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Previous studies have shown that glucagon cooperatively
interacts with insulin to stimulate hepatic FGF21 gene expres-
sion. Here we investigated the mechanism by which glucagon
and insulin increased FGF21 gene transcription in primary hep-
atocyte cultures. Transfection analyses demonstrated that glu-
cagon plus insulin induction of FGF21 transcription was con-
ferred by two activating transcription factor 4 (ATF4) binding
sites in the FGF21 gene. Glucagon plus insulin stimulated a
5-fold increase in ATF4 protein abundance, and knockdown of
ATF4 expression suppressed the ability of glucagon plus insulin
to increase FGF21 expression. In hepatocytes incubated in the
presence of insulin, treatment with a PKA-selective agonist
mimicked the ability of glucagon to stimulate ATF4 and FGF21
expression. Inhibition of PKA, PI3K, Akt, and mammalian tar-
get of rapamycin complex 1 (mTORC]1) suppressed the ability of
glucagon plus insulin to stimulate ATF4 and FGF21 expression.
Additional analyses demonstrated that chenodeoxycholic acid
(CDCA) induced a 6-fold increase in ATF4 expression and that
knockdown of ATF4 expression suppressed the ability of CDCA
to increase FGF21 gene expression. CDCA increased the phos-
phorylation of eIF2«, and inhibition of eIF2« signaling activity
suppressed CDCA regulation of ATF4 and FGF21 expression.
These results demonstrate that glucagon plus insulin increases
FGF21 transcription by stimulating ATF4 expression and that
activation of cAMP/PKA and PI3K/Akt/mTORCI1 mediates the
effect of glucagon plus insulin on ATF4 expression. These
results also demonstrate that CDCA regulation of FGF21 tran-
scription is mediated at least partially by an eIF2a-dependent
increase in ATF4 expression.

FGEF21 is an atypical member of the fibroblast growth factor
family that lacks the ability to bind to heparin sulfate proteogly-
cans, allowing it to escape the extracellular matrix and function
in an endocrine manner (1-3). Studies investigating the biolog-
ical action of FGF21 have shown that starvation and other
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nutritional stresses (e.g. dietary protein restriction, consump-
tion of a high-fat, low-carbohydrate ketogenic diet, and con-
sumption of a high-fat obesogenic diet) stimulate an increase in
the expression and secretion of FGF21 by the liver, the predom-
inant site of FGF21 production in the body (4—10). FGF21 sig-
nals through FGF receptor 1c (FGFR1c) linked to the co-recep-
tor B-klotho to increase food intake, energy expenditure,
gluconeogenesis, and insulin sensitivity and inhibit growth and
female fertility in response to nutritional stress (1-6, 11).

Several signaling pathways have been identified that mediate
the effects of nutritional stress on FGF21 expression. One such
pathway involves the activation of the nuclear receptor perox-
isome proliferator-activated receptor o (PPARa).> A PPAR«
response element (PPRE) has been identified in the 5’-flanking
region of the murine and human FGF21 genes (8, 12). Ablation
of the PPAR« gene suppresses the ability of starvation and
ketogenic diet consumption to increase hepatic FGF21 mRNA
abundance and serum FGF21 concentration (7, 8).

Another pathway mediating the nutritional regulation of
FGF21 expression is activated by the glucagon receptor. This
has been deduced from studies in mice showing that ablation of
the glucagon receptor suppresses the ability of starvation to
increase hepatic FGF21 mRNA abundance and serum FGF21
concentration (1). In studies examining the mechanism by
which glucagon increases FGF21 production, we have shown
that incubating rat and human hepatocyte cultures with gluca-
gon causes a 3-fold increase in FGF21 secretion into the culture
medium (14). Interestingly, the glucagon-induced increase in
FGF21 secretion in hepatocytes is associated with a transient
decrease in FGF21 mRNA abundance, suggesting that glucagon
acts at a translational/posttranslational step to increase hepatic
FGF21 secretion.

The inability of glucagon to induce FGF21 mRNA abundance
in hepatocyte cultures (14) contrasts with the results of gluca-

2The abbreviations used are: PPARa, peroxisome proliferator-activated
receptor «; PPRE, peroxisome proliferator-activated receptor « response
element; FXR, farnesoid X receptor; FXRE, farnesoid X receptor response
element; CDCA, chenodeoxycholic acid; AARE, amino acid response ele-
ment; ChoRE, carbohydrate response element; mTORC, mammalian target
of rapamycin complex; EPAC, exchange protein directly activated
by cAMP; cpTOME, 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-
cyclic monophosphate; 6-Bnz-cAMP, N°®-benzoyladenosine-3',5'-cyclic
monophosphate; phosphoenolpyruvate carboxykinase; ER, endoplasmic
reticulum; ISRIB, internal stress response inhibitor B; ATF4, activating tran-
scription factor; IRS, insulin receptor substrate.
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gon receptor ablation studies (1) demonstrating that the star-
vation-induced increase in FGF21 mRNA abundance is medi-
ated at least partially by glucagon receptor activation. One
possible explanation for the discrepant findings is that glucagon
stimulation of FGF21 mRNA abundance requires the presence
of another hormone or signaling factor. Results of studies with
intact mice containing defects in the insulin signaling pathway
suggest that insulin is one such factor that potentiates the abil-
ity of glucagon to increase FGF21 mRNA abundance. Dong et
al. (15) have shown that liver-specific ablation of insulin recep-
tor substrate 1 (IRS-1) and IRS-2 causes a decrease in hepatic
FGF21 mRNA abundance during both the fed state and the
starved state. In addition, Haeusler et al. (16) have reported that
streptozotocin-induced diabetes suppresses the stimulatory
effect of starvation on hepatic FGF21 mRNA abundance.
Although insulin is generally regarded as a hormone signaling
the fed state, these observations suggest that basal insulin levels
during the starved state play a role in mediating the increase in
FGF21 mRNA abundance caused by starvation. In support of
this possibility, we have shown that insulin potentiates the abil-
ity of glucagon to stimulate FGF21 mRNA abundance in pri-
mary rat hepatocyte cultures (14). Treatment with insulin alone
stimulates a 3.5-fold increase in FGF21 mRNA abundance, and
the addition of glucagon in the presence of insulin causes a
further 2.5-fold elevation in FGF21 mRNA abundance. This
cooperative interaction between glucagon and insulin in the
regulation of FGF21 mRNA abundance is associated with a sub-
stantially greater induction of FGF21 secretion (i.e. 28-fold) rel-
ative to that by glucagon or insulin alone. Dose-response exper-
iments have shown that insulin is effective in unmasking
glucagon regulation of FGF21 mRNA abundance at a concen-
tration observed in the portal circulation during fasted condi-
tions (i.e. 1 nm) (14). We have postulated that insulin maintains
a basal level of hepatic FGF21 mRNA abundance during the
carbohydrate-fed state and synergistically interacts with ele-
vated glucagon levels during the starved state to stimulate a
further increase in FGF21 mRNA abundance. The mechanism
by which glucagon and insulin cooperatively increase FGF21
mRNA abundance is presently not known.

