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Every sensation begins with the conversion of a sensory stimulus into the response of a receptor neuron. Typically, this
involves a sequence of multiple biophysical processes that cannot all be monitored directly. In this work, we present an
approach that is based on analyzing different stimuli that cause the same final output, here defined as the probability
of the receptor neuron to fire a single action potential. Comparing such iso-response stimuli within the framework of
nonlinear cascade models allows us to extract the characteristics of individual signal-processing steps with a temporal
resolution much finer than the trial-to-trial variability of the measured output spike times. Applied to insect auditory
receptor cells, the technique reveals the sub-millisecond dynamics of the eardrum vibration and of the electrical
potential and yields a quantitative four-step cascade model. The model accounts for the tuning properties of this class
of neurons and explains their high temporal resolution under natural stimulation. Owing to its simplicity and
generality, the presented method is readily applicable to other nonlinear cascades and a large variety of signal-
processing systems.
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Introduction

Animals and human beings rely on accurate information
about their external environment and internal state for
proper behavioral reactions. This vital requirement has led to
a large variety of highly sophisticated sensory systems [1]. A
common feature, though, is the step-by-step conversion of
the incoming signal through multiple sequential transforma-
tions. In auditory systems, for example, air-pressure fluctua-
tions induce oscillations of mechanical resonators such as the
eardrums, basilar membranes, and hair sensilla [2,3,4,5].
These oscillations cause the opening of mechanosensory ion
channels in auditory receptor cells [6,7,8]. The resulting
electrical currents change the cells’ membrane potentials.
This, in turn, activates voltage-dependent ion channels that
eventually trigger action potentials, which are passed to
higher brain areas for further information processing (Figure
1). Each processing step induces a transformation of the
stimulus representation that may include rectification,
saturation, and temporal filtering. In the mammalian ear,
this processing sequence is extended by nonlinear mechanical
amplification and feedback [9], which influence the individual
processing steps. Similar multi-step sequences of biophysical
or biochemical transduction processes underlie the proper
function of all sensory and many other signaling systems.

We here show that it is possible to extract fine temporal
details of individual processes within such signal-processing
chains from observing the output activity alone. This progress
results from a new method that extends an experimental
strategy well known from measuring threshold curves in
neurobiology [10] or applying equivalence criteria in psycho-
physics [11]: varying stimulus parameters such that the
investigated pathway, cell, or system stays at a constant level
of output activity. The key to the new method is to compare
different stimuli within these measured iso-response sets in
such a way that single processing steps can be dissociated. A
cascade model is used as a mathematical framework to infer
the salient features of the individual processes. This allows us

to quantitatively characterize the signal-processing dynamics
even under in vivo conditions.
Unlike many classical approaches of systems identification,

the method is not based on temporal correlations between
the input and output; hence, the time resolution of the
method is not limited by the output precision of the system
under study. In a spike-based analysis of neural response
properties, this allows us to assess the dynamical features of
the involved processes with considerably higher resolution
than suggested by the spike jitter.
A particularly fine temporal resolution is needed to analyze

signal processing in auditory systems that solve complex tasks
such as sound localization, echolocation, and acoustic
communication [12,13,14,15]. Here, even single receptor cells
display extraordinary sub-millisecond precision [14,16,17],
with the underlying signal-processing steps involving yet
shorter time scales. How these individual steps operate over
short times and eventually allow such remarkable precision is
largely unknown because of the high vulnerability of the
auditory periphery. This calls for methods based on neuro-
physiological measurements from a remote downstream
location such as the auditory nerve, so that the mechanical
structures of the ear remain intact.
As a suitable model system to study signal processing in the

ear, we chose the auditory periphery of the locust (Locusta
migratoria). Its anatomy is well characterized [18], and the
auditory nerve is easily accessible for electrophysiological
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recordings. The nerve contains the axons of the receptor
cells. These can be roughly divided into two groups according
to their frequency of maximum sensitivity, which lies near 5
kHz for low-frequency receptor cells and around 15 kHz for
high-frequency receptor cells. The mechanical structure of
the locust system is simpler than that of mammals, as the
receptor cells are directly attached to the tympanic mem-
brane, the animal’s eardrum. Also, in contrast to the signal
amplification in the vertebrate cochlea, there are no known
feedback loops, a circumstance which facilitates the model-
ing. General features of mechanoreceptors, on the other
hand, are surprisingly similar across species and are also
shared by hair cells in the mammalian inner ear [8].

Results

To analyze signal processing in the locust ear, we
performed intracellular recordings in vivo from single
receptor-cell axons in the auditory nerve. The stimuli
consisted of two short clicks. The clicks were sound-pressure
pulses with peak amplitudes A1 and A2, respectively, and were
separated by a short time interval, Dt (Figure 2A; see also
Figure S1 for microphone recordings). For such stimuli, the
receptor cell fired at most one action potential per double
click; stimulus intensity hardly influenced spike timing, but
strongly affected spike probability, as shown in Figure 2B.
The response strength may thus be described by the
probability that a spike occurs within a certain time window
after the two clicks.

For fixed time interval Dt, an iso-response set consists of
those combinations of A1 and A2 that lead to the same
predefined spike probability p. Since the spike probability
increases with the click amplitudes, A1 and A2 can easily be
tuned during an experiment to yield the desired value of p
(see Materials and Methods). The tuning scheme was applied
for stimulus patterns with different relative sizes of the two
clicks, so that a multitude of different combinations of A1 and
A2 corresponding to the same p was obtained. Rapid online
analysis of the neural responses and automatic feedback to

the stimulus generator made it possible to apply this scheme
despite the time limitations of the in vivo experiments.
Figure 3 shows typical examples of such iso-response sets,

measured for different time intervals Dt. For each of the three
cells displayed, two distinct values of Dt were used. The sets
can be used to identify stimulus parameters that govern signal
processing at a particular time scale. Most importantly, the
iso-response sets exhibit specific shapes that vary systemati-
cally with Dt. For short intervals (below approximately 60 ls),
the sets generally lie on straight lines, at least for low-
frequency receptor cells. High-frequency receptor cells do not
display straight lines even at the smallest Dt used in the
experiment (40 ls) for reasons that will become apparent
later. For long intervals (between approximately 400 and 800
ls, depending on the cell), the iso-response sets fall onto
nearly circular curves. Note that in Figure 3C, the iso-response
set for Dt = 500 ls deviates from the symmetry between A1

and A2. In Figure 3D, the inter-click interval of Dt=120 ls fell
in neither of the two regimes discussed above, and the
corresponding iso-response set shows a particularly bulged
shape. Recordings from a total of eight cells agree with the
observations from the three examples displayed in Figure 3.
The two prominent shapes of the iso-response sets—

straight lines and circles—reflect two different processing
steps in the auditory transduction chain. A straight line
implies that the linear sum, A1þ A2, of both click amplitudes
determines the spike probability and demonstrates that the
sound pressure is most likely the relevant stimulus parameter.
Such linear summation of the pressure on short time scales is
not surprising, considering the mechanical properties of the
eardrum; owing to its mechanical inertia, rapidly following
stimuli can be expected to superimpose. This interpretation
is in agreement with laser-interferometric and stroboscopic
observations of the eardrum, which have demonstrated that it
reacts approximately linearly to increases in sound pressure
[3,19].
For the longer intervals, on the other hand, the iso-

response sets are circles to good approximation, indicating
that the quadratic sum, or A1

