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The cuticle of terrestrial plants functions as a protective barrier
against many biotic and abiotic stresses. In wheat and other
Triticeae, β-diketonewaxes are major components of the epicuticular
layer leading to the bluish-white glaucous trait in reproductive-age
plants. Glaucousness in durum wheat is controlled by a metabolic
gene cluster at the WAX1 (W1) locus and a dominant suppressor
INHIBITOR of WAX1 (Iw1) on chromosome 2B. The wheat D subge-
nome from progenitorAegilops tauschii containsW2 and Iw2 paralogs
on chromosome 2D. Here we identify the Iw1 gene from durum
wheat and demonstrate the unique regulatory mechanism bywhich
Iw1 acts to suppress a carboxylesterase-like protein gene, W1-COE,
within the W1 multigene locus. Iw1 is a long noncoding RNA
(lncRNA) containing an inverted repeat (IR) with >80% identity to
W1-COE. The Iw1 transcript forms amiRNA precursor-like long hairpin
producing a 21-nt predominant miRNA, miRW1, and smaller num-
bers of related sRNAs associated with the nonglaucous pheno-
type. When Iw1 was introduced into glaucous bread wheat,
miRW1 accumulated, W1-COE and its paralog W2-COE were
down-regulated, and the phenotype was nonglaucous and
β-diketone–depleted. The IR region of Iw1 has >94% identity to
an IR region on chromosome 2 in Ae. tauschii that also produces
miRW1 and lies within the marker-based location of Iw2. We pro-
pose the Iw loci arose from an inverted duplication ofW1-COE and/or
W2-COE in ancestral wheat to form evolutionarily young miRNA
genes that act to repress the glaucous trait.
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Plant epicuticular waxes deposited on the outer surface of the
plant cuticle produce a water-resistant layer that serves to

reduce nonstomatal water loss and mitigate the effects of heat and
UV radiation as well as pathogen and insect attacks (1). Grasses in
the Triticeae tribe, subfamily Pooideae, which include the culti-
vated species barley (Hordeum vulgare; 2n = 2x = 14), rye (Secale
cereale, 2n = 2x = 14), durum wheat (Triticum durum; 2n = 4x =
28, AABB), and bread wheat (Triticum aestivum; 2n = 6x = 42,
AABBDD), have two predominant pathways for wax production:
(i) an alcohol- and alkane-rich wax pathway and (ii) a pathway
leading to β-diketones and derivatives including hydroxy-β-dike-
tones (2). The alcohol and alkane waxes are prevalent in earlier
development and on leaves, whereas β-diketones dominate during
the reproductive phase, particularly on leaf sheaths and flower
heads (3, 4). β-Diketone wax is predominantly hentriacontane-14,
16-dione, which consists of a 31-carbon chain with carbonyl groups
at C14 and C16. In durum wheat, about 20% of the β-diketone is
hydroxylated to form 25-hydroxy-β-diketone, whereas in bread
wheat hydroxylation is at C8 or C9 (5). β-Diketone wax deposition
manifests visibly as glaucousness, a bluish-white coloration on stems,
leaves, and flower heads. However, the relationship between a
glaucous appearance and the total amount of cuticular wax
can be inconsistent, especially during the later stages of wheat
reproductive development (6, 7). Nonetheless, β-diketones are
essential for the appearance of glaucousness and associated wax
morphology (3). β-Diketone wax deposition and the develop-
ment of glaucousness lead to a greater reflectance of incident
light. Reduced light absorption can lower tissue temperatures,
thereby reducing transpirational water loss, and also may reduce

photosynthesis under nonsaturating illumination (1). In wheat, a
glaucous appearance has been shown to be associated with sta-
bilizing grain yield, particularly in growth environments that are
water-limited and prone to heat stress (6, 8, 9). Thus, because of
the protective nature of the waxy β-diketone layer, the glaucous
appearance has generally been selected for during the breeding
of cultivated durum and bread wheat varieties (3, 10). In con-
trast, a nonglaucous (NG) state is prevalent in the uncultivated
relatives of wheat, including progenitor species wild emmer
(Triticum dicoccoides, 2n = 4x = 28, AABB) and Aegilops tauschii
(2n = 2x = 14, DD) (11, 12). As such, these species have been
used in the development of NG wheat varieties and for studies
on the characterization of the genes and genetic loci involved in
wax deposition, in particular W1/W2 and Iw1/Iw2 (13, 14).
The complex evolution of durum and bread wheat as multilevel