In addition to PPARe, glucagon, and insulin, the farnesoid X
receptor (FXR) plays a role in the regulation of hepatic FGF21
production. We have shown that natural (i.e. bile acids) and
synthetic activating ligands (i.e. GW4064) of FXR stimulate an
increase in hepatic FGF21 mRNA abundance and secretion
in rodent and human hepatocyte cultures (17). The effect of
GW4064 on FGF21 gene transcription is mediated, at least in
part, by a conserved FXR response element (FXRE) that binds
heterodimers comprised of FXR and retinoid X receptor (RXR).
Ablation of the FXR gene suppresses the ability of ketogenic
diet consumption to induce hepatic FGF21 mRNA abundance
and serum FGF21 concentration.

In our studies analyzing the bile acid regulation of FGF21
expression, chenodeoxycholic acid (CDCA) was substantially
more effective in inducing FGF21 gene expression in hepato-
cytes than a selective FXR-activating ligand (i.e. GW4064) that
bound to FXR with a >100-fold higher affinity than that of
CDCA (17). Incubating rodent and human hepatocyte cultures
with an optimal concentration of CDCA (100 um) stimulated
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a 25-fold increase in FGF21 mRNA abundance, whereas
incubating hepatocytes with an optimal concentration of
GW4064 (3 uMm) stimulated a 3.2-fold increase in FGF21
mRNA abundance. These observations suggested that (an)other
mechanism(s) besides ligand activation of FXR is/are in-
volved in mediating the stimulatory effect of bile acids on
FGEF21 gene transcription. The nature of this mechanism has
not yet been defined.

The objective of this study is to characterize the mechanisms
by which glucagon plus insulin and CDCA increase hepatic
FGF21 gene expression. We show that glucagon plus insulin
and CDCA increase the expression and DNA binding activity of
the stress-associated transcription factor activating transcrip-
tion factor 4 (ATF4) and that this protein plays a key role in
mediating the stimulatory effect of these signaling factors on
FGF21 gene transcription. We have also characterized the
proximal signaling pathways mediating the effects of glucagon
plus insulin and CDCA on ATF4 and FGF21 expression.

Results

Identification of Cis-acting Sequences That Mediate the Stim-
ulatory Effect of Glucagon Plus Insulin on FGF21 Gene Tran-
scription—To identify cis-acting sequences mediating the
stimulatory effect of glucagon plus insulin on FGF21 gene
expression, transient transfection experiments were per-
formed in primary rat hepatocyte cultures using reporter con-
structs containing 5’ deletions of the rat FGF21 promoter
linked to the luciferase gene. In cells transfected with the lon-
gest FGF21 fragment (—2940 to +68 bp), treatment with glu-
cagon plus insulin stimulated a 10.8-fold increase in luciferase
activity (Fig. 1). 5" deletion of FGF21 sequences to —1656 bp
and —1316 bp had no effect on glucagon plus insulin respon-
siveness, whereas 5’ deletion of sequences to —1241 bp caused
a 55% decrease in glucagon plus insulin responsiveness. Further
5’ deletion of FGF21 sequences to —1164 bp had no effect on
remaining glucagon plus insulin responsiveness, whereas
deletion of sequences from —1164 to —103 caused a 46%
decrease in glucagon plus insulin responsiveness. These results
indicate that there are two regions (—1316 to —1241 bp and
—1164 to —103 bp) that confer the stimulatory effect of gluca-
gon plus insulin on FGF21 gene transcription. Because of the
small effect of insulin alone on FGF21 gene expression and the
variability of the transient transfection assay, we were unable to
identify FGF21 sequences that conferred regulation of tran-
scription by insulin alone. Insulin treatment in the absence of
glucagon did not stimulate a significant increase in the activity
of any of the FGF21 reporter constructs (supplemental Fig. 1).

FGF21 sequences between —1316 to —1241 bp and between
—1164 to —103 bp each contain a previously characterized
sequence element that binds the stress-associated transcription
factor ATF4 (18). Both of these elements play a role in mediat-
ing the stimulatory effect of essential amino acid deficiency on
FGF21 gene transcription. They are designated as amino acid
response element (AARE) 1 and AARE2 (Fig. 24). To deter-
mine whether AARE1 and AARE2 mediate the stimulatory
effect of glucagon plus insulin on FGF21 gene transcription,
FGF21 reporter constructs were developed that contained site-
specific mutations that abolished ATF4 binding to AARE],
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FIGURE 1. Effects of deletions of the 5-flanking region of the rat FGF21 gene on transcriptional activity in the absence and presence of glucagon plus
insulin. Primary rat hepatocytes were transiently transfected with a series of plasmids containing fragments of the rat FGF21 gene linked to the luciferase (Luc)
gene as described under “Experimental Procedures.” After transfection, cells were treated with or without 25 nm glucagon (GIn) and 50 nminsulin (Ins) for 24 h.
Cells were harvested, extracts were prepared, and luciferase assays were performed. Left, the constructs used in these experiments. The number at the left of
each construct is the 5’ end of FGF21 DNA in nucleotides relative to the transcription initiation site. The 3’ end of each construct is +68 bp. The location of a
previously identified FXRE (—1222 to —1210 bp), PPRE (—1215 to —1203 bp), ChoRE (—72 to —56 bp), and AARE (—1282to —1274 bp and —140to —132 bp)
are indicated by boxes with different fills or patterns. Right, the luciferase activity of cells transfected with the —2940 to +68 bp FGF21 construct and treated
with vehicle was set at 1, and all other activities were adjusted proportionately. The -fold stimulation by glucagon plus insulin was calculated by dividing the
luciferase activity for cells treated with glucagon plus insulin by that for cells treated with vehicle. The -fold responses were calculated for individual experi-
ments and then averaged. The results are the means = S.E. of six experiments. Different superscript letters indicate that the means are significantly (p = 0.05)
different.
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FIGURE 2. Two AAREs in the FGF21 gene confer the stimulatory effect of glucagon plus insulin on FGF21 transcription. Reporter plasmids containing
mutations (Mut) of AARE1, AARE2, FXRE/PPRE, and/or ChoRE in the context of the —1316 to +68 bp FGF21 promoter fragment were transiently transfected into
hepatocytes as described in the legend for Fig. 1 and under “Experimental Procedures.” A, native and mutant sequences of AARE1, AARE2, FXRE/PPRE, and
ChoRE in the rat FGF21 gene. The native sequence of each regulatory element is indicated in bold letters, and the mutated sequence is shown underneath. The
hexameric half-sites comprising the FXRE and PPRE are indicated by arrows. B, luciferase activity of hepatocytes transfected with wild-type and mutant reporter
plasmids. Mutation of AARE1, AARE2, FXRE/PPRE, and ChoRE is indicated by an X through the box designated for that element. The results are the means *+ S.E.
of six experiments. Different superscript letters indicate that the means are significantly (p = 0.05) different. GIn, glucagon; Ins, insulin.