2 þ A2
2, now determines the

spike probability. It follows that the sound energy, which is

Figure 1. Sequential Processing in the

Auditory Transduction Chain

A sequence of several steps transforms
an incident sound wave into a neural
spike response.
(1) Mechanical coupling. The acoustic
stimulus induces vibrations of a mechan-
ical membrane (basilar or tympanic
membrane).
(2) Mechanosensory transduction. The
deflections cause the opening of mecha-
nosensory ion channels in the membrane
of a receptor neuron. Many details of
this transduction process are still un-
known. The depicted schematic coupling
follows the gating-spring model pro-
posed for mechanosensory transduction
in hair cells [43].

(3) Electrical integration. The electrical charge due to the transmembrane current accumulates at the cell membrane.
(4) Spike generation. Action potentials are triggered by voltage-dependent currents.
Each of these four steps transforms the signal in a specific way, which may be nearly linear (as for the eardrum response) or strongly nonlinear (as
for spike generation, which is subject to thresholding and saturation). In general, the illustrated steps may contain further sub-processes such as
cochlear amplification or synaptic transmission between hair cells and auditory nerve fibers. For the auditory periphery of locusts investigated in
the present study, this schematic picture resembles anatomical findings [18], which reveal that the receptor neurons are directly attached to the
eardrum and that they send their action potentials down the auditory nerve without any further relay stations.
DOI: 10.1371/journal.pbio.0030008.g001
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proportional to the squared pressure, is the relevant stimulus
parameter on this time scale. This quadratic summation
represents a fundamentally different way of stimulus inte-
gration from that of the linear summation on short time
scales and indicates the involvement of a different biophys-
ical process. A process that can mediate stimulus integration
over longer intervals is the accumulation of electrical charge
at the neural membrane. According to this explanation, the
electrical potential induced by a click is proportional to the
click’s energy; contributions from consecutive clicks are then
summed approximately linearly because of the passive

membrane properties. This is in accordance with earlier
investigations for stationary sound signals that revealed an
energy dependence of the neurons’ firing rate [20]. We
conclude that in between the mechanical vibration of the
eardrum and the accumulation of electrical charge at the
neural membrane, there is a squaring of the transmitted
signal. This squaring may be attributed to the core process of
mechanosensory transduction, i.e., the opening of ion
channels by the mechanical stimulus.
The above findings motivate the following mathematical

model, which describes how a stimulus consisting of two
sound clicks is transformed into a spike probability. Within

Figure 2. Receptor Neuron Responses for Two-Click Stimuli

(A) Stimulus parameters. Acoustic stimuli consisted of two short
clicks with amplitudes A1 and A2, respectively, separated by a peak-to-
peak interval Dt. The clicks were triangular and had a total width of
20 ls. The peak-to-peak interval was generally less than 1.5 ms.
(B) Raster plots of spike responses. Spike times obtained from a single
receptor neuron with four different peak intensities (83–86 dB SPL)
are shown for 30 runs each. For the different intensities, both click
amplitudes were varied while their ratio was kept fixed, with intensity
values referring to the larger click amplitude. The inter-click interval
in this example was 40 ls. The values of p denote the measured spike
probabilities. The inset displays spike times from the strongest sound
stimulus at higher magnification. All spikes fall in a temporal window
between 4.5 and 5.5 ms after stimulation. Spike times were recorded
with a temporal resolution of 0.1 ms. These data illustrate that the
response of the receptor cell is well described by the occurrence
probability of a single spike in a rather broad time window, for
example, between 3 and 10 ms after stimulus presentation. As is often
observed for these receptor cells, there is virtually no spontaneous
activity.
DOI: 10.1371/journal.pbio.0030008.g002

Figure 3. Measurements of Iso-Response Sets and Identification of

Relevant Stimulus Parameters

(A) Acoustic stimuli. The stimuli consisted of two short clicks with
amplitudes A1 and A2 that were separated by a peak-to-peak interval
Dt, here shown for Dt = 40 ls (upper trace) and Dt = 750 ls (lower
trace).
(B–D) Examples of iso-response sets from three receptor cells. Here,
as throughout the paper, iso-response sets correspond to a spike
probability of 70%. Each panel shows iso-response sets from a single
receptor cell for two different values of Dt, one smaller than 100 ls
(filled circles) and one larger (open squares). The solid lines denote
fits to the data of either straight lines or circles. The values for Dt used
in the experiments are indicated in the respective panels. All error
measures display 95% confidence intervals. For the short intervals,
the data are well fitted by straight lines (A1þA2 = constant). For the
long intervals in (B) and (C), circles (A1

2þA2
2 = constant) yield good

fits; a slight asymmetry is clearly visible in (C). The data for the
intermediate inter-click interval Dt = 120 ls in (D) are not well fitted
by either of these shapes. Here, the measured points are connected by
a dashed line for visual guidance. Note that in (B) the overall
sensitivity of the neuron seems to have changed; the intersections of
the straight line and the circle with the x- and y-axis do not match
exactly although the stimulus in these cases is the same, a single click.
The reason may be either a slow adaptation process or a slight
rundown of the recording over the experimental time of around 30
min. However, this does not account for the more prominent
differences in shape of the two iso-response sets. These examples
demonstrate that on different time scales, different stimulus
parameters are relevant for the transduction process, the amplitude
A of a sound stimulus for short times and its energy A2 for long times.
DOI: 10.1371/journal.pbio.0030008.g003
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the model, a single click of amplitude A generates a vibration
of the tympanum with strength X = c1�A, i.e., linear in the
amplitude with a proportionality constant c1. This mechan-
ical vibration leads to a membrane potential, whose effect on
the generation of the spike some time T after the click is
given by J = c2�X2 = c2�(c1�A)2, i.e., quadratic in the amplitude
with an additional proportionality constant c2. The square
follows from the circular shape of the iso-response sets for
longer time scales, which indicated that a quadratic operation
must take place before the accumulation of charge at the
neural membrane. Finally, the spike probability p is given by a
yet unknown function p = g( J). As J is the relevant quantity
determining spike probability, we also refer to it as ‘‘effective
stimulus intensity.’’ The model contains a freedom of scaling;
any proportionality constants in J can be absorbed into the
function g( J). To simplify the notation, we thus set c1 = c2 =
1 and obtain X = A for the strength of the mechanical
vibration and J = X2 = A2 for the effective stimulus intensity
in response to a single click.