genome mosaics means each of the three subgenomes in wheat (A,
B, and D) has the potential to contribute to the inheritance of
glaucousness (15). However, only the B and D subgenomes contain
major glaucousness loci, and the A genome progenitor Triticum
urartu does not contain any appreciable β-diketones and is NG (5,
16). Within the B subgenome, WAX1 (W1) and INHIBITOR OF
WAX1 (Iw1) have been mapped very close to each other on the
distal end of 2BS. Conversely, in the D subgenome, W2 and Iw2
have been mapped far apart, with W2 at the proximal end and Iw2
at the distal end of 2DS (16). As the name suggests, the Iw loci
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provide epistatic dominant inhibition over the W loci. In recent
years, several reports have furthered the characterization of these
loci, including fine-mapping of Iw1 (11), demonstrating Iw1 sup-
pression of β-diketone wax accumulation (17), fine mapping of Iw2
in Ae. tauschii (12), comparative mapping of Iw1 and Iw2 in
hexaploid wheat (18), determining the impact of W and Iw loci on
glaucousness and cuticle permeability (3), and fine mapping of W1
in hexaploid wheat (19). The synthesis and chemistry of diketone
waxes has been studied extensively in barley, chiefly through the
characterization of loss-of-function mutants of three tightly linked
loci collectively referred to as “Cer-cqu” (2, 20, 21). The Cer-cqu
operon, as it has been described, is associated with the cer-c, -q,
and -u complementation groups and corresponding mutants glossy
sheath 6 (gsh6), gsh1, and gsh8, respectively, and have been mapped
close to the terminus of the short arm of chromosome 2H (22). A
recent study identified the CER gene cluster including GSH1
(Cer-Q) as encoding a lipase/carboxylesterase, GSH6 (Cer-C), as
a chalcone synthase-like polyketide synthase and GSH8 (Cer-U) as
a cytochrome P450-type hydroxylase (23). More recently, the
wheat W1 locus was identified as a gene cluster that is collinear to
the barley CER gene cluster (24) and includes orthologs of Cer-Q,
Cer-C, and Cer-U (23), which we define as W1-COE (carbox-
ylesterase), W1-PKS (polyketide synthase), and W1-CYP (cyto-
chrome P450 hydroxylase), respectively. However, it is not known
which of the genes at the W1 locus are regulated by Iw1 and
therefore are responsible for the presence or absence of diketone
waxes and the glaucous phenotype. More importantly, the inhibitor
genes Iw1 and Iw2 have not been identified, and their mechanism
of action is unknown.
Long noncoding RNAs (lncRNAs) are a large and diverse class

of RNA transcripts with a length of more than 200 nt that do not
encode proteins. LncRNAs are emerging as important regulators
in a wide range of essential biological processes. In humans,
lncRNAs represent more than 68% of the transcriptome, and 79%
of the lncRNAs were previously unannotated (25). Our current
knowledge of their biological functions is limited, and lncRNA
research in plants lags behind lncRNA research in animals. To
date, very few lncRNAs have been characterized in detail (26).
Some lncRNAs can be precursors of small RNAs (sRNAs) in-
cluding miRNAs, which are a class of sRNA ranging from 20–24 nt
in length that regulate numerous pathways and biological processes
(27). miRNAs play significant roles in posttranscriptional gene
regulation through base pairing with specific target sequences in
their complementary mRNA targets, leading to transcript degra-
dation (28, 29). The mechanism of action of miRNAs implies that
they typically act as genetically dominant-negative regulators.
Therefore, because the Iw loci are dominant repressors of the
glaucous trait, we investigated the possible involvement of sRNAs
in the regulation of wax accumulation. Using near-isogenic lines
(NILS) from durum wheat that differed in glaucousness (30, 31),
we compared the sRNAs in each of the isogenic pairs and iden-
tified a set of related miRNAs associated with repression of
β-diketone deposition. We show that the Iw1 locus is a miRNA
gene (MIRNA) that encodes a miRNA precursor and re-
presses β-diketone deposition via miRNA-mediated cleavage
of W1-COE transcripts.