AARE2, or both AARE1 and AARE2 in the context of the
—1316 to +68 bp FGF21 reporter construct. Mutation of the
upstream AARE1 (—1282 to —1274 bp) or the downstream
AARE2 (—140 to —132 bp) caused a 54—56% decrease in glu-
cagon plus insulin responsiveness (Fig. 2B). Mutation of both

SASBMB

MARCH 31,2017 «VOLUME 292+-NUMBER 13

AARE1 and AARE2 caused an 87% decrease in glucagon plus
insulin responsiveness. In contrast to the effect of mutation of
AARE1 and AARE2 on glucagon plus insulin regulation of
FGF21 promoter activity, mutations that abolished FXR and
PPAR« binding to the FGF21 FXRE/PPRE (—1222 to —1203
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FIGURE 3. Glucagon and insulin cooperatively induce ATF4 expression and ATF4 binding to AARE1 and AARE2. A, primary rat hepatocytes were
incubated with or without glucagon, insulin, or glucagon plus insulin. The abundance of ATF4 mRNA, FGF21 mRNA, and SREBP-1c mRNA in total RNA was
measured after 6 h of treatment. The abundance of ATF4 protein in cell extracts was measured after 12 h of treatment. The level of ATF4 protein, ATF4 mRNA,
FGF21 mRNA, and SREBP-1c mRNA in cells incubated with vehicle was set at 1, and the other values were adjusted proportionately. Values are means = S.E. of
seven experiments. An asterisk indicates that the mean is significantly (¥, p < 0.05) higher than any other mean. B, gel mobility shift analyses were performed
using nuclear extracts (N.E.) prepared from hepatocytes treated with or without glucagon (GIn) plus insulin (Ins) for 12 h. The sequences of **P-labeled probes
containing AARE1 or AARE2 are shown in Fig. 2A. The binding reactions were performed as described under “Experimental Procedures.” Nuclear extracts were
incubated with antibodies against ATF4 prior to addition of the probe. Competition analyses were performed by mixing the labeled probe with a 5- and 50-fold
molar excess of unlabeled probe (Self Comp.) or a competitor DNA containing a mutation of AARE1 or AARE2 (AARE Mut Comp.). Positions of specific DNA-

protein complexes (brackets) and supershifted complexes (SS) are indicated.

bp) and carbohydrate response element binding protein bind-
ing to the FGF21 carbohydrate response element (ChoRE, —72
to —56 bp) had no effect on the ability of glucagon plus insulin
to stimulate FGF21 promoter activity (Fig. 2B). These data indi-
cate that glucagon and insulin act selectively through both of
the AAREs in the FGF21 5-flanking DNA to induce FGF21 gene
transcription.

Role of ATF4 in Mediating the Stimulatory Effect of Glucagon
Plus Insulin on FGF21 Gene Transcription—Previous studies
have shown that ATF4 binds to AARE1 and AARE2 in hepato-
cytes and that expression of exogenous ATF4 in hepatocytes
induces FGF21 gene transcription (18). These observations
plus the results of this study demonstrating that glucagon and
insulin signal through AARE1 and AARE2 to induce FGF21
gene transcription led us to investigate whether glucagon and
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insulin modulated ATF4 expression in hepatocyte cultures.
Incubating hepatocytes with insulin or glucagon alone for
12 h had no effect on ATF4 protein concentration or ATF4
mRNA abundance, whereas incubating hepatocytes with
glucagon plus insulin stimulated a 5.3-fold increase in ATF4
protein concentration and a 1.6-fold increase in ATF4
mRNA abundance (Fig. 34). This cooperative interaction
between glucagon and insulin in the regulation of ATF4
expression mirrored the regulation of FGF21 mRNA abun-
dance by these hormones. In contrast, glucagon antagonized
the ability of insulin to induce the expression of the lipogenic
transcription factor SREBP-1c (Fig. 3A). These findings
demonstrate that glucagon and insulin cooperatively inter-
act to increase ATF4 expression and that this effect is selec-
tive for ATF4 and its downstream targets.
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FIGURE 4. Knockdown of ATF4 expression suppresses the ability of glu-
cagon plus insulin to increase FGF21 mRNA abundance. Primary rat hepa-
tocytes were transfected with control siRNA or siRNA targeting ATF4 as
described under “Experimental Procedures.” After transfection, cells were
incubated with glucagon (GIn) and insulin (Ins) for 12 h. Cells were then har-
vested, total RNA was isolated, and cellular extracts were prepared. Top panel,
FGF21 mRNA abundance was measured in total RNA. The level of FGF21
mRNA in non-transfected cells incubated with vehicle was set at 1, and all
other values were adjusted proportionately. The -fold stimulation by gluca-
gon plus insulin was calculated by dividing the FGF21 mRNA abundance of
cells treated with glucagon plus insulin by that of cells treated with vehicle.
The -fold responses were calculated for individual experiments and then
averaged. Values are the means = S.E. of five experiments. Different super-
script letters indicate that the means are significantly (p < 0.05) different.
Bottom panel, the abundance ATF4 protein and B-tubulin in cell lysates was
measured by Western blotting analysis. These data are representative of five
experiments.

Gel mobility shift assays were performed to determine
whether the stimulatory effect of glucagon plus insulin on
ATF4 expression was associated with an elevation in the bind-
ing of ATF4 to AARE1 and AARE2. Nuclear extracts were pre-
pared from hepatocytes incubated with or without glucagon
plus insulin for 12 h. Incubation of nuclear extracts with >*P-
labeled DNA probes containing the AARE1 or AARE2 resulted
in the formation of multiple protein-DNA complexes (Fig. 3B).
Competition analyses indicated that the binding of several of
these DNA-protein complexes was specific. The abundance of
these specific protein-DNA complexes was increased in
nuclear extracts from hepatocytes treated with glucagon plus
insulin. Preincubation of nuclear extracts with ATF4 antibody
partially disrupted the formation of these protein-DNA com-
plexes and caused the formation of new supershifted com-
plexes. The abundance of these supershifted complexes was
elevated in nuclear extracts from hepatocytes treated with glu-
cagon plus insulin. These observations indicate that glucagon
plus insulin increases the ATF4 binding to AARE1 and AARE2.

To further establish a role of ATF4 in mediating the stimu-
latory effect of glucagon plus insulin on FGF21 expression, we
investigated whether knockdown of ATF4 expression modu-
lated the ability of glucagon plus insulin to increase FGF21
expression. Primary rat hepatocytes were transfected with
siRNAs targeting ATF4 (ATF4 siRNA 1 and ATF4 siRNA 2) or
a non-targeting control siRNA and were treated with or with-
out glucagon plus insulin. Transfection of hepatocytes with
ATF4 siRNA 1 or ATF4 siRNA 2 inhibited both basal ATF4
protein expression and glucagon plus insulin induction of
ATF4 protein expression relative to untransfected cells or cells
transfected with control siRNA (Fig. 4). These effects on ATF4
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expression were associated with a reduction in basal FGF21
mRNA abundance and the ability of glucagon plus insulin to
increase FGF21 mRNA abundance. These results demonstrate
that glucagon plus insulin regulation of FGF21 gene expression
is dependent on ATF4.

