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Abstract

We consider a two-group randomized clinical trial, where mortality affects the assessment of a 

follow-up continuous outcome. Using the worst-rank composite endpoint, we develop a weighted 

Wilcoxon–Mann–Whitney test statistic to analyze the data. We determine the optimal weights for 

the Wilcoxon–Mann–Whitney test statistic that maximize its power. We derive a formula for its 

power and demonstrate its accuracy in simulations. Finally, we apply the method to data from an 

acute ischemic stroke clinical trial of normobaric oxygen therapy.

Keywords

Missing data; survivor bias; multiple endpoints; weighted Wilcoxon–Mann–Whitney test; 
censored-by-death; composite endpoints

1 Introduction

In many randomized clinical trials, the difference between treatment groups is evaluated 

using measurements of an outcome of interest after a pre-specified follow-up time. However, 

for some participants, follow-up measurements may be missing if a disease-related event, 

such as death (or withdrawal due to worsening disease condition), has occurred prior to the 

end of follow-up time. Our motivating example is a clinical trial of acute ischemic stroke 

conducted at Massachusetts General Hospital in Boston, MA. In this trial, patients who had 

acute ischemic stroke were randomized to either normobaric oxygen (NBO) therapy or room 

air and assessed serially to monitor their functional ability. Among other measures, patients’ 

neurological recovery was assessed and quantified using the NIH Stroke Scale (NIHSS) 
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score, a function rating scale used to quantify neurological deficit due to stroke.1,2 However, 

investigators were confronted with early deaths, which precluded measurements of NIHSS 

scores for some participants at the end of the three-month follow-up period. Any analysis of 

the data that includes solely the subjects who survived would be biased and give spurious 

results.3

One approach to handle this issue is to combine the primary endpoint and mortality into a 

single composite endpoint: the worst-rank composite endpoint. It is calculated by 

considering death as the worst outcome on the same scale as the measure outcome and 

analyzed using ranks of these combined outcomes.4–6 Unlike traditional analyses of 

composite endpoints that treat all of the component endpoints equally and focus on each 

study participant’s first occurring event, worst-rank composite endpoints incorporate a 

hierarchical ranking of these individual outcomes based on their clinical importance, 

frequency of occurrence or severity. Moreover, in contrast to the typical “time-to- event” 

analyses, worst-rank composite endpoints allow us to combine individual outcomes from 

multiple clinical domains, while accounting for their heterogeneity. Such outcomes could 

include both clinical events (e.g., death), continuous variables, or other clinical 

measurements (e.g., biomarker or quality-of-life measures.)7

Ranking individual outcomes that characterize various aspects of patients’ disease 

experience based on a prespecified hierarchy of various components suggest the existence of 

an implicit weighting scheme. In fact, several authors have suggested the use of a priori 

determined utility (or sometimes severity) weights to reflect the relative importance of the 

components of composite outcomes and add another layer of discrimination beyond 

hierarchical ordering alone.8,9 Such weighting may be based on subjective criteria or 

elicitation of experts. However, deriving such a priori weights and finding a consensus about 

them have proven to be difficult.10–14

Building upon our previous work on this topic,6 and assuming there is a pre-specified 

hierarchy of various components of a composite outcome, we introduce an optimal approach 

that not only acknowledges such a hierarchy, but also estimates the weights so as to 

maximize the power to detect globally any treatment effect when present.

The use of multivariate tests to compare treatment effects from multivariate outcomes has 

gain interest in clinical trials of multifaceted complex diseases, where the clinical course of 

the disease is manifested in complex ways through a host of clinical outcomes. A global test 

statistic for composite endpoints that accounts for the complexity of the disease, rather than 

evaluating individual components, provides a comprehensive method to evaluate more 

effectively and more efficiently the efficacy of a treatment.15,16 Tests such as O’Brien test,17 

Wei and Johnson’s test,18 Finkelstein and Schoenfeld’s test,19 Moye; et al.’s test20,21 are 

rank-based tests developed using U- statistics. Some of these tests of combined endpoints 

are weighted tests where the optimal weights are determined by maximizing the power of 

the test statistic under a particular alternative hypothesis: this is the framework we will focus 

on in this paper.
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In this paper, we use the given hierarchy of outcomes to construct a worst-rank composite 

endpoint such that death (or a missing continuous outcome due to worsening of the disease 

condition) is considered a worse outcome than any observed primary endpoint measurement. 