Results
To investigate the genetic basis for glaucousness in wheat, we
characterized four pairs of NILs of durum wheat, AG1, AG2,
AE3, and D051, defined by the presence or absence of the glau-
cous trait (30, 31). These lines were produced by back-crossing a
NG cultivar to a glaucous parent and then maintaining heterozy-
gosity for glaucousness in the F4 and later generations (SI Ap-
pendix, Table S1A) (31). Glaucous lines showed bluish-white
coloration from the booting stage in the stems, leaves, and floral
tissues, whereas NG lines were green and glossy (Fig. 1A). The cu-
ticular wax content and composition from leaf sheaths of all four NIL

pairs was analyzed by GC-MS. Glaucous lines contained primarily
β-diketone (hentriacontane-14, 16-dione) and 25-hydroxy-β-diketone
(25-hydroxyhentriacontane-14, 16-dione) (5, 32), whereas the NG
lines contained no detectable diketone waxes (Fig. 1B and SI
Appendix, Table S1). Importantly, crosses between three pairs of
NILs, AG1, AG2, and AE3 (glaucous ×NG), resulted in F1 plants
that were 100% NG (SI Appendix, Fig. S1), confirming the dom-
inance of the NG trait, as observed previously (30, 31).

Transcripts Associated with Wax Production in the Durum NILs.
Transcripts in NIL pairs were compared to identify differences
that were consistently associated with the loss of diketone wax
production and glaucousness. Potential wax-related genes that were
strongly down-regulated in NG lines were first identified by map-
ping reads to the National Center for Biotechnology Information
(NCBI) unigene set and determining significant differences based
on count data (edgeR, P ≤ 0.05). We found 16 unigenes that were
commonly down-regulated in all four glaucous/NG NIL compari-
sons (Dataset S1). Consistent with previous mapping studies lo-
catingW1 and Iw1 on 2BS (16), blasting the 16 unigenes against the
International Wheat Genome Sequencing Consortium (IWGSC)
wheat survey sequences from AABB genomes revealed that most
of the contigs were located on 2BS scaffolds (Dataset S1). Through
further bioinformatics analyses, we defined these 16 unigenes into
seven potential target genes (Dataset S1). Three of these target
genes, targets 1, 2, and 4, were from theW1 locus gene cluster:W1-
COE, W1-PKS, and W1-CYP. To confirm the significance of the
differentially expressed genes from the NCBI unigene reference,
we also used the IWGSC transcript set (v1 from EnsemblPlants) as
a reference for analysis with the addition of the unannotated W1-
COE sequence. Using this reference, the RNA sequencing (RNA-
seq) data were reanalyzed using the pseudoalignment program
kallisto and the Bioconductor package DESeq2 (adjusted P
value ≤ 0.05) (33, 34). Similar differentially expressed target genes
were obtained and included the W1 gene cluster: W1-COE,
W1-CYP (Traes_2BS_163390FC4), target 6 (Traes_2BS_D6F1011EA),
and W1-PKS (Traes_2BS_9E10D26DB) on 2BS and tran-
scripts with high homology to W1-PKS: Traes_3B_FC275A64D,
Traes_4BS_AB8E1AD32, and Traes_6BS_C400F1983 (Dataset
S2). With respect to expression level, all seven of the potential
target genes showed virtually no expression in NG NILs with an
average down-regulation of more than 2,800-fold (Fig. 1C). In F1
heterozygous lines, W1-COE expression was still down-regulated
by 31.3-fold on average, but the expression of all other targets,
including W1-PKS and W1-CYP, recovered to a large extent,
showing down-regulation between 1.7- and 4.7-fold (Fig. 1C),
suggesting that W1-COE is most likely the gene controlling the
glaucous trait in these durum NILs.
To establish whether W1-COE is indeed involved in diketone