Note that in this picture, the mechanical vibration and the
membrane potential are each captured by a single quantity
that does not describe the time course of the corresponding
processes, but rather their integrated strength in response to
a click. In general, the conversion of the mechanical vibration
into a membrane potential as well as the spike generation are
dynamical processes that do not happen at a single moment
in time. For simplicity, however, one may think of X as
describing the velocity of the mechanical vibration immedi-
ately after the click and J as capturing the membrane
potential at the time of spike generation.

For the two-click stimulus with amplitudes A1 and A2,
respectively, we choose the first click to be small enough so
that it does not lead to a spike by itself. The measured action
potential is thus elicited at some time T after the second click.
To derive the model equation for this experimental situation,
we divide the time from the first click to spike generation into
the period between the two clicks and the period following
the second click.

Let us start by focusing on the inter-click interval. After the
first click, the mechanical vibration has the strength X1 = A1.
However, how much electrical charge accumulates during the
inter-click interval to influence spike generation at timeT after
the second click depends on the length Dt of the inter-click
interval. This effect is incorporated by a Dt-dependent scaling
factor Q(Dt) into the model and results in a first contribution
from the first click to spike generation given by J1 =A1

2�Q(Dt).
SinceQ(Dt) denotes the effect of the first click within the inter-
click interval only, it should vanish in the limit of very small Dt.

Let us now consider the remaining time before spike
generation. After the second click, the mechanical vibration
is due to a superposition of both clicks. For short inter-click
intervals, the straight iso-response lines suggest a simple
addition of the two click amplitudes; in general, however, the
contribution of the first click to the membrane vibration
after the second click will again depend on the inter-click
interval Dt. This is modeled by a scaling factor L(Dt), i.e., the
vibration after the second click has a strength X2 = A1� L(Dt)
þA2. Accordingly, the effect of the two-click vibration on the
membrane potential at time T after the second click is J2 =
(X2)

2 = (A1� L(Dt) þ A2)
2. For very small Dt, L(Dt) should

approach unity to account for the equal contribution of both
clicks for vanishing inter-click intervals. The total effective

stimulus intensity is then given by

J ¼ J1 þ J2 ¼ A 2
1 � QðDtÞ þ A1 � LðDtÞ þ A2ð Þ2: ð1Þ

This quantity determines the spike probability p via the
relation p = g( J).
How does this model explain the particular shapes of the

iso-response sets in Figure 3? The linear and the circular iso-
response sets apparently correspond to the two special cases:
(1) L(Dt) = 1 and Q(Dt) = 0 (straight line) and (2) L(Dt) = 0
and Q(Dt) = 1 (circle).
We can therefore regard equation 1 as a minimal model

incorporating linear as well as quadratic summation, as
suggested by the measured iso-response sets. Based on the
experimental data, we expect that the first case is approx-
imately fulfilled for small Dt and the second case in some
range of larger Dt. In our biophysical interpretation, the first
case means that the two clicks are added at the tympanic
membrane (L(Dt) ’ 1), but the short interval between the two
clicks prevents a substantial accumulation of charge from the
first click alone (Q(Dt) ’ 0), as already discussed above. The
second case may be found for Dt long enough that the
mechanical vibration has already decayed (L(Dt)’ 0). The two
clicks are then individually squared, i.e., they independently
lead to two transduction currents. The currents add up if the
time constant of the neural membrane is significantly longer
than the inter-click interval (Q(Dt) ’ 1).
In the two limiting cases, equation 1 is symmetric with

respect to A1 and A2, reflecting the symmetry of, e.g., the data
in Figure 3B. However, for values of Dt where neither of the
two cases is strictly fulfilled, this symmetry of the iso-response
sets will be distorted, as is noticable for the longer Dt in
Figure 3C. Other sets of values for L(Dt) and Q(Dt) may lead to
very different iso-response shapes, as in Figure 3D.
Equation 1 presents a self-contained model for click stimuli

and is sufficient to analyze the temporal characteristics of the
individual steps. It can be interpreted as a signal-processing
cascade that contains two summation processes, one linear in
the click amplitudes and one quadratic. For click stimuli, the
functions L(Dt) and Q(Dt) are thus filter functions associated
with the linear and quadratic summation, respectively.
Despite the simple structure of the model, the filters L(Dt)

and Q(Dt) can be expected to retain the salient features of the
underlying biophysical processes such as frequency content
and integration time. In Protocol S1, we show that equation 1
can be obtained in an a posteriori calculation from a
generalized cascade model and that this derivation leads to
an interpretation of L(Dt) as the velocity of the mechanical
vibration and of Q(Dt), at least for large enough Dt, as the time
course of the membrane potential following a click. In this
generalized model, the input signal is an arbitrary sound
pressure wave A(t), and the effective stimulus intensity is a
continuous function of time, J(t), which is given by

JðtÞ ¼
Z ‘

0
ds9qðs9Þ �

Z ‘

0
ds lðsÞ � Aðt� s� s9Þ

�2

:

 
ð2Þ

Here, the input A(t) is first convolved with a temporal filter,
l(s), the result is squared and subsequently convolved with a
second filter, q(s), as depicted in Figure 4. The filters l(s) and
q(s) have characteristics similar to the click-version filters
L(Dt) and Q(Dt), but are not identical to them. Their relations

PLoS Biology | www.plosbiology.org January 2005 | Volume 3 | Issue 1 | e80147

Disentangling an Auditory Transduction Chain



follow from the calculation in Protocol S1. As we here focus
on click stimuli, we will use the simpler equation 1 to evaluate
the temporal structures of L(Dt) and Q(Dt).

Note that we interpret equation 1 to yield the spike
probability after the second click. If the first click is large and
the second small, however, the first click alone may account
for some of the observed spikes; clearly this is the case when
the second click vanishes. This is not captured by equation 1,
and one might expect that, for large values of A1, these
additional spikes lead to measured values of A2 that are
slightly smaller than expected for a circular iso-response set.
The data in Figure 3, however, suggest that this effect is small
and not picked up by our experiment. Nevertheless, for the
following quantitative study, we will keep the first click always
on a level where the click by itself does not contribute
substantially to the spike probability.