Furthermore, two subjects who died are ranked with respect to their survival times.4–6 In 

Section 2, we give the rationale for the weighted Wilcoxon–Mann–Whitney (WMW) test 

statistic for such a worst-rank composite endpoint. We then derive data-based optimal 

weights that maximize the power of the weighted WMW test statistic along with its 

analytical power formula. We demonstrate that the optimal-weighted WMW test statistic has 

greater power than the ordinary WMW test statistic. We illustrate the accuracy of our results 

through simulation studies (Section 3). Finally, we apply the procedures to the clinical trial 

of the NBO therapy for acute ischemic stroke patients.

2 Weighted WMW

2.1 Notations

In this section, we present the ordinary WMW test for the worst-rank composite outcome 

and its analytical power formula that we previously derived.6 Then, we motivate its 

extension to a weighted WMW test through a decomposition of the WMW U-statistic.

Consider a randomized clinical trial in which m and n subjects are assigned, respectively, to 

the control treatment (group 1) and the active treatment (group 2) and then followed for time 

period T. For subject j in group i, Xij denotes the value of the continuous endpoint at the end 

of the follow-up time, tij denotes the time to death or disease-related withdrawal (for 

simplicity, we will refer to both as death), δij = I(tij ≤ T) indicates early death (i.e., before T), 

and pi = E(δij) = P(tij ≤ T) the probability of early death for subjects in group i.

If the subject died before T, X is unknown. Thus, following the assumed hierarchy of 

outcomes, this subject is assigned a worst-rank score equal to η + tij, which is a function of 

his or her survival time, where η = min(X) − 1 − T.

Without loss of generality, we assume larger values of X correspond to better health 

outcome. For each subject, the worst-rank composite endpoint is thus

X∼i j = (1 − δi j)Xi j + δi j(η + ti j), i = 1, 2 and j = 1, …, N (1)

Let Fi and Gi be, respectively, the cumulative conditional distributions of the informative 

event times and observed non-fatal outcome for patients in group i, i.e. Fi(v) = P(tij ≤ v|0 < tij 
≤ T) and Gi(x) = P(Xij ≤ x|tij > T). The distribution of X∼i is given by

G
∼

i(x) = piFi(x − η)I(x < ζ) + (1 − pi)Gi(x)I(x ≥ ζ), ζ = min(X) − 1 (2)

We would like to test the null hypothesis that the two treatments are equivalent with respect 

to both survival and the non-fatal outcome
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H0:G1(x) = G2(x) and F1(t) = F2(t) for all x and t (3)

against the uni-directional alternative hypothesis that the active treatment is at least as 

effective as the control treatment for both mortality and the non-fatal outcome and is not 

harmful for either, i.e.

H1:G1(x) ≥ G2(x) and F1(t) ≥ F2(t), for some x and/or t (4)

with both G1(x) = G2(x) and F1(t) = F2(t) not occurring simultaneously for all x and t.

2.2 Ordinary WMW test

We will now define the ordinary WMW test using the framework of the worst-rank 

composite endpoint X∼ of the previous section. The ordinary WMW U-statistic is defined by

U = (mn)−1 ∑
k = 1

m
∑
l = 1

n
I X∼1k < X∼2l (5)

Using equation (1), we note that I X∼1k < X∼2l  is equal to

δ1kδ2lI t1k < t2l + δ1k 1 − δ2l + 1 − δ1k 1 − δ2l I X1k < X2l (6)

Therefore

μ1 = E U = πU1

σ1
2 = Var U = mn −1 πU1 1 − πU1 + m − 1 πU2 − πU1

2 + n − 1 πU3 − πU1
2 (7)

where

qi = 1 − pi, πt1 = P t1k < t2l t1k ≤ T , t2l ≤ T

πt2 = P t1k < t2l, t1k′ < t2l t1k ≤ T , t1k′ ≤ T , t2l ≤ T

πt3 = P t1k < t2l, t1k < t2l′ t1k ≤ T , t2l ≤ T , t2l′ ≤ T

πx1 = P X1k < X2l , πx2 = P X1k < X2l, X1k′ < X2l

πx3 = P X1k < X2l, X1k < X2l′
πU1 = p1p2πt1 + p1q2 + q1q2πx1

πU2 = p1
2q2 + p1

2p2πt2 + 2p1q1q2πx1 + q1
2q2πx2

πU3 = p1q2
2 + p1p2

2πt3 + 2p1p2q2πt1 + q1q2
2πx3
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(see the proof in Appendix 1).

Under the null hypothesis (H0) of no difference between the two treatment groups, μ0 = 

E0(U) = 1/2 and σ0
2 = Var0 U = n + m + 1 / 12mn . The distribution of the ordinary WMW 

test statistic

Z =
U − E0 U

Var0 U
(8)

converges to the standard normal distribution N(0, 1) as m and n tend to infinity, and m/n → 
ρ, 0 < ρ < 1.