wax production, we used virus-induced gene silencing (VIGS) to
block its expression transiently in wheat. Fragments of W1-COE
were integrated into a VIGS system using the barley stripe mosaic
virus (35) and were applied to the leaves of glaucous AG2 plants
at the tillering stage, before visible glaucousness was apparent.
Then the development of glaucousness was monitored for 4–6 wk.
W1-COE fragments all produced large reductions in visible glau-
cousness relative to waxy controls (SI Appendix, Fig. S2) and in total
diketone wax accumulation in leaf sheaths (SI Appendix, Figs. S3A
and S4). Control infections with a PHYTOENE DESATURASE
(PDS) fragment produced a slight reduction in wax content which
may be attributed both to the general effects of viral infection and
to the reduction in pigment accumulation resulting from the in-
hibition of PDS. The levels of W1-COE expression in VIGS-
treated plants were measured by quantitative PCR (qPCR),
which showed that all four of the tested fragments reduced the
expression of the gene (SI Appendix, Fig. S3B). In addition, there
was a linear correlation between the amount of β-diketone wax and
the expression of W1-COE (SI Appendix, Fig. S3C). The VIGS
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result further confirmed the hypothesis that W1-COE has a pri-
mary role in regulating diketone wax production in the durum
NILs and is in agreement with recent reports identifying the barley
Cer-cqu and wheat W1 gene clusters (23, 24).

sRNAs Associated with the NG State Show Targeting Specificity for
W1-COE. Differential expression analysis of sRNAs of 19–28 nt in
length (edgeR adjusted P value ≤ 0.05) revealed a series of 19- to
22-nt sequences in NG lines that were almost completely absent in
glaucous lines (Fig. 1D and Dataset S3A). These sRNA sequences
up-regulated in NG lines could not be perfectly mapped to the
IWGSC wheat genome survey sequences. However, the most
abundant sRNA, 21 nt in length with 9,403 total reads and
457 average reads per 10 million (Fig. 1D), mapped to W1-COE
with one mismatch (Dataset S3 A and B). From the sRNA reads,
five other 19- to 22-nt sequences also mapped toW1-COE with one
mismatch or less (Dataset S3B). Because the most abundant sRNA
was complementary to a specific sequence in W1-COE, we desig-
nated the sRNA sequence as “microRNA specific to W1-COE”
(miRW1) (Fig. 2). As mentioned, expression of miRW1 and other
related sRNAs was almost absent in glaucous lines but was present
in NG lines, including the F1 heterozygous progeny of crosses
between the glaucous and NG NILs (Fig. 3A and Dataset S3 A and
B). Because miRW1 had no sequence homolog other than W1-

COE sequences in the wheat NCBI unigene set or coding se-
quences within the IWGSC survey sequence (Dataset S4A), we
considered the possibility that miRW1 was derived from W1-COE.
However, RNA structure-prediction software indicated that the
W1-COE transcript could not fold to form a hairpin loop structure
characteristic of miRNA precursors. Furthermore, the concept
of W1-COE as a miRNA precursor is inconsistent with the in-
verse correlation between W1-COE and miRW1 expression (i.e.,
W1-COE being expressed in glaucous lines and miRW1 being
preferentially expressed in NG lines). Therefore, the more likely
explanation is that miRW1 is produced from an unknown pre-
cursor gene and targets W1-COE for suppression.

The miRW1 Precursor Contains a Hairpin-Forming Inverted Repeat with
Homology to W1-COE. We hypothesized that the putative miRW1
precursor could have weak homology to W1-COE based on evi-
dence from the literature indicating that miRNAs and their targets
can have sequence similarities that extend beyond the sequence of
the miRNA itself (36, 37). Because 8 of the 18 differentially
expressed miRNAs had homology to W1-COE (with three mis-
matches or fewer) (Dataset S3B), we surmised that the NG lines
may contain RNA-seq reads from a precursor sequence with ho-
mology to W1-COE. Thus, all RNA-seq reads from NG lines, in
which the putative miRNA precursor, but not W1-COE, would be
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expressed were pooled and aligned against W1-COE with low
stringency (requiring a contiguous aligned read length of >20% to
W1-COE with >80% homology). The mapped sequences were
extracted and collected for de novo assembly. Three contigs of
greater than 150 nt were obtained (Fig. 2A). Several of the dif-
ferentially expressed sRNA sequences, including the most abun-
dant miRW1 sequence, could be perfectly mapped to two of these
contigs, suggesting that one or more of the contigs was part of
the miRW1 precursor (Fig. 2B). These contigs were the starting
point for a series of genome-walking experiments that allowed us
to obtain a putative 3,207-nt genomic sequence fragment (Fig.
2B). Because many MIRNA genes have a 5′ cap structure and 3′

