQR) 4.9 (0.9–11.5) 7.7 (2.5–12.6) 3.8 (0.8–11.4) p=0.186

Sex (male n, %) 107 (55.2) 25 (65.8) 82 (52.6) p=0.151

Race (n, %) p=0.630

 White 135 (69.6) 25 (65.8) 110 (70.5)

 Unknown 22 (11.3) 6 (15.8) 16 (10.3)

 Black 14 (7.2) 2 (5.3) 12 (7.7)

 Asian/PI 10 (5.2) 1 (2.6) 9 (5.8)

 Multiple 12 (6.2) 4 (10.5) 8 (5.1)

 American Indian 1 (0.5) 0 (0) 1 (0.6)

Lung Injury Etiology (n, %) p=0.619

 Pneumonia 109 (56.2) 22 (57.9) 87 (55.8)

 Sepsis 42 (21.7) 9 (23.7) 33 (21.2)

 Other 16 (8.3) 1 (2.6) 15 (9.6)

 Trauma 12 (6.2) 2 (5.3) 10 (6.4)

 Aspiration 10 (5.2) 2 (5.3) 8 (5.1)

 TRALI 5 (2.6) 2 (5.3) 3 (1.9)

Infectious Trigger (n, %) 151 (77.8) 31 (81.6) 120 (76.9) p=0.665

HCT (n, %) 21 (10.8) 13 (34.2) 8 (5.1) p<0.001

Days in PICU Prior to ARDS Onset (median, 
IQR)

1 (0–2) 1 (0–2) 1 (0–2) p=0.749

Day 1 Oxygenation Metric (n, %) p=0.180

 Arterial Line (PaO2) 168 (86.6) 30 (79.0) 138 (88.5)

 Pulse Oximeter (SpO2) 26 (13.4) 8 (21.0) 18 (11.5)

Day 1 Respiratory Support (n, %) p=0.808

 Noninvasive (CPAP/BiPAP) 9 (4.6) 2 (5.3) 7 (4.5)

 Invasive (Conventional) 176 (90.7) 34 (89.5) 142 (91.0)

 Invasive (HFOV) 9 (4.6) 2 (5.3) 7 (4.5)

Day 1 Illness Severity (median, IQR)

 PaO2/FiO2 Ratio (P/F) 136.5 (90.1–218) 103.8 (85.7–161.7) 146.7 (90.2–226.7) p=0.027

 Oxygenation Index (OI) 9.4 (5.3–18.3) 13.4 (7.8–25.4) 8.0 (5.0–16.9) p=0.004
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Characteristics All patients (n=194) Non-Survivors (n=38) Survivors (n=156) Significance

 PRISM-3 13 (8–21) 18 (12.5–21.5) 13 (7–20) p=0.009
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