The power of this WMW test is given by

Φ
σ0
σ1

Z α
2

+
μ1 − μ0

σ1
+ Φ

σ0
σ1

Z α
2

−
μ1 − μ0

σ1
≈ Φ

σ0
σ1

Z α
2

+
μ1 − μ0

σ1
(9)

where μ1 = E(U) and of σ1
2 = Var U  under the alternative hypothesis (H1) (see the proof in 

Matsouaka and Betensky).6

2.3 Weighted WMW test

To motivate our weighted test, we now write the WMW U-statistic applied to the worst-rank 

scores (5) as a sum of three dependent WMW U-statistics. Then, we demonstrate that to 

optimally compare two treatment groups using worst-rank scores, we need to use a weighted 

statistic that takes into account the dependence that exists among the three statistics.

Assume there exists weights w = (w1, w2), w1 + w2 = 1, such that equation (1) becomes

X∼i j = w1δi j(η + ti j) + w2(1 − δi j)Xi j, i = 1, 2 and j = 1, …, N (10)

The U-statistic (5) then becomes Uw = w1
2Ut + w1w2Utx + w2

2Ux, where Ut, Utx and Ux are 

defined by

Ut = mn −1 ∑
k = 1

m
∑
l = 1

n
δ1kδ2lI t1k < t2l

Utx = mn −1 ∑
k = 1

m
∑
l = 1

n
δ1k 1 − δ2l

Ux = mn −1 ∑
k = 1

m
∑
l = 1

n
1 − δ1k 1 − δ2l I X1k < X2l

(11)
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Using vector notation, we can write Uw as Uw = c′U where we define U′ = (Ut, Utx, Ux) 

and c′ = (c1, c2, c3) = (w1
2, w1w2, w2

2). Notice that c1 + 2c2 + c3 = (w1 + w2)2 = 1.

Using the results in Appendix 2, we have

μ1w = E Uw = c′ p1p2πt1, p1q2, q1q2πx1 ′

σ1w = Var Uw = c′∑c

where Σ = Var(U) is a 3 × 3 matrix given in Appendix 2.

Under the null hypothesis

μ0w = E0 Uw = 1
2c′ p2, 2pq, q2 ′

= 1
2 w1

2p2 + 2w1w2pq + w2
2q2 = 1

2 w1p + w2q 2

σ0w = Var0 Uw = c′∑0c

with Σ0 = Var0(U) a 3 × 3 matrix given in Appendix 2.

2.3.1 Pre-specified weights—When there are pre-specified weights, usually determined 

as to reflect the relative importance or the severity of component outcomes, they can be used 

to calculate the weighted WMW test statistic

Zw =
Uw − E0 Uw

Var0(Uw) (12)

Zw converges to the standard normal distribution N(0, 1) as m and n tend to infinity, and m/n 
→ ρ, 0 < ρ < 1.

The corresponding power is given by

Φ
σ0w
σ1w

zα
2

+
μ1w − μ0w

σ1w
+ Φ

σ0w
σ1w

zα
2

−
μ1w − μ0w

σ1w
≈ Φ

σ0w
σ1w

zα
2

+
μ1w − μ0w

σ1w
(13)

For instance, after surveying a panel of clinical investigators, Bakal et al.9 used pre-specified 

weights in a study that used a composite endpoints of death, cardiogenic shock (Shock), 

congestive heart failure (CHF), and recurrent myocardial infarction (RE-MI). The weights 

were 1 for death, 0.5 for Shock, 0.3 for hospitalization for CHF, and 0.2 for RE-MI, i.e., in 

this context, w = 1
2 1, 0.5, 0.3, 0.2 . In another example,22 the composite outcome consisted of 

events weighted according to their severity: RE-MI (weight w1 = 0.415), CHF that required 

the use of open- label angiotensin-converting enzyme (ACE) inhibitors (weight w2 = 0.17), 

and hospitalization to treat CHF (weight w3 = 0.415).
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Although the use of pre-specified weights provides a more nuanced approach to the 

importance of individual endpoints of a composite outcome, recognizes the potential 

underlying differences that exists among them, and facilitates the results interpretation 

compare to traditional composite endpoints, the selection of appropriate weights is not 

straightforward since inherently subjective.22–24 However, when they exist, failing to use 

such utility (or severity) weights to highlight clinical importance of the component outcomes 

of a composite endpoint implies that we assume equal weights, which sometimes even 

worse.23–25

We note that when the weights w1 and w2 are equal, i.e., c1 = c2 = c3 = w1
2, the test statistic 

Zw coincides with the (ordinary) WMW test statistic Z given in equation (8). Indeed, in that 

case, c′U = w1
2 Ut + Utx + Ux = w1

2U with U given by equation (5). Thus, c′E0 U = w1
2E0 U

and Var0 c′U = w1
4Var0 U , which implies that Z = Zw

2.3.2 Optimal weights—Now we want to estimate the optimal weights w for the 

weighted WMW test statistic

Zc =
c′ U − E0(U

Var0 c′U =
c′ U − E0 U

c′Var0 U c (14)

with U′ = (Ut, Utx, Ux) and c′ = (c1, c2, c3) = (w1
2, w1w2, w2

2) . Optimal weights c1, c2, and c3 

for the test statistic Zw are those that maximize its power.