polyadenylation (38, 39), we performed 5′ and 3′RACE-PCR from
primers designed around the location where the sRNAs mapped
within the precursor fragment obtained from genome walking
(Fig. 2B and SI Appendix, Table S4). Through RACE, two primary
miRNA sequences differing by three bases at the 5′ end were
obtained, the longest of which was 1,051 nt. Sequence analysis
revealed that the miRW1 precursor is a lncRNA that contains an
inverted repeat (IR) from nucleotides 520–756 and from nucleo-
tides 770–1014 with high base-paring probability (Fig. 3B).
Structure prediction indicated with high confidence that the
lncRNA could fold into a long hairpin loop structure with the IR
forming the stem (Fig. 3C). Analysis of the similarity between the
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lncRNA and W1-COE showed that each repeat of the MIRW1
hairpin shares ∼82% identity with theW1-COE sequence (Fig. 3D),
suggesting that the IR of the lncRNA originated from an inverted
duplication of W1-COE, the mechanism proposed by Allen et al.
(40). Of the 18 sRNAs significantly up-regulated in NG lines, 13,
including the miRW1 sequence, mapped perfectly to the foldback
region of the lncRNA, and all the sRNAs up-regulated in NG
lines can be mapped to the lncRNA if sRNA tailing is considered
(Fig. 3C and Dataset S4B). Tailing involves the nontemplated
addition of bases to the 3′ end of sRNAs through adenylation or
uridylation (41–43). Taking these findings together, we conclude
that the miRW1 precursor forms a long hairpin structure that is
processed to produce miRW1 and other sRNAs that specifically
target W1-COE.

Expression of the miRW1 Precursor in Glaucous Wheat Creates an NG
Phenotype Through Repression of W1-COE and W2-COE. Introduction
of the 1,051-nt miRW1 precursor driven by the maize ubiquitin1
promoter into the bread wheat cultivar Bobwhite resulted in an
obvious NG appearance in 20 of 29 T0 plants (Fig. 4 and Dataset
S5A). Analysis of diketone waxes in T0 transgenic lines also
revealed that the NG trait was the result of the absence of
β-diketones (SI Appendix, Fig. S5). The NG phenotype and the
absence of diketone waxes was heritable and carried over to the
T1 generation (SI Appendix, Figs. S6 and S7).
RNA-seq analyses of five NG and four glaucous T0 plants were

carried out to determine both differentially expressed genes and
sRNAs. Similar to the analysis of the wax NILs, we used two ap-
proaches: mapping to the NCBI unigene set and pseudoalignment

to the IWGSC v1 transcript set. Four unigenes in the NG T0 lines
were significantly down-regulated (edgeR adjusted P value ≤ 0.05);
all were fragments of W1-COE or its paralog on chromosome 2DS,
W2-COE (SI Appendix, Table S2). Following pseudoalignment with
kallisto, the only differentially expressed transcript was W1-COE
(DESeq2 adjusted P value ≤ 0.05) (SI Appendix, Table S3). Of the
sRNAs, 222 were differentially up-regulated in the NG T0 lines
(edgeR adjusted P value ≤ 0.05) (Dataset S5B), and 208 of the
222 could be mapped to the miRW1 precursor when tailing was
considered (Dataset S4C). Other significantly up-regulated sRNAs
mapped perfectly to W1-COE and its paralog on 2DS (W2-COE)
(Dataset S4D). The numbers of sRNAs mapping to the miRW1
precursor and to the targets W1-COE and W2-COE are consistent
with the observed reductions in W1-COE and W2-COE transcript
levels in NG phenotypes (Fig. 4 and SI Appendix, Fig. S8).
To validate that W1-COE is the target of miRNA-guided

cleavage in the transgenic lines, we performed a 5′ RACE assay
to map possible cleavage sites within W1-COE (Fig. 5A). The
principal position of cleavage within W1-COE was within the
miRW1-binding site located between nucleotides 10 and 11 and
was present in 14 of 15 cloned sequences. Furthermore, in NG
transgenic lines with active cleavage of W1-COE, we detected the
presence of secondary siRNA in the 3′ cleavage fragment (Fig.
5B). The majority of these siRNAs were 21 nt in length and were
positively related to both the abundance of miRW1 and its
monouridylated form (SI Appendix, Fig. S9 A and B). Secondary
siRNAs also were apparent in the 3′ region adjacent to the miRW1-
binding site in W2-COE (SI Appendix, Fig. S9C). The presence
of secondary siRNAs also was detected in the heterozygous
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F1 generation in the isogenic lines but, interestingly, not in the
NG homozygous lines (SI Appendix, Fig. S9D).
These results from the introduction of the miRW1 precursor into

glaucous wheat provide further validation that miRW1 acts as a
repressor of wax production through miRNA-mediated suppression
of W1-COE/W2-COE expression. The results from the over-
expression experiments suggest that the miRW1 precursor is the
wax inhibitor Iw1, the expression of which has the ability to silence
specifically both W1-COE and W2-COE.