The previous experiment showed that the separate effects
of the two summation processes can be discerned for short
and long time intervals. For intermediate Dt, however, their
dynamics may largely overlap. Is it nevertheless possible to
design an experiment that directly reveals the whole time
course of the mechanical vibration L(Dt) and the electrical
integration Q(Dt)? This would provide a parameter-free
description of both processes and advance the quantitative
understanding of the auditory transduction dynamics. To
reach this goal, we again measure iso-response sets. As before,
we exploit that for fixed Dt, any pair of click amplitudes (B1,
B2) should result in the same spike probability p as the pair
(A1, A2) as soon as J(A1, A2) = J(B1, B2). It is this
straightforward relation that allows us to determine both
L(Dt) and Q(Dt) independently of each other. In fact, some
appropriate set of measurements that fulfill the iso-response
relation is all that is needed to calculate L(Dt) and Q(Dt).
Illustrating this concept, we now proceed with a particularly
suited choice of stimulus patterns, which keeps the mathe-
matical requirements for the calculation at a minimum. For
each Dt, we measure two different iso-response stimuli, and as
a key feature, one of these has a ‘‘negative’’ second click, i.e., a
sound-pressure pulse pointing in the opposite direction as
the first click, as depicted in Figure 5A. Mathematically, this
choice of stimulus patterns leads to two simple equations for
the two unknowns L(Dt) and Q(Dt), which can be solved
explicitly, as explained in Materials and Methods. By
repeating such double measurements for different values of
Dt, the whole time course of L(Dt) and Q(Dt) is obtained.

Figure 5 shows examples of L(Dt) and Q(Dt) for three
different cells. L(Dt) displays strong oscillatory components, as
was observed for all cells. This property presumably reflects
the eardrum’s oscillation at the attachment site of the
receptor cell. The detailed temporal structure of L(Dt) now
allows us to investigate the salient features of this oscillation.
To quantify our findings, we fit a damped harmonic oscillation
to the measured data for L(Dt) and extract the fundamental
frequency as well as the decay time constant. We can use these
values to predict the neuron’s characteristic frequency (the
frequency of highest sensitivity) and the width of its
frequency-tuning curve. Figure 6 shows the comparison of
these predictions with traditional measurements of the tuning
curves for all 12 cells measured under this experimental
paradigm with sufficient sampling to extract L(Dt). The
remarkable agreement confirms that the new analysis faith-
fully extracts the relevant, cell-specific properties of the
transduction sequence. The correspondence between the
tuning characteristics and the filter L(Dt) also explains why
high-frequency receptor cells do not feature straight lines for
their iso-response sets even at the shortest inter-click interval
(40 ls) used in the experiment. For those cells, L(Dt) decays
rapidly, thus not allowing access to the region where L(Dt)’ 1.
The short initial rise phase of the measured Q(Dt) in Figure

5E and 5F illustrates the rapid buildup of the membrane
potential after a click. The exponential decay following this
phase suggests that the accumulated electrical charge decays
over time owing to a leak conductance. Previously, the time
constant could not be measured because of difficulties in
obtaining recordings from the somata or dendrites of the
auditory receptor cells. Using our new method, we find time
constants in the range of 200 to 800 ls. These values are small
compared to time constants in more central parts of the
nervous system, reflect the high demand for temporal
resolution in the auditory periphery, and explain the high
coding efficiency of the investigated receptor neurons under
natural stimulation [21].
In most of our recordings, the temporal extent of the filter

L(Dt) was considerably smaller than that of Q(Dt). This usually
leads to a region around a Dt of 400–800 ls, depending on the
specific cell, where L(Dt) ’ 0 and Q(Dt) is still near unity.
These findings correspond to the circular iso-response sets of
the initial experiment.
Towards very small Dt, on the other hand, the data show

that Q(Dt) usually decreases strongly. As explained earlier, this
is expected from the linear iso-response sets, and it is
observed exemplarily in the data shown in Figure 5E and 5F.
In addition, the first few 100 ls of the data may show
considerable fluctuations of Q(Dt) for some recordings, as in
Figure 5G. Different effects may influence this early phase of
Q(Dt). (1) The electrical potential might be shaped by further
dynamics in addition to the low-pass properties of the neural
membrane, such as inactivation of the transduction channels
or electrical resonances as found in some hair cells [6]. (2) The
fluctuations could reflect the oscillatory influx of current
following from the oscillation of the eardrum. In other words,
the low-pass filtering of the neural membrane may not be
strong enough to quench all oscillatory components of the
transduction currents. The resulting effect on the filter
Q(Dt)—though too small to be picked up reliably by the
present experiments—can be observed in simulations of the
processing cascade, see Figure S2. At present, we cannot

Figure 4. Generalized Cascade Model of the Auditory Transduction Chain

The model is composed of a sequence containing two linear temporal
filters, l(s) and q(t), and two static nonlinear transformations, namely a
quadratic nonlinearity and an output nonlinearity ~g(�), which may
differ from the nonlinearity g(�) of the click-stimulus model (see
Protocol S1). First, the stimulus A(t) is convolved with the filter l(s)
(linear integration). Second, the result is squared (nonlinear trans-
formation). Third, the result of the previous step is convolved with
the filter q(s), yielding the effective stimulus intensity J(t) (linear
integration). Fourth, a final transformation ~g of J(t) (nonlinear
transformation) determines the response, which in this generalized
model is the time-dependent firing rate r(t). The model thus
corresponds to an LNLN cascade. This abstract structure directly
follows the sequential configuration of the biophysical processing
steps shown in Figure 1.
DOI: 10.1371/journal.pbio.0030008.g004
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distinguish between these two interpretations. More detailed
future experiments, however, may allow a quantitative test of
these hypotheses.

Measuring the mechanical and electrical response dynam-
ics, L(Dt) and Q(Dt), completes the model. In order to test its
validity and suitability to make quantitative predictions, we
investigated the model’s performance on a different class of
stimuli, namely combinations of three short clicks. Having
measured the required values for L(Dt) and Q(Dt) with two-
click stimuli as in the previous experiment (see Figure 5), we
now ask the following question: if we keep the first two clicks
small enough that they do not lead to a spike response, can we
predict the size of the third click required to reach a given
spike probability? We can use the measured values of L(Dt)
and Q(Dt) to calculate these predictions and experimentally
test them by performing a series of three-click iso-response
measurements. This experiment was performed on three
different cells; one cell featured an unusually high response
variability, and results from the other two cells are shown in
Figure 7. The agreement between the predicted and the true
click amplitudes shows that the model yields quantitatively
accurate results.