PI3K/Akt/mTORCI and PKA Mediate the Stimulatory Effect
of Insulin and Glucagon on FGF21 and ATF4 Expression—We
next investigated the proximal signaling pathways mediating
the synergistic effect of glucagon and insulin on FGF21 and
ATF4 expression. Insulin activation of the insulin receptor
stimulates PI3K activity, which, in turn, increases the conver-
sion of phosphatidylinositol 4,5-bisphosphate (PIP,) to phos-
phatidylinositol 3,4,5-triphosphate (PIP;) (19). Elevated phos-
phatidylinositol 3,4,5-triphosphate levels lead to an increase in
the phosphorylation and activation of Akt (also known as pro-
tein kinase B). We performed studies with specific inhibitors of
PI3K (i.e. LY294002) and Akt (i.e. Akti-1/2) to investigate the
role of the PI3K/Akt pathway in mediating the cooperative
interaction of insulin with glucagon in inducing FGF21 gene
expression. Incubating hepatocytes with LY294002 or Akti-1/2
suppressed the ability of glucagon plus insulin to stimulate
FGF21 mRNA abundance and ATF4 protein concentration in a
dose-dependent manner (Fig. 5, A and B). In agreement with
previous studies (20), Western blotting analyses showed that
insulin increased the abundance of the phosphorylated, active
form of Akt (Ser*”®) and that the presence of glucagon ampli-
fied this effect (Fig. 54). The ability of LY294002 and Akti-1/2
to suppress the stimulatory effect of glucagon plus insulin on
FGF21 and ATF4 expression was associated with a decrease in
phosphorylated Akt (Fig. 5, A and B). These data demonstrate
that insulin interacts with glucagon in a cooperative manner to
stimulate Akt activity and that Akt is required for the stim-
ulatory effect of glucagon plus insulin on FGF21 and ATF4
expression.

The hepatic insulin signaling pathway bifurcates at a step
distal to Akt. Akt phosphorylates FoxO1, leading to inactiva-
tion of gluconeogenic enzyme gene transcription (21, 22).
Alternatively, Akt phosphorylates tuberous sclerosis complex 2
(TSC2), leading to activation of mammalian target of rapa-
mycin complex 1 (mTORCI1) and an increase in lipogenic gene
expression (22, 23). To evaluate the role of mTORC1 in medi-
ating the induction of FGF21 gene expression by glucagon plus
insulin, we conducted experiments employing the specific
mTORCI inhibitor rapamycin. Incubating hepatocytes with 1
nM rapamycin suppressed the ability of glucagon plus insulin to
increase FGF21 mRNA abundance and ATF4 protein concen-
tration by 65% and 44%, respectively (Fig. 5C). The rapamycin-
mediated reduction in glucagon plus insulin regulation of
FGF21 mRNA abundance and ATF4 protein concentration was
associated with a decrease in the phosphorylated active form of
ribosomal protein S6, an effector protein downstream of
mTORCI. In contrast, treatment with rapamycin had no effect
on the abundance of the phosphorylated, active form of Akt.
These data suggest that insulin signals through the mTORC1
branch of the insulin pathway to potentiate the stimulatory
effect of glucagon on FGF21 and ATF4 expression.

We next characterized the glucagon signaling pathway medi-
ating the induction of FGF21 and ATF4 expression by glucagon
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expression. A-C, primary rat hepatocytes were isolated and incubated in serum-free Medium 199. At 47 h of incubation, the medium was replaced with one
of the same composition containing vehicle or the indicated concentrations of LY294002 (A), Akti-1/2 (B), or rapamycin (C). At 48 h of incubation, glucagon (G/n)
and/or insulin (Ins) was added to the medium, and the incubation was continued for 12 h. Cells were harvested, total RNA was isolated, and cellular extracts
were prepared. Left panels, the abundance of FGF21 mRNA in total RNA and the level of ATF4 protein in total cell lysates were measured as described under
“Experimental Procedures.” Values for cells incubated in the absence of inhibitor and hormones were set at 1, and the other values were adjusted proportion-
ately. Values are means * S.E. of four experiments. *, p < 0.05. Right panels, the abundance of phosphorylated Akt (Ser*’3, P-Akt), phosphorylated ribosomal
protein S6 (Ser?**235, P-RPS6), total Akt, and total RPS6 in total cell lysates was measured by Western blotting analysis. These data are representative of four

experiments.

plus insulin. Glucagon regulates hepatic metabolic processes by

binding to the glucagon receptor, stimulating an increase in vate PKA

adenylyl cyclase activity, resulting in an elevation in cAMP pro-
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duction (24). Increased intracellular cAMP levels, in turn, acti-

and exchange protein directly activated by cAMP

(EPAC), a guanine nucleotide exchange factor that activates the
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were set at 1, and the other values were adjusted proportionately. Values are means = S.E. of three experiments. An asterisk indicates that the mean is
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6-Bnz-cAMP, and cpTOME.

small GTPase Rapl (24, 25). To assess the role of the cAMP/
PKA pathway and the cAMP/EPAC pathway in mediating the
stimulatory effect of glucagon plus insulin on FGF21 gene
expression, we tested the ability of a membrane-permeable
form of cAMP (i.e. dibutyryl cAMP), a PKA-selective agonist
(i.e. N°-benzoyladenosine-3',5'-cyclic monophosphate (6-
Bnz-cAMP)) (26), and an EPAC-selective agonist (i.e. 8-(4-
chlorophenylthio)-2'-O-methyladenosine-3’,5’-cyclic mono-
phosphate (cpTOME)) (27) to mimic the glucagon induction of
FGF21 mRNA abundance in the presence of insulin. In hepato-
cytes incubated in culture medium containing insulin, addition
of dibutyryl cAMP or 6-Bnz-cAMP stimulated a 10- to 11-fold
increase in FGF21 mRNA abundance (Fig. 6A). This increase in
FGF21 mRNA abundance was similar in magnitude to that
observed when glucagon was added to the culture medium.
Dibutyryl cAMP and 6-Bnz-cAMP also mimicked the ability of
glucagon to stimulate ATF4 protein concentration, ATF4
mRNA abundance, Akt Ser*”® phosphorylation, and ribosomal
protein S6 Ser?**/?3¢ phosphorylation in the presence of insulin
(Fig. 6, A and B). In contrast, addition of cpTOME to the culture
medium had no effect on FGF21 mRNA abundance, ATF4 pro-
tein concentration, ATF4 mRNA abundance, and Akt Ser*”?
phosphorylation in hepatocytes incubated with insulin.
cpTOME treatment was effective in stimulating ribosomal pro-
tein S6 Ser**>/?%¢ phosphorylation, suggesting that EPAC acti-
vation in the presence of insulin induces ribosomal protein S6
phosphorylation via a mechanism that is independent of
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changes in Akt activity. This observation is concordant with
previous work showing that EPAC activation of Rapl stimu-
lates ribosomal protein S6 phosphorylation via a PI3K/Akt-
independent mechanism (28). These data suggest that glucagon
signals through cAMP and PKA, but not through EPAC, to
induce FGF21 and ATF4 expression in the presence of insulin.