The IR Region of Iw1 Maps to the Location of Iw2. We were unable
to map the Iw1 sequence to the IWGSC wheat genome survey
sequences, indicating that Iw1 is not represented in the currently
available reference genomes for the Chinese Spring cultivar.
However, a 689-nt Iw1 fragment was mapped to scaffold
10812 of chromosome 2 of the D genome progenitor Ae. tauschii

(44). Further, this Iw1 fragment maps to the precise location in
Ae. tauschii to which Iw2 has been fine mapped previously (12)
(Fig. 6A and SI Appendix, Fig. S10), and the location is consistent
with genetic markers from syntenic blocks from species such as
Brachypodium distachyon that include the genes BRADI5G01180
and BRADI5G01160 (17, 18, 44). The Iw1 homology region
lies within the promoter region of the Ae. tauschii gene
F775_09277 encoding cytochrome P450 84A1 (Fig. 6A). Addi-
tional mapping evidence comes from the synthetic hexaploid
wheat W7984, for which a shotgun survey sequence assembly is
available (45). Comparative analysis of the collinear regions of
Ae. tauschii and W7984 revealed that the Iw1 fragment maps
to W7984 scaffold 212941 in a similar context as in Ae. tauschii
(Fig. 6B and SI Appendix, Fig. S10). Therefore, based on the
dominant-negative effect of Iw1 and miRW1 on the glaucous
trait and the colocalization of an Iw1 fragment with markers for
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Iw2, we propose that two miRW1 precursors, Iw1 and Iw2, are
present on chromosomes 2BS and 2DS, respectively. The IR and
sRNA-producing regions of Iw1 and Iw2 are highly homologous
(94%), and both are energetically favored to form a hairpin
structure (Fig. 6C). Additional evidence of an Iw2 hairpin-
forming RNA comes from sRNA sequencing experiments
downloaded at the NCBI short-read archive from Li et al. (46).
Similar to Iw1, the Iw2 region also produces a series of sRNAs,
including the most dominant sequence miRW1 (Fig. 6D).

Discussion
We have identified and validated the regulatory function of Iw1
and confirmed the role of a key gene, W1-COE, within the W1
locus. Iw1 and its homolog Iw2 are young MIRNA genes with long
hairpin precursors which ultimately suppress β-diketone wax
production. Iw1 and Iw2 produce miRW1, which specifically tar-
gets and represses the expression of the putative carboxylesterase
genes that are necessary for the production of β-diketone waxes
in wheat (24). Identification of the Iw loci represents a major step
forward in our regulatory understanding of the glaucous trait
in wheat and related species, from both a functional and an
evolutionary standpoint.
miRNAs have a significant regulatory role in plants and target

a wide range of transcripts for degradation and therefore are
inherently dominant-negative genetic factors (28, 41). Many
evolutionarily conserved miRNA families play critical roles in
plant development and adaptation to diverse environments.
There also are many nonconserved, evolutionarily recent miRNAs
and their corresponding targets that are present only within a few
closely related species or appear to be unique to specific species
(47–49). Wheat miRNA sequencing, identification, profiling,
and characterization have been reported extensively (50–56).
However, neither miRW1 nor its precursor has been reported,
possibly because of the atypical characteristics of Iw1 and Iw2.