Discussion

We have presented a novel technique to disambiguate
single processing steps within a larger sensory transduction

sequence and to analyze their detailed temporal structures.
Our approach is based on measuring particular iso-response
sets, i.e., sets of stimuli that yield the same final output, and
on specific quantitative comparisons of such stimuli to
dissociate the individual processes. For the investigated
auditory transduction chain in the locust ear, this strategy
led to a precise characterization of two consecutive temporal
integration processes, which we interpret as the mechanical
resonance of the eardrum and the electrical integration of
the attached receptor neuron. The method revealed new
details of these processes with a resolution far below 1 ms.
The results for the time course of the mechanical resonance
agree with traditional measurements of tuning curves and
show the decay of the oscillation with a temporal precision
much higher than expected from the jitter of the measured
output signal, the spikes. The time constants of the electrical
integration that were extracted from the data had not been
accessible by other means.
The analysis resulted in a four-step model of auditory

transduction in locusts. The model comprises a series of two
linear filters and two nonlinear transformations. The quad-
ratic nonlinearity that separates the two linear filters suggests
that the mechanosensory transduction can be described by an
energy-integration mechanism, as the squared amplitude
corresponds to the oscillation energy of the tympanum. This
quadratic form was derived from the circular shape of the iso-
response sets for longer time scales Dt and is in accordance

Figure 5. Temporal Structure of the

Mechanical Oscillation and Electrical Inte-

gration

(A) Stimulus patterns. Two clicks were
presented, separated by a time interval
Dt. The first click (amplitude A1) was held
constant throughout this experiment.
The second click was presented in the
same direction as the first click (solid
line, amplitude A2) or in the opposite
(‘‘negative’’) direction (dashed line, am-
plitude Ã2). The click amplitudes A2 and
Ã2 were adjusted to fall in the desired
iso-response set.
(B–G) Mechanical oscillation and elec-
trical integration of a high-frequency (B
and E) and two low-frequency (C and F,
and D and G, respectively) receptor
neurons.
(B–D) Time course of the eardrum
vibration. The individual values (circles)
were calculated from the measured
values of A2 and Ã2 for each Dt. The
results are compared with a theoretical
curve from a damped harmonic oscilla-
tor (solid line) with fundamental fre-
quency f and decay time constant sdec
fitted to the data.
(E–G) Time course of the electrical
integration process. The measured data
are compared to an exponential fit (solid
line) with a time constant sint.
DOI: 10.1371/journal.pbio.0030008.g005
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with the energy-integration model that was found to capture
the sound-intensity encoding of stationary sound signals in
these cells [20]. Furthermore, the direct current component
of the membrane potential in hair cells is also proportional to
sound energy [22], and in psychoacoustic experiments, energy

integration accounts for hearing thresholds [23,24,25,26].
However, a recent analysis of response latencies in auditory
nerve fibers and auditory cortex neurons in cats suggests an
integration of the pressure envelope for determining thresh-
olds [27]. This effect may be attributable to the synapse
between the hair cell and the auditory nerve fiber in the
mammalian ear. In the locust ear, this synapse does not exist,
as the fibers are formed by the axons of the receptor neurons
themselves.
Although the quadratic nonlinearity is fully consistent with

our data, there is a second possibility within the general
cascade model, equation 2, namely, squaring after rectifica-
tion. From a biophysical point of view, this would be expected
if the mechanosensory ion channels can only open in one
direction. Based on the current data, we cannot distinguish
between these two possibilities. As the two scenarios should
lead to slightly different response characteristics, future high-
resolution experiments should be able to resolve this
question.
The linear filters L(Dt) and Q(Dt) were interpreted as the

mechanical oscillation of the tympanum and the electrical
integration at the neural membrane. Their oscillatory and
exponential decay characteristics, respectively, support this
view. In principle, however, other processes may well
contribute to these characteristics, e.g., electrical resonances
as seen in hair cells of the turtle and bullfrog [6,28]. These
electrical amplification processes would be expected to
influence the filter Q(Dt), but our data generally provide
little evidence for such effects. Deviations from the expo-
nential decay characteristics in Q(Dt) may in part be
attributable to the oscillatory influx of charge resulting from
the tympanic vibration. This may lead to a small oscillatory
component in the early phase of the filter (cf. Protocol S1;
Figure S2).
The mechanical coupling in the first step of our model is

linear. This is in accordance with mechanical investigations of
the tympanum using laser interferometry [3] and stroboscopic
measurements [19]. As the short clicks used in our study
produce reliable spiking responses only at high sound
pressure, however, we cannot exclude the influence of non-
linear coupling at low sound pressure, which has been
hypothesized on the basis of distortion-product otoacoustic
emissions [29]. In addition, the mechanical properties of the
tympanum seem to change slightly under prolonged stimula-
tion and give rise to mechanical adaptation effects with time

Figure 6. Predictions of Tuning Characteristics

(A) Tuning curves for the same two cells as in Figure 5B and 5E, and
5C and 5F, respectively. The data show the intensity required to drive
a receptor cell at a firing rate of 150 Hz for different sound
frequencies in the range of 1 to 40 kHz. The characteristic frequency
fCF is determined as the minimum of the tuning curve, and the tuning
width Df3dB as the width of the curve 3 dB above the minimum value.
(B) Comparison of the predicted and measured characteristic
frequency and the tuning width. The predictions were obtained from
the fundamental frequency and decay time constant of the measured
filter L(Dt); the measured values are taken from the tuning curves as in
(A) (n= 12). The encircled data points correspond to the three exam-
ples shown in Figure 5. The width of the tuning curves is notoriously
difficult to assess quantitatively, as it depends sensitively on an accurate
determination of the intensity minimum of the tuning curve. This
contributes strongly to the differences of the tuning-width values.
DOI: 10.1371/journal.pbio.0030008.g006

Figure 7. Model Predictions for Three-Click

Stimuli

(A) Stimulus patterns. The stimuli con-
sisted of three clicks with amplitudes A1,
A2, and A3 that were separated by time
intervals Dt1 and Dt2, respectively. The
second and third clicks were either given
in the same or opposite (‘‘negative’’)
direction as the first click. A1 and A2 were
set equal and held constant, and A3 was
adjusted to yield a spike probability of
70%. The following pairs of time inter-
vals (Dt1, Dt2) were applied: (100 ls, 100
ls), (100 ls, 200 ls), and (200 ls, 100 ls).
(B and C) Predicted and measured

amplitudes of the third click for two different cells. Predictions were made after L(Dt) and Q(Dt) had been measured with two-click experiments
such as in Figure 5. The comparison between predicted andmeasured values for A3 therefore contains no free parameters. Themodel equation for
three-click stimuli is presented in Materials and Methods. As demonstrated by these data, the model allows quantitatively accurate predictions.
DOI: 10.1371/journal.pbio.0030008.g007
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scales in the 100-ms range [30]. Spike-frequency adaptation
also adds a nontrivial feedback term to the minimal feedfor-
ward model of Figure 4. Similarly, specific potassium currents
and sodium-current inactivation induced by sub-threshold
membrane potential fluctuations may complicate the trans-
duction dynamics for more general inputs, but do not leave a
signature in the present click-stimulus data.