To obtain further evidence that PKA plays a role in mediating
the stimulatory effect of glucagon and insulin on FGF21 gene
expression, experiments were conducted using the PKA-selec-
tive inhibitor H89 (29). Incubating hepatocytes with H89 sup-
pressed the ability of glucagon plus insulin to induce FGF21
mRNA abundance and ATF4 protein concentration (Fig. 7A).
As a positive control for inhibition of PKA, H89 was effective in
suppressing the stimulatory effect of glucagon on the abun-
dance of mRNA encoding PEPCK, a PKA target (Fig. 7B) (30).
These results provide support for a role of PKA in mediating the
increase in FGF21 gene expression caused by glucagon plus
insulin.

CDCA Stimulates FGF21 Gene Expression via an ATF4-de-
pendent Mechanism—CDCA induces FGF21 gene expression
not only by ligand activation of FXR but also by an undefined
mechanism that is independent of ligand activation of FXR (17).
Other work has shown that elevated levels of hepatic bile acids
stimulate the accumulation of aberrant proteins in the endo-
plasmic reticulum (ER) and induce markers of ER stress (i.e.
Grp78 and Chop) (31). These observations in combination with
the current findings demonstrating that the stress-associated
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FIGURE 7. Inhibition of PKA suppresses the ability of glucagon plus insu-
lin to induce FGF21 mRNA abundance and ATF4 protein expression. Pri-
mary rat hepatocytes were isolated and incubated in serum-free Medium
199. At 47 h of incubation, the medium was replaced with one of the same
composition containing H89 (20 um) or vehicle. A and B, at 48 h of incubation,
glucagon (GIn) plus insulin (Ins) (A) or glucagon alone (B) was added to the
medium, and the incubation was continued for 12 h. Cells were harvested,
total RNA was isolated, and cellular extracts were prepared. The abundance of
FGF21 mRNA and PEPCK mRNA in total RNA and the level of ATF4 protein in
total cell lysates was measured as described under “Experimental Proce-
dures.” Values for cells incubated in the absence of H89 and hormones were
set at 1, and the other values were adjusted proportionately. Values are
means * S.E. of three experiments. *, p =< 0.05).

protein ATF4 mediates the stimulatory effect of glucagon plus
insulin on FGF21 expression prompted us to investigate
whether ATF4 plays a role in mediating the stimulatory effect of
CDCA on FGF21 expression. We first examined whether
CDCA modulated hepatic ATF4 expression. Incubating hepa-
tocyte cultures with 100 um CDCA for 2 h stimulated a 6-fold
increase in ATF4 protein concentration and a 2.7-fold increase
in ATF4 mRNA abundance (Fig. 84). Results from gel mobility
shift analyses demonstrated that this CDCA-induced increase
in ATF4 expression was associated with an elevation in ATF4
binding to AARE1 and AARE2 (Fig. 8B). The specific binding of
proteins to AARE1 and AARE2 was elevated in nuclear extracts
from hepatocytes treated with CDCA. Preincubation of nuclear
extracts with ATF4 antibody disrupted the formation of these
DNA-protein complexes and caused the formation of new
supershifted complexes. The abundance of these supershifted
complexes was elevated in nuclear extracts from hepatocytes
treated with CDCA.

We next investigated whether knockdown of ATF4 expres-
sion modulated the ability of CDCA to induce FGF21 expres-
sion. Transfection of hepatocytes with ATF4 siRNA 1 or ATF4
siRNA 2 suppressed the ability of CDCA to increase FGF21
mRNA abundance by 53—-59% relative to cells transfected with
control siRNA (Fig. 8C). Diminished CDCA regulation of
FGF21 expression in cells transfected with ATF4 siRNA 1 and
ATF4 siRNA 2 was associated with a marked reduction in
ATF4 protein expression. These results indicate that CDCA
increases ATF4 expression and ATF4 binding to the FGF21
gene and that ATF4 is required for CDCA induction of
FGF21 gene expression.

Akt and Phosphorylated e[F2a Mediate the Stimulatory Effect
of CDCA on FGF21 Gene Expression—Treatment of hepato-
cytes with CDCA stimulates Akt activity via mechanisms
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involving increased production of mitochondrial reactive oxy-
gen species (32) and increased production of phosphatidic acid,
a cellular metabolite that promotes Akt phosphorylation (33).
These observations led us to investigate whether Akt plays a
role in mediating the stimulatory effect of CDCA on FGF21 and
ATF4 expression. Treatment of hepatocytes with Akti-1/2 sup-
pressed the ability of CDCA to stimulate FGF21 mRNA abun-
dance but had no effect on the ability of CDCA to increase
ATF4 protein concentration (Fig. 94). This finding suggests
that Akt mediates the stimulatory effect of CDCA on FGF21
expression but not through a mechanism involving changes in
ATF4 expression. The inability of Akt inhibition to suppress the
stimulatory effect of CDCA on ATF4 expression raised the pos-
sibility that another signaling pathway besides Akt is involved
in mediating CDCA regulation of FGF21 expression. ER stress
increases the phosphorylation (Ser®') of eIF2« (34). Phospho-
rylated elF2a (P-elF2w) represses global protein translation
while selectively increasing the translation of ATF4 mRNA
(35). To investigate the role of P-elF2« in mediating the stim-
ulatory effect of CDCA on FGF21 and ATF4 expression, exper-
iments were performed using integrated stress response inhib-
itor B (ISRIB), a cell-permeable small molecule that inhibits the
downstreamactionsofP-elF2awithoutaffectingtheelF2aphos-
phorylation state (36). Treatment of hepatocyte cultures with
CDCA stimulated a 3.5-fold increase in the abundance of
P-elF2a but had no effect on the abundance of total elF2a (Fig.
9B). Incubating cells with ISRIB suppressed the ability of CDCA
to increase FGF21 mRNA abundance and ATF4 protein con-
centration by 86% and 55%, respectively. These results suggest
that CDCA signals through P-elF2a to induce FGF21 and
ATF4 expression.