In fact, the Iw1 sequence does not exist in any available wheat
genome reference or sequencing database such as the NCBI.
The identification of Iw1 and Iw2 as long noncoding, hairpin-
forming, sRNA-producing RNAs with IRs similar to their
target sequence places them among the few functional lncRNAs
described in monocots, the most notable previous example being
the maize Mu killer locus (57). Mu killer arose from an inverted
duplication of a sequence similar to its target, the MuDR trans-
poson; however Mu killer acts via the production of siRNAs and
an epigenetic mechanism (58, 59) instead of the miRNA-based
silencing mechanism of the Iw genes. lncRNA-mediated gene
regulation is emerging as a common regulatory mechanism in
plants. A variety of lncRNA-mediated regulation mechanisms
have been unraveled, including target mimicry, transcription
interference, PRC2-associated histone methylation, and DNA
methylation (26). However, although the number of known
plant lncRNAs is expanding, the great majority have no known
function (60–65). In wheat, the lncRNA landscape has been
profiled during fungal responses and heat stress, but the char-
acterization of function is deficient (66, 67).
As described here, Iw1 and Iw2 serve as miRNA precursors

and repress target gene expression through a miRNA-mediated
mechanism. Several lines of evidence indicate that Iw1 and Iw2
are evolutionarily young MIRNA genes that arose by inverted
duplication of their target gene (39, 49). First, the foldback region
of Iw1 has extended similarity (>80%) with the target W1-COE
beyond that of the miRW1 region. Second, the Iw1 primary
transcript (1,051 nt) is much longer than typical miRNA primary
sequences; 98% of miRNA precursor lengths are <336 nt with a
mean of 146 nt (68). Third, the foldback regions of Iw1 and Iw2
are hairpin structures >200 nt that resemble a dsRNA and do
not resemble the typical short structure of miRNA hairpins. In
Arabidopsis, Ben Amor et al. (27) identified nine ncRNAs cor-
responding to miRNA, trans-acting siRNA, and 24-nt siRNA
precursors, including a young MIRNA gene MIR869A. The
transcript of MIR869A is processed by DCL4, because its sec-
ondary structure is closer to that of dsRNA than to that of a
typical, short miRNA precursor processed by DCL1 (69). The
example of MIR869a might indicate the evolutionary path of the
Iw genes, with younger dsRNA-forming MIRNA genes evolving
through the production of miRNA-like siRNA, because the Iw1
and Iw2 hairpin precursors also produce other sRNAs in addition
to the predominant 21-nt miRW1. Fourth, we show evidence that
miRW1, the predominant miRNA, is primarily responsible for the
cleavage of the W1-COE transcript. Moreover, cleavage between
nucleotides 10 and 11 of miRW1 is consistent with the principle
hallmark of miRNA-guided degradation (40, 70, 71). The pres-
ence of secondary siRNAs mapping to the 3′ cleavage fragment in
the NG Iw1 overexpression and F1 heterozygous crosses of NIL
pairs provides additional evidence of miRNA-directed degrada-
tion of W1-COE and W2-COE. In plants there are two models,
“one-hit” and “two-hit,” for secondary siRNA production. In the
one-hit model, the trigger can be binding of 22-nt miRNAs, and in
the two-hit model the trigger can be two neighboring miRNA
target sites on the same mRNA (72, 73). Both models are possible
triggers for the secondary siRNAs arising from the cleavage of
W1-COE (and W2-COE). A 22-nt monouridylated form of
miRW1 supports the one-hit model; alternatively, additional
miRNAs arising from Iw1 with W1-COE as a potential binding
target support the two-hit model. As mentioned above, one curi-
ous aspect of the discovery of secondary siRNA arising from W1-
COE is the absence of secondary siRNA in the homozygous NILs,
and this difference leads into a discussion of whetherW1 genes are
present in NG lines and cultivars.
One feature of the results leading to the identification of W1

and Iw1 is that in homozygous NG NILs other genes in addition to
W1-COE are strongly down-regulated (Fig. 1C), notably W1-PKS
and W1-CYP in the W1 gene cluster on chromosome 2BS, which

W1−COE ORF miRW1 binding secondary siRNA binding
200 400 600 1000 12361

CACCUUGCCGU
..GCGCCACCUUGCCGU CACCGGCCAUGGUG..