The model was quantitatively investigated by using
combinations of short clicks. The particular structure of
these stimuli allowed a fairly simple mathematical treatment.
The derivation of equation 1 relied on capturing the
mechanical vibration and the membrane potential, respec-
tively, by single quantities in each time period following a
click. This was possible because of the expected stereotypic
evolution of the dynamic variables during the ‘‘silent phases’’
between and after the clicks. A generalization to arbitrary
acoustic stimuli would require a more elaborate model in the
form of equation 2 as well as extensions that account for
neural refractoriness and adaptation.

Besides its applicability under in vivo conditions, the
presented framework has several advantageous properties.
First, the method effectively decouples temporal resolution
on the input side from temporal precision on the output side
by focusing on spike probabilities. In all our measurements,
for example, spike latencies varied by about 1 ms within a
single recording set owing to cell-intrinsic noise (see Figure
2). Still, we were able to probe the system with a resolution
down to a few microseconds. This would not have been
possible using classical techniques such as poststimulus time
histograms, reverse correlation, and Wiener-series analysis.
All these methods are intrinsically limited by the width of
spike-time jitter and thus cannot capture the fine temporal
details of rapid transduction processes. With our method, the
resolution is limited only by the precision with which the
sensory input can be applied. For the investigated system, the
achievable temporal resolution thus increases by at least two
orders of magnitude.

Second, the method is robust against moderate levels of
spontaneous output activity, as this affects all stimuli within
one iso-response set in the same way. Methods that require
measurements at different response levels, on the other hand,
are likely to be systematically affected because the same
internal noise level may have a different influence at different
levels of output activity.

Finally, in many input–output systems, the last stage of
processing can be described by a monotonic nonlinearity.
Here, this is the relation between the effective stimulus
intensity J and the spike probability p = g( J), which includes
thresholding and saturation. By always comparing stimuli
that yield the same output activity, our analysis is independ-
ent of the actual shape of g( J). Preceding integration steps
may thus be analyzed without any need to model g( J). This
feature is independent of the specific output measure and
applies to spike probabilities, firing rates, or any other
continuous output variable.

Let us also note that the method does not require that the
time scales of the individual processes be well separated. For
the studied receptor cells, mechanical damping was on
average about two times faster than electrical integration,
and even for cells with almost identical time constants, iso-
response measurements led to high-quality data and reliable
parameter fits. Nor is the method limited to particularly

simple nonlinearities. All that is needed are solid assessments
of the iso-response sets. Mathematically, it is straightforward
to substitute some or all of the analytical treatments of this
work by numerical approaches, if required by the complexity
of the identified signal-processing steps. This extension allows
one to use a general parametrization of the full processing
chain when the nonlinear transformation cannot be esti-
mated from iso-response sets at large and small Dt. Instead,
performing more than the two measurements at each
intermediate Dt in the second experiment (see Figure 5) will
provide additional information that can be exploited to
improve the numerical estimates of the nonlinearity.
As in many other approaches of nonlinear systems

identification, the development of a quantitative model relies
on the prior determination of the appropriate cascade
structure. Unfortunately, there is no universal technique for
doing so. In many cases, intuition is required to find suitable
models, which should eventually be tested by their predictive
power. In the present case, the findings of characteristic
shapes of the iso-response sets gave a clear signature of two
distinct linear filters with a sandwiched quadratic non-
linearity. In addition, this structure was supported by its
amenability to straightforward biophysical interpretation.
Generalizing our results, specific iso-response sets may aid
structure identification in conjunction with a priori anatom-
ical and physiological knowledge. Once the cascade structure
is established, the individual constituents can be quantita-
tively evaluated by specific comparisons of iso-response
stimuli. Comparing responses to clicks in positive and
negative directions as in this study is in essence similar to
the approach used by Gold and Pumphrey [31], who evaluated
the perceptual difference between short sine tones with
coherent phase relations and sine tones that contained phase-
inverted parts in order to estimate the temporal extent of the
cochlear filters.
A yet open problem is the inclusion of feedback compo-

nents. The present approach relies on the feedforward nature
of the system to disentangle the individual processing steps.
In particular cases, however, the iso-response approach may
also aid in separating feedforward and feedback contribu-
tions, namely, when the feedback depends purely on the last
stage of the processing cascade [30]. In this situation, iso-
response measurements lead to a constant feedback contri-
bution, and the analysis of the feedforward components may
be carried out as in the present case. The experiment may
then be repeated for different output levels to map out the
feedback characteristics.
The feedforward model that we have proposed here for the

auditory transduction chain has the form of an LNLN (where
‘‘L’’ stands for linear and ‘‘N’’ stands for nonlinear) cascade,
composed of two linear temporal integrations and two
nonlinear static transformations [32]. Similar signal-process-
ing sequences combining linear filters and nonlinear trans-
formations are ubiquitous at all levels of biological
organization, from molecular pathways for gene regulation
to large-scale relay structures in sensory systems. In neuro-
science, applications range from the sensory periphery,
including frog hair cells [33], insect tactile neurons [34], and
the mammalian retina [35,36,37], over complex cells in visual
cortex [38,39], to psychophysics [40]. These studies are
restricted to models that contain a single nonlinear trans-
formation, corresponding to NL, LN, or LNL cascades [32,41].
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An extension of these analyses was presented by French et al.
[42], who derived an NLN cascade for fly photoreceptors.

Complementary to the correlation techniques underlying
the parameter estimations in those models, the method
presented in this work provides a new way of quantitatively
evaluating and testing cascade models. The increased com-
plexity of the LNLN cascade identified in the present case was
made accessible by invoking particular iso-response measure-
ments, and a higher temporal resolution was achieved by
focusing on how spike probabilities depend on the temporal
stimulus structure instead of relying on temporal correlations
between stimulus and response.