Discussion

This study identifies two new signaling pathways controlling
FGF21 gene transcription. In the first pathway, glucagon acti-
vation of PKA in the presence of insulin stimulates the activity
of mTORC], a signaling complex that promotes an increase in
the expression of the transcription factor ATF4. Elevated ATF4
expression, in turn, stimulates FGF21 gene transcription (Fig.
10). In the second pathway, CDCA stimulates eIF2«a phospho-
rylation, causing an elevation in ATF4 expression and an
increase in FGF21 gene transcription. To our knowledge, this is
the first report demonstrating a role for ATF4 in mediating the
effects of glucagon, insulin, and bile acids on hepatic gene
expression. An elevation in ATF4 expression has been shown to
mediate the stimulatory effect of essential amino acid defi-
ciency on FGF21 gene transcription (18). This finding, together
with the results of this study, indicate that ATF4 is a distal
regulatory factor that integrates a wide range of nutritional and
hormonal signals controlling FGF21 gene transcription.

Previous studies have shown that ectopic activation of
mTORCI1 via knockdown of TSC1 causes an increase in FGF21
gene expression (37). Expression of exogenous ATF4 or a con-
stitutively active form of Akt also induces FGF21 gene expres-
sion (18, 38). These findings provide support for our model that
an elevation in mTORC1 signaling activity and ATF4 expres-
sion is involved in mediating the stimulatory effect of glucagon
plus insulin on FGF21 gene transcription.
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FIGURE 8. CDCA induces ATF4 expression and ATF4 binding to AARE1 and AARE2, and knockdown of ATF4 expression suppresses the ability of CDCA
toincrease FGF21 mRNA abundance. A, effect of CDCA on ATF4 expression in primary rat hepatocytes. The abundance of ATF4 protein in total cell lysates and
levels of ATF4 mRNA and FGF21 mRNA in total RNA were measured after 2 h of treatment with CDCA (100 wm) or vehicle. The level of ATF4 protein, ATF4 mRNA,
and FGF21 mRNA in cells incubated with vehicle was set at 1, and the other values were adjusted proportionately. Values are means = S.E. of seven
experiments. An asterisk indicates that the mean is significantly (*, p =< 0.05) higher compared with that of cells treated with vehicle. B, gel mobility shift analyses
were performed as described under “Experimental Procedures” using nuclear extracts (N.E.) prepared from hepatocytes treated with or without CDCA for 2 h.
Positions of specific DNA-protein complexes (brackets) and supershifted complexes (SS) are indicated. C, effect of knockdown of ATF4 expression on CDCA
regulation of FGF21 gene expression. Hepatocytes were transfected with control siRNA or siRNA targeting ATF4 as described under “Experimental Procedures.”
After transfection, cells were incubated with CDCA for 2 h. Cells were then harvested, total RNA was isolated, and cellular extracts were prepared. Top panel,
FGF21 mRNA abundance was measured in total RNA. The level of FGF21 mRNA in non-transfected cells incubated with vehicle was set at 1, and all other values
were adjusted proportionately. The -fold stimulation by CDCA was calculated by dividing the FGF21 mRNA abundance of cells treated with CDCA by that of
cells treated with vehicle. The -fold responses were calculated for individual experiments and then averaged. The results are the means = S.E. of five
experiments. Different superscript letters indicate that the means are significantly (p = 0.05) different. Bottom panel, the abundance ATF4 protein and -tubulin
in cell lysates was measured by Western blotting analysis. These data are representative of five experiments.

Interactions between insulin and glucagon play an important
role in regulating hepatic metabolic processes. For example,
insulin acts in a dominant manner to suppress the stimulatory
effect of glucagon on the transcription of the gluconeogenic
genes PEPCK and glucose 6-phosphatase (30). This effect of
insulin on gluconeogenic enzyme expression is mediated by the
Akt/FoxO1 branch of the insulin signaling pathway (39, 40).
Other studies have shown that glucagon acts in a dominant
manner to suppress the stimulatory effect of insulin on the
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expression of the lipogenic transcription factor SREBP-1c and
its downstream target genes acetyl-CoA carboxylase and fatty
acid synthase (41, 42). This effect of glucagon on SREBP-1c
expression is mediated at least partially through the mTORC1
branch of the insulin signaling pathway (22, 42). In addition to
these two types of antagonistic interactions, our studies inves-
tigating the regulation of FGF21 expression describe a third
type of interaction in which glucagon cooperatively interacts
with insulin to stimulate ATF4 and FGF21 expression. Gluca-
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FIGURE 9. Inhibition of Akt and elF2« signaling activity suppresses the ability of CDCA to induce FGF21 mRNA abundance. A and B, primary rat
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containing 0.3 or T mm Akti-1/2 (A), 10 nm ISRIB (B), or vehicle. At 48 h of incubation, CDCA was added to the medium, and the incubation was continued for 2 h.
Cells were then harvested, total RNA was isolated, and cellular extracts were prepared. The abundance of FGF21 mRNA and ATF4 mRNA in total RNA and the
level of ATF4 protein, B-tubulin, phosphorylated Akt (Ser*”?), phosphorylated elF2« (Ser®"), total Akt, and total elF2« in total cell lysates was measured as
described under “Experimental Procedures.” Values for cells incubated in the absence of inhibitor and hormones were set at 1, and the other values were
adjusted proportionately. Values are means = S.E. of four experiments. *, p =< 0.05.
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FIGURE 10. Proposed model for how glucagon, insulin, and CDCA increase hepatic FGF21 gene expression and secretion. Glucagon binding to the
glucagon receptor stimulates CAMP production, resulting in an activation of PKA and EPAC. Activation of PKA enhances the ability of insulin to stimulate the
activity of mTORC1, a signaling complex that promotes an increase in ATF4 expression. ATF4 binds to the FGF21 gene, triggering an increase in FGF21
transcription and FGF21 secretion. In combination with EPAC, PKA also stimulates FGF21 secretion via a translational and/or posttranslational mechanism that
remains to be defined. In addition to glucagon and insulin, CDCA induces FGF21 transcription by increasing ATF4 expression. Here the elevation in ATF4
expression is mediated by phosphorylated elF2«a. CDCA also induces FGF21 transcription by ligand activation of FXR and by an undefined mechanism requiring
Akt activity. Results from genetic ablation studies and correlative analyses suggest that glucagon, insulin, and bile acid signaling activity plays a role in
mediating the induction of hepatic FGF21 expression during starvation and conditions related to metabolic syndrome (1, 15, 16, 47-49). Dose-response
studies performed in hepatocyte cultures have shown that insulin is effective in stimulating FGF21 mRNA abundance at a concentration observed in the portal
vein under fasted conditions (i.e. 1 nm) (14).

gon also cooperatively interacts with insulin to stimulate
hepatic DNA synthesis and cell proliferation (43, 44) and to
increase the activity of Aktand mTORCI1 (Figs. 54 and 6B) (20),
signaling proteins that are required for glucagon and insulin
regulation of ATF4 and FGF21 expression. The observation
that both antagonistic interactions (i.e. SREBP-1c) and cooper-
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ative interactions (i.e. FGF21) require the presence of mTORC1
suggests that a bifurcation of the insulin signaling pathway
exists downstream of mTORCI.