CACCGGCCAU

1/15
974 1002

A
AGUUCAUAAACCAUC..
AGUUCAUAAA

14/15
944 973..UGAAGAGCAUCGUGC

AAGCAUCGUGC
5’3’

5’3’

W1-COE genomic region 500 1000 1500

800

600

400

200

0

800

600

400

200

0

R
ea

d 
co

ve
ra

ge

7290
7293
7294

7289

7279
7281
7282
7285
7287

W1−COE ORF miRW1 Binding5’ 3’

Non-Glaucous
T0 Lines

Glaucous 

T0 Lines

B

800

miRW1

Fig. 5. Validation of the cleavage of the W1-COE mRNA target by miRW1.
(A) W1-COE cleavage sites identified by 5′ RACE. Sequences of 14 of
15 clones showed cleavage between nucleotides 10 and 11 of the miRW1-
binding site. One cleavage site was located within a minor sRNA-binding site
between the 10th and 11th nucleotide. (B) Mapping of secondary siRNAs to
W1-COE in Iw1 T0 transgenic lines. (Upper) sRNAs with perfect homology to
W1-COE mapped to a region 3′ of the miRW1-binding site in NG lines.
(Lower) Almost none did so in glaucous lines.

Huang et al. PNAS | Published online March 28, 2017 | E3155

PL
A
N
T
BI
O
LO

G
Y

PN
A
S
PL

U
S



also are involved in the β-diketone and OH-β-diketone synthesis
pathways (24). However, Iw1 dominantly regulates glaucousness
through miRW1-promoted cleavage and mRNA degradation of
W1-COE, and overexpression of Iw1 in bread wheat down-
regulated only W1-COE and its paralog W2-COE (Fig. 4 and SI
Appendix, Tables S2 and S3). Moreover, in NG F1 heterozygous
lines, which manifest Iw1 dominance,W1-COE was the key down-
regulated gene related to diketone wax synthesis (Fig. 1C). These
results show, first, that Iw1-mediated repression of W1-COE
causes loss of the glaucous phenotype and, second, that there is

another mechanism that down-regulates multiple genes at the W1
locus in NG homozygotes. Interestingly, Hen-Avivi et al. (24)
provide evidence thatW1-COE,W1-PKS, andW1-CYP are missing
from the W1/Iw1 genomic interval in the glossy, Iw1-containing
wild emmer accession TTD140 but are present in the W1 meta-
bolic gene cluster found in the glaucous cultivar Zavitan. The idea
that theW1 genes are missing or have moved to a transcriptionally
inactive part of the genome in the NG genotype is interesting and
is consistent with our observations of very strong down-regulation
of the W1 cluster and the lack of secondary siRNAs fromW1-COE
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in the homozygous NILS. However, the relationship between the
W1 gene cluster and Iw needs to be explored further by sequencing
more glaucous and NG cultivars.
The presence of Iw in selected species within the Triticeae tribe

allows us to propose an approximate evolutionary origin of Iw.
Barley, which contains diketone wax but in which there are no
reports of a dominant wax inhibitor gene, diverged from wheat
8–12 Mya, suggesting that the inverted duplication event that cre-
ated Iw occurred after this date (74–77). The inverted duplication
may have been a single event in an ancestral wheat genome lineage
or separate later events resulting in convergent evolution in B
(Iw1) and D (Iw2) genome species. A single inverted duplication
of W1-COE in an ancestral B genome is plausible, based on the
evidence presented by Marcussen et al. (15), who suggest that a
hybridization event between A and B lineages occurred ∼5.5 Mya
and led to the origin of the D genome lineage. The time of Iw
creation at <12 Mya is comparable to the creation of young
MIRNA genes in the Arabidopsis genus at <20 Mya or in Arabi-
dopsis thaliana itself at <10 Mya (49, 78–81). In contrast, more
ancient conserved MIRNA genes (e.g., miR156) predate the
separation of the monocots and dicots at ∼150 Mya (82).
In summary, the specific and unique interaction between Iw

and miRW1 with W-COE represents a mechanism for dominant
gene repression and provides a basis for genome-wide identifi-
cation of other nonconserved lncRNA functions or atypical
MIRNA genes. Furthermore, the identification of the Iw genes
as a major regulatory mechanism governing W-COE expression

and β-diketone deposition suggests the possibility of precise gene
editing or marker-based manipulation of glaucousness for better
adaptation to specific conditions and environments.

Materials and Methods
Details of sample preparation, experimental procedures, and data analysis with
associated references can be found in SI Appendix, Materials and Methods.

The sRNA and RNA-seq data have been submitted to the Sequence Read
Archive (SRA) at the NCBI with the accession numbers SAMN05725181–
SAMN05725246 (mRNAs and sRNAs in Triticum durum and Triticum aestivum).
The Iw1 full-length cDNA sequence was submitted to dbEST (NCBI). The
accession number is KX823910.
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