Our experimental technique will be most easily applicable
to systems whose signal processing resembles the cascade
structure investigated here. The general concept of combin-
ing different measurements from within one iso-response set
covers, however, a much larger range of systems. With
increasingly available high-speed computer power for online
analysis and stimulus generation, this framework therefore
seems well suited to solve challenging process-identification
tasks in many signal-processing systems.

Materials and Methods

Electrophysiology. We performed intracellular recordings from
axons of receptor neurons in the auditory nerve of adult Locusta
migratoria. Details of the preparation, stimulus presentation, and data
acquisition are described elsewhere [20]. In short, the animal was
waxed to a Peltier element; head, legs, wings, and intestines were
removed, and the auditory nerves, which are located in the first
abdominal segment, were exposed. Recordings were obtained with
standard glass microelectrodes (borosilicate, GC100F-10, Harvard
Apparatus, Edenbridge, United Kingdom) filled with 1 mol/l KCl, and
acoustic stimuli were delivered by loudspeakers (Esotec D-260,
Dynaudio, Skanderborg, Denmark, on a DCA 450 amplifier, Denon
Electronic, Ratingen, Germany) ipsilateral to the recorded auditory
nerve. The reliability of the sound signals used in this study was tested
by playing samples of the stimuli while recording the sound at the
animal’s location with a high-precision microphone (40AC, G.R.A.S.
Sound and Vibration, Vedbæk, Denmark, on a 2690 conditioning
amplifier, Brüel and Kjær, Langen, Germany). See Figure S1 for
example recordings.

Spikes were detected online from the recorded voltage trace with
the custom-made Online Electrophysiology Laboratory software and
used for online calculation of spike probabilities and automatic
tuning of the sound intensities. The measurement resolution of the
timing of spikes was 0.1 ms. During the experiments, the animals were
kept at a constant temperature of 30 8C by heating the Peltier
element. The experimental protocol complied with German law
governing animal care.

Measurement of iso-response sets. Since the spike probability p of
the studied receptor neurons increases monotonically with stimulus
intensity, parameters of iso-response stimuli corresponding to the
same value of p can be obtained by a simple online algorithm that
tunes the absolute stimulus intensity. For fast and reliable data
acquisition, we chose p = 70%. The response latency of the neurons
varied by 1–2 ms, so that spike probabilities could be assessed by
counting spikes over repeated stimulus presentations in a temporal
window from 3 to 10 ms after the first click.

In the first set of experiments, stimulus patterns were defined by
fixed ratios of A1 and A2, and the tuning was achieved by adjusting the
two amplitudes simultaneously. The ratios were chosen so that the
angles a in the A1–A2 plane given by tana = A2/A1 were equally
spaced. In the second set of experiments, A1 was kept fixed, and only
A2 was adjusted; similarly, in the three-click experiments, only A3 was
adjusted. In the following, the intensity I always refers to the peak
amplitude Amax of the stimulus pattern, measured in decibel sound
pressure level (dB SPL),

I ¼ 20 � log10
Amax

20lPa
: ð3Þ

For each stimulus, the absolute intensity I70 corresponding to a spike

probability of 70% was determined online in the following way.
Beginning with a value of 50 dB SPL, the intensity was raised or
lowered in steps of 10 dB, depending on whether the previous
intensity gave a spike probability lower or higher than 70% from five
stimulus repetitions. This was continued until rough upper and lower
bounds for I70 were found. From these, a first estimate of I70 was
obtained by linear interpolation. Seven intensity values in steps of 1
dB from 3 dB below to 3 dB above this first estimate were then
repeated 15 times. From the measured spike probabilities, a refined
estimate of I70 was obtained by linear regression. Nine intensities
from 4 dB above to 4 dB below this value were repeated 30 times (in
some experiments 40 times). The final estimate of I70 was determined
offline from fitting a sigmoidal function of the form

p ¼ 0:5 � 1þ tanhða � I þ bÞð Þ ð4Þ

with parameters a and b to these nine intensity-probability pairs. This
relation between p and I was then inverted to find the intensity and
thus the absolute values of the amplitudes that correspond to p = 0.7.

Extraction of L(Dt) and Q(Dt) from iso-response sets. The response
functions L(Dt) and Q(Dt) can be obtained independently of each
other by combining the results from different measurements within
one iso-response set. Here, we derive explicit expressions based on a
specific choice of stimuli that are particularly suited for our system.
Two measurements are needed to obtain both L(Dt) and Q(Dt) for
given time interval Dt. Each stimulus consists of two clicks. The first
click has a fixed amplitude A1; the amplitude A2 of the second click at
time Dt later is adjusted so that a predefined spike probability p is
reached. For the second measurement, the experiment is then
repeated with a ‘‘negative’’ second click, i.e., a click with an air-
pressure peak in the opposite direction from the first click. The
absolute value of this click amplitude is denoted by Ã2. We thus find
the two pairs (A1, A2) and (A1, Ã2) as elements of an iso-response set.
Since the spike probability increases with the effective stimulus
intensity J, equal spike probability p implies equal J. The two pairs (A1,
A2) and (A1, Ã2) therefore correspond to the same value of J.
According to the model, equation 1, the click amplitudes thus satisfy
the two equations

J ¼ A 2
1 � QðDtÞ þ A1 � LðDtÞ þ A2ð Þ2; ð5Þ

J ¼ A 2
1 � QðDtÞ þ A1 � LðDtÞ � ~AA2

� �2
: ð6Þ

Setting the two right sides equal to each other, we obtain

A1 � LðDtÞ þ A2ð Þ2 ¼ A1 � LðDtÞ � ~AA2
� �2 ð7Þ

or

A1 � LðDtÞ þ A2 ¼ 6 A1 � LðDtÞ � ~AA2
� �

: ð8Þ

The first solution of this mathematical equation, Ã2 = �A2, does not
correspond to a physical situation as both A2 and Ã2 denote absolute
values and are therefore positive. The remaining, second solution
reads

A1 � LðDtÞ þ A2 ¼ � A1 � LðDtÞ þ ~AA2: ð9Þ

Solving for L(Dt), we obtain

LðDtÞ ¼
~AA2 � A2

2A1
: ð10Þ

Substituting L(Dt) from equation 10 in equation 5 or equation 6, we
find

J ¼ A 2
1 � QðDtÞ þ

~AA2 þ A2

2

� �2

: ð11Þ

This yields

QðDtÞ � c ¼ �
~AA2 þ A2

2A1

� �2

; ð12Þ

with c = J/A1
2. As we keep A1 and J constant throughout the

experiment, this determines Q(Dt) up to the constant c. It can be
inferred from an independent measurement with a single click: by
setting A1 = 0 in equation 5, we see that J corresponds to the square
of the single-click amplitude that yields the desired spike probability.
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Alternatively, c can be estimated from the saturation level of Q(Dt) for
large Dt, as was done in the present study.