Previous studies by our laboratory have shown that glucagon
stimulates hepatic FGF21 secretion not only by a transcrip-
tional mechanism but also by a posttranscriptional mechanism
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(14). In the absence of insulin, glucagon regulation of FGF21
expression is solely posttranscriptional, as glucagon treatment
under this condition stimulates a 3-fold increase in FGF21
secretion without a corresponding elevation in FGF21 mRNA
abundance. Results of experiments employing selective ago-
nists and/or inhibitors of PKA and EPAC indicate that glucagon
regulation of FGF21 secretion in the absence of insulin is medi-
ated by both the PKA and EPAC branch of the cAMP pathway.
In contrast, the results of this study demonstrate that glucagon
regulation of FGF21 gene transcription in the presence of insu-
lin is mediated only by the PKA branch of the cAMP pathway
(Figs. 6 and 7). Together, these findings indicate that the PKA
branch of the cAMP pathway acts at both a transcriptional step
and a posttranscriptional step to control FGF21 secretion,
whereas the EPAC branch of the cAMP pathway acts only at a
posttranscriptional step to control FGF21 secretion. These
findings also indicate that cooperative interactions with insulin
are restricted to the PKA branch of the cAMP pathway.

In contrast to the mechanism mediating the regulation of
FGF21 transcription by glucagon plus insulin, CDCA and other
bile acids induce FGF21 transcription in part through ligand
activation of FXR (17). The results of this study indicate that
two additional pathways also contribute to the CDCA induc-
tion of FGF21 gene transcription. One pathway involves CDCA
stimulation of ATF4 expression via a P-elF2a-dependent
mechanism (Fig. 9B). The other pathway requires Akt activity
and is independent of changes in ATF4 expression (Fig. 94).
We postulate that that the latter pathway involves the tran-
scription factor nuclear factor E2-related factor 2 (Nrf2), as pre-
vious studies have shown that bile acids stimulate Nrf2 activity
via a PI3K/Akt-dependent mechanism and that Nrf2 induction
stimulates hepatic FGF21 expression in diabetic mice (45, 46).
The ability of CDCA to act through multiple signaling pathways
to induce FGF21 gene expression provides a means through
which CDCA can finely control FGF21 production during dif-
ferent conditions.

Nutritional stress (e.g. starvation) and diseases associated
with metabolic syndrome (e.g. obesity, type 2 diabetes, nonal-
coholic fatty liver disease) stimulate an increase in hepatic
FGF21 expression and serum FGF21 levels (5, 7-10). Elevated
FGF21 production, in turn, mediates adaptive changes in insu-
lin sensitivity, growth, circadian behavior, and energy metabo-
lism under these conditions (1-7, 11). What is the role of the
CDCA/elF2a/ATF4 pathway and the glucagon/insulin/PKA/
mTORC1/ATF4 pathway in mediating changes in FGF21
expression caused by nutritional stress and metabolic syn-
drome? Previous studies have shown that hepatic levels of bile
acids and serum levels of bile acids, glucagon, and insulin are
elevated in obesity, type 2 diabetes, and nonalcoholic fatty liver
disease (47—49). Hepatic ATF4 expression, elFa phosphoryla-
tion, PKA activity, and mTORCI1 activity are also elevated in
obesity, type 2 diabetes, and nonalcoholic fatty liver disease
(50-53). Recent studies have shown that insulin induction of
mTORC1 activity under conditions of insulin resistance
requires signaling through Aktl/2 (54). These observations
provide support for arole of both the CDCA/elF2«/ATF4 path-
way and the glucagon/insulin/PKA/mTORC1/ATF4 pathway
SASBMB

MARCH 31,2017 «VOLUME 292+-NUMBER 13

in mediating changes in FGF21 expression caused by metabolic
syndrome.

There is evidence that the glucagon/insulin/PKA/mTORC1/
ATF4 pathway also plays a role in mediating the increase in
FGF21 expression caused by starvation. First, results of exper-
iments employing mice lacking hepatic insulin signaling activ-
ity (i.e. liver-specific deletion of IRS-1 and IRS-2) or glucagon
signaling activity (i.e. deletion of the glucagon receptor) have
shown that both of these pathways are required for the starva-
tion-induced increase in hepatic FGF21 expression (1, 15, 16).
Second, fasting for 48 h causes an increase in hepatic PKA and
mTORCI1 signaling activity and ATF4 protein expression (30,
55, 56). Previous studies have shown that mTORCI signaling
activity induces both cap-dependent and cap-independent
translation of selective internal ribosome entry site-containing
mRNAs (57). We hypothesize that glucagon plus insulin stim-
ulates ATF4 protein expression by enhancing mTORC1-depen-
dent internal ribosome entry site translation of ATF4 mRNA
(58).

In conclusion, the results of this study demonstrate that glu-
cagon and insulin act through PKA and mTORCI1 to induce the
expression of ATF4, a transcription factor that binds the FGF21
gene and activates transcription. This finding in combination
with the observation that PKA activity, mTORCI activity, and
ATF4 expression are elevated after 48 h of starvation supports
previous studies demonstrating that both insulin signaling
activity and glucagon signaling activity are required for the
stimulatory effect of starvation on hepatic FGF21 gene
expression (1, 15, 16). The results of this study also demon-
strate that alterations in ATF4 expression play a role in
mediating the stimulatory effect of CDCA on FGF21 gene
expression and that el[F2a mediates the increase in ATF4
expression caused by CDCA. Previous studies have shown
that the eIlF2a/ATF4 pathway mediates the induction of
hepatic FGF21 expression caused by essential amino acid
deficiency (5, 18). Knockout studies performed in mice sug-
gest that the eIF2a kinase general control nonderepressible 2
(GCN2) plays a role a mediating the induction of ATF4 and
FGF21 expression caused by acute dietary protein restriction
(59). The role of GCN2 and other elF2« kinases in mediating
the stimulatory effect of bile acids on FGF21 expression is
the subject of future investigations.

Experimental Procedures

Cell Culture—Primary hepatocytes were isolated from 24-h-
starved male Sprague-Dawley rats (~175-200 g) as described
by Stabile et al. (60). Cells were plated on 35-mm or 60-mm
collagen-coated dishes (1.4 X 10°cells/cm?) containing Way-
mouth medium MD752/1 supplemented with 20 mm HEPES
(pH 7.4), 0.5 mM serine, 0.5 mm alanine, 100 ug/ml penicillin,
100 pg/ml streptomycin, 50 mg/ml gentamicin, and 5% new-
born calf serum. At 4 h of incubation, the medium was replaced
with one of the same composition lacking newborn calf serum.
A Matrigel overlay (0.3 mg/ml) and insulin (50 nm) were added
at this time. At 24 h of incubation, the cells were washed in
serum-free Medium 199 lacking insulin, and the incubation
was continued in serum-free Medium 199. At 48 h of incu-
bation, the medium was replaced with one of the same com-
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position containing the treatments indicated in the figure
legends. Hepatocyte cultures were maintained in a humidi-
fied chamber at 37 °C in 5% CO, and 95% air. This study was
carried out in strict accordance with the recommendations
in the Guide for the Care and Use of Laboratory Animals of
the National Institutes Health and was approved by the Insti-
tutional Animal Care and Use Committee of West Virginia
University (protocol approval no. 15-0904). Chenodeoxy-
cholic acid, dibutyryl cAMP, and Akti-1/2 (1,3-dihydro-1-
(1-((4-(6-phenyl-1H-imidazo[4,5-g]quinoxalin-7-yl)phenyl)
methyl)-4-piperidinyl)-2H-benzimidazol-2-one) were ob-
tained from Sigma-Aldrich. Rapamycin and LY294002 were
purchased from LC Laboratories. H89 and ISRIB were
obtained from Cayman. Bovine insulin was a gift from Lilly.
N®benzoyladenosine-3’,5'-cyclic monophosphate (Biolog)
and  8-(4-chlorophenylthio)-2’-O-methyladenosine-3’,5'-
cyclic monophosphate (R&D Systems) were obtained from
the indicated sources.

Transient Transfection—The construction of reporter plas-
mids containing fragments of the rat FGF21 promoter/regula-
tory region linked to the luciferase gene has been described
previously (17). Site-directed mutations were introduced into
the —1316 to +68 bp FGF21 reporter plasmid using the Agilent
QuikChange IT XL site-directed mutagenesis kit. Hepatocytes
were plated on 35-mm dishes and transfected with 1 ug of the
—2940 to +68 FGF21 reporter plasmid or an equimolar
amount of another reporter plasmid using Lipofectin reagent
(Invitrogen). At 18 h of incubation, the transfection medium
was replaced with fresh medium, and a Matrigel overlay (0.3
mg/ml) was added. At 48 h of incubation, the medium was
replaced with fresh medium with or without glucagon plus
insulin. At 72 h of incubation, cells were harvested, and cell
extracts were prepared in 1 X cell culture lysis buffer (Promega).
Cell extracts were centrifuged at 12,000 X g for 2 min, and the
supernatants were assayed for protein concentration and lucif-
erase activity. Luciferase assay reagent was obtained from
Promega.

siRNA Knockdown Experiments—Primary hepatocytes were
plated on 35-mm dishes and transfected with 30 pmol of siRNA
targeting ATF4 (Silencer Select siRNA IDs s135172 and
s135173, Ambion) or 30 pmol of negative control #1 siRNA
(Ambion) using Lipofectamine RNAiIMAX reagent (Invitro-
gen). At 18 h of incubation, the transfection medium was
replaced with Medium 199, and a Matrigel overlay (0.3 mg/ml)
was added. The medium was replaced with fresh medium at
48 h and 66 h of incubation. After the medium change at 66 h of
incubation, cells were treated with or without CDCA for 2 h or
glucagon plus insulin for 12 h. Cells were then harvested, cell
extracts were prepared, and total RNA was isolated.

Western Blotting Analysis—Total cell extracts were prepared
from hepatocytes as described by Hansmannel et al. (61),
except that the lysis buffer contained 25 mm Tris-HCI (pH 7.6),
150 mm NaCl, 1% Nonidet P-40, 1% sodium deoxycholate,
0.1% SDS, and a mixture of protease inhibitors and phospha-
tase inhibitors (Halt, Thermo Scientific). Equal amounts of
denatured protein were subjected to electrophoresis in SDS-
polyacrylamide gels and then transferred to polyvinylidene
difluoride membranes (Immobilon-FL, Millipore) using an elec-
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troblotting apparatus (Bio-Rad). The blots were blocked in
TBST (10 mm Tris-HCI (pH 8.0), 150 mm NaCl, and 0.1%
Tween) containing 5% nonfat dry milk for 1 h at room temper-
ature and then incubated with primary antibody diluted 1:1000
in TBST containing 5% bovine serum albumin. After incuba-
tion with primary antibody for 12 h at 4 °C, the blots were
washed in TBST. Next, the blots were incubated with second-
ary antibody conjugated to horseradish peroxidase (Jackson
ImmunoResearch Laboratories) diluted 1:5000 in TBST for 1 h
at room temperature. After washing with TBST, antibody-pro-
tein complexes on blots were detected using enhanced chemi-
luminescence (Amersham Biosciences). Fluorescence on the
blots was visualized using a Typhoon 9410 imager, and signals
were quantified using ImageQuant software. Antibodies against
ATF4, phosphorylated Akt (Ser*”®), phosphorylated elF2a (Ser®"),
phosphorylated ribosomal protein S6 (Ser**>/?%¢), total Akt, total
elF2q, total ribosomal protein S6, and B-tubulin were obtained
from Cell Signaling Technology.

Isolation of RNA and Quantitation of mRNA Levels—Total
RNA was extracted from cell cultures by the guanidinium thio-
cyanate/phenol/chloroform method (62). The abundance of
mRNA encoding FGF21, ATF4, sterol regulatory element-
binding protein 1c (SREBP-1c), and phosphoenolpyruvate car-
boxykinase (PEPCK) was measured by quantitative real-time
PCR analysis using the Qiagen Quantitect SYBR Green RT-
PCR system. Samples of DNase I-treated RNA (100 ng) were
analyzed in triplicate according to the instructions of the man-
ufacturer. PCR was performed in 96-well plates using a Bio-Rad
iCycler iQ. The relative amount of mRNA was calculated using
the comparative Ct method. Rat cyclophilin and glucuronidase
B were used as reference genes. Amplification of specific tran-
scripts was confirmed by analyzing the melting curve profile
performed at the end of each run and by determining the size of
the PCR products using agarose electrophoresis and ethidium
bromide staining. The sequences of the primer sets are available
upon request.

Gel Mobility Shift Analysis—Nuclear extracts were prepared
from primary rat hepatocytes as described previously (63).
Double-stranded oligonucleotides were labeled by filling in
overhanging 5’ ends using the Klenow fragment of Escherichia
coli DNA polymerase in the presence of [a-**P]dGTP. The
binding reactions were carried out in 30 ul containing 15 mm
HEPES (pH 7.9), 150 mm NaCl, 0.5 mum MgCL,, 0.35 mm EDTA,
0.35 mm dithiothreitol, 15% glycerol (v/v), 0.2 mg/ml bovine
serum albumin, 0.25% Triton X-100 (v/v), and 0.5 ug poly(dI-
dC). The reactions contained 50,000 cpm of labeled DNA and
20 pg of nuclear extract. The reactions were incubated on ice
for 60 min. DNA and DNA-protein complexes were resolved on
5% nondenaturing polyacrylamide gels at 4 °C in 0.5 m Tris (pH
8.8) and 4 M glycine. Following electrophoresis, the gels were
dried and subjected to storage phosphor autoradiography. For
gel supershift experiments, nuclear extracts were incubated
with antibodies for 1 h at 0 °C prior to addition of the oligonu-
cleotide probe.

Statistical Methods—Data were subjected to analysis of vari-
ance, and statistical comparisons were made with the Student’s
t test.
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