The specific form of the effective stimulus intensity, equation 1, led
to particularly simple expressions for the response functions L(Dt)
and Q(Dt); see equation 10 and equation 12, respectively. Other
nonlinearities may result in more elaborate expressions or implicit
equations, but this technical complication does not limit the scope of
the presented approach.

Data fitting. The datasets for L(Dt) were fitted with velocity
response functions of a damped harmonic oscillator

LfitðDtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2

x2

s
cos xDtþ arctan

d
x

� �
exp � dDtð Þ; ð13Þ

where x and d were optimized for minimizing the total squared error.
From these, the fundamental frequency f and the decay time constant
sdec were determined as f = x/(2p) and sdec = 1/d. A simpler fit
function of the form

LfitðDtÞ ¼ cos xDtð Þexp � dDtð Þ ð14Þ

led to essentially indistinguishable results for f and sdec.
The resonance frequency, which corresponds to the characteristic

frequency, fCF, of the tuning curve, and the tuning width, Df3dB, can be
predicted from the fitted values of x and d according to the theory of
harmonic oscillators:

fCF ¼ 1
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � d2

p
; ð15Þ

Df3dB ¼ 1
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2dx� d2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 2dx� d2

p� �
: ð16Þ

The datasets for Q(Dt) were fitted with an exponential decay

QfitðDtÞ ¼ a � exp � Dt=sintð Þ � c; ð17Þ

where the parameters a, sint, and c were adjusted. Here, only data
points for Dt . 150 ls were taken into account, as Q(Dt) initially
shows a rising phase. The obtained value for c was used to determine
the constant J/A1

2 in equation 12.
For comparing these predicted values with measurements, the

minimum and width of the tuning curves (see Figure 6A) were
determined by fitting a quadratic function to the five data points
closest to the data point with smallest intensity.

Model predictions for three-click stimuli. For stimuli consisting of
three clicks with amplitudes A1, A2, and A3 that are separated by time
intervals Dt1 and Dt2, respectively (see Figure 7A), an approximate
equation for the effective stimulus intensity J can be derived in the
following way: The first click induces a tympanic vibration propor-
tional to A1 and a membrane potential proportional to A1

2. Following
the second click, the tympanic deflection has become A1� L(Dt1) and is
augmented by A2. This yields a membrane potential proportional to
(A1�L(Dt1) þ A2)

2. After the third click, the tympanic deflection has
evolved to A1�L(Dt1þDt2)þA2�L(Dt2) so that the membrane potential
is increased by (A1�L(Dt1 þ Dt2) þ A2�L(Dt2) þ A3)

2. Summing up the
different contributions and approximating the influence of the inter-
click intervals on the membrane potential by appropriate factors of
Q, we find for the effective stimulus intensity

J ¼ A 2
1 � QðDt1 þ Dt2Þ þ A1 � LðDt1Þ þ A2ð Þ2 � QðDt2Þ

þ A1 � LðDt1 þ Dt2Þ þ A2 � LðDt2Þ þ A3ð Þ2: ð18Þ

The value of J for a predefined spike probability can be measured
from a single-click experiment by setting A1 = A2 = 0 and tuning
A3 until the desired spike probability is reached. After having
measured L(Dt) and Q(Dt) from two-click experiments, the above
equation can be used to predict the amplitude A3 needed to reach

this predefined spike probability for any combination of A1, A2, Dt1,
and Dt2.

Supporting Information

Protocol S1. General Cascade Model

Found at DOI: 10.1371/journal.pbio.003000810.sd001 (50 KB PDF).

Figure S1. Examples of Click Stimuli

The four panels show different examples of stimuli used in our study.
Each panel illustrates the computer-generated pulse signal that drives
the loud speaker (upper trace) and the resulting air-pressure
fluctuations as measured with a high-precision microphone at the
site of the animal’s ear (lower trace). The computer-generated clicks
are triangular with a total width of 20 ls. The stimuli shown are (A) a
single click, (B) a double click with a peak-to-peak interval Dt = 50 ls,
(C) a double click with Dt = 500 ls, and (D) another double click with
Dt = 500 ls whose second click points in the oppositve (‘‘negative’’)
direction. The measurements of air-pressure fluctuations indicate a
slight broadening of the click width and some residual vibrations, but
they nevertheless present a good approximation of the sharp original
pulses.

Found at DOI: 10.1371/journal.pbio.003000810.sg001 (10 KB PDF).

Figure S2. Simulation and Analysis of the General Cascade Model in
Response to Two-Click Stimuli

The general cascade model, equation 2 in the main text, was used
with filters modeled as l(t) = sin(2pft)exp(�t/sdec) and q(t) = exp(�t/
sint). The parameters were taken from the first two cells presented in
detail in the main text: f = 14.5 kHz, sdec = 100 ls, and sint = 300 ls
for Cell 1 (left column) and f = 5.1 kHz, sdec = 154 ls, and sint = 590
ls for Cell 2 (right column).
(A and B) Responses of tympanic vibration. x(t) denotes the signal
after application of the linear filter l(t), arbitrary units, for positive
second click (solid line) and negative second click (dashed line). Inter-
click intervals in these two shown examples were Dt= 80 ls for Cell 1
and Dt = 130 ls for Cell 2.
(C and D) Corresponding responses of J(Dt). The second click was
tuned so that the maximum of J(Dt) was equal for positive and
negative second clicks. This required click amplitudes of size 1.92 and
�2.49 relative to the first click for Cell 1 and 2.09 and�1.27 for Cell 2.
(E–H) Filters L(Dt) and Q(Dt) extracted according to equation 1 in the
main text from tuning the maximum of J(Dt) for many different
values of Dt (gray dots). The parameters f, sdec, and sint indicated in
the plots were obtained by fitting a damped harmonic oscillator and
an exponential function to L(Dt) and Q(Dt), respectively (black lines).
The initial part of Q(Dt) shows small fluctuations that result from the
oscillatory influx of charge following the tympanic vibrations. In (G),
a magnified view of the initial section is shown in the inset.

Found at DOI: 10.1371/journal.pbio.003000810.sg002 (138 KB PDF).
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