We will use the power formula of Zc, to derive its optimal weights. Then, we introduce the 

optimal-weighted WMW test statistic Zopt and highlight some of its properties and 

characteristics.

From the definition of U, we show in Appendix 2 that

E U = E Ut , E Utx , E Ux ′

= πt1p1p2, p1q2, πx1q1q2 ′
(15)

and Var(U) = Σ, where ∑ = mn −1 ∑ij 1 ≤ i, j ≤ 3 is a 3 × 3 matrix.

Under the null hypothesis of no difference between the two groups, with respect to both 

survival and nonfatal outcome, we have p1 = p2 = p, q1 = q2 = q = 1 − p, πt1 = πx1 = 1/2, and 

πt2 = πx2 = πt3 = πx3 = 1/3. Thus

E0 U = 1
2 p2, 2pq, q2 ′ and Var0 U = ∑0 (16)
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where ∑0 = mn −1 ∑0i j 1 ≤ i, j ≤ 3 is a symmetric matrix with

∑011 = p2
12 A(p), ∑012 = ∑021 = − p2q2

4 (n + m − 1), ∑013 = ∑031 = p2q
2 ((n − 1)q − mp)

∑022 = q2
12 A(q), ∑023 = ∑032 = pq2

2 ((m − 1)p − nq), ∑033 = pq(nq2 + mp2 + pq)

A(x) = 6 + 4(n + m − 2)x − 3(n + m − 1)x2

Moreover, since Var0(Uw) = Var0(c′U) = c′Σ0c ≥ 0 by definition, the matrix Σ0 is a semi-

positive definite.

The power formula for the weighted WMW, similar to equation (9), is

Φ
σ0w
σ1w

zα
2

+
μ1w − μ0w

σ1w
+ Φ

σ0w
σ1w

zα
2

−
μ1w − μ0w

σ1w
≈ Φ

σ0w
σ1w

zα
2

+
μ1w − μ0w

σ0w
(17)

where μ1w= c′E(U), μ0w = c′E(U), σ1w = c′Σc, and σ0w= c′Σ0c.

Under the assumptions that

1. n/m converges to a constant ρ (0 < ρ < 1),

2.
both N F1 t − F2 t and N G1 x − G2 x  are bounded, i.e. 

σ0w
σ1w

 converges to 1 

as N = m + n →∞,

a weight-vector c maximizes the power (17) if and only if it maximizes |μ1w − μ0w|/σ0w.

We prove in Appendix 3 that the optimal-weight vector copt is given by

copt =
∑0

−1 μ

b′∑0
−1 μ

(18)

for b′ = (1, 2, 1) and μ = E(U) − E(U) = E0(U) = (πt1p1p2 − 1
2 p2, p1q2 − pq, πx1q1q2 − 1

2q2)′ .

Therefore, from equation (14), the corresponding optimal test statistic Zw (denoted here 

Zopt) is then given by

Zopt =
copt′ U − E0 U

copt′ ∑0copt
=

μ′∑0
−1 U − E0 U

μ′∑0
−1 μ

(19)
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2.3.3 Remarks

i. The test statistic Zopt given by equation (19) encompasses the contributions of 

the effects of treatment on both mortality (via Ut) and the non-fatal outcome (via 

Ux) as well as the corresponding proportions of deaths and survivors in both 

treatment groups (via Utx) and their relative importance and magnitude, where 

each component is weighted accordingly through copt.

ii. As demonstrated, the ordinary WMW test statistic is a special case of a weighted 

WMW test statistics (corresponding to a weighted WMW test statistic with equal 

weights). This implies that both the ordinary and the optimal-weighted WMW 

test statistics belong to same family of weighted WMW tests.

iii. Note that the optimal weight vector copt = ∑0
−1 μ depends on unknown 

population parameters πt1, πx1, p1, p2, and p which must be estimated in practice 

(since they are not available from the observed sample data). A good estimation 

method of these unknown parameters is needed to calculate the test statistic Zopt 

given by equation (19):

a. When the distributions of the primary endpoint, X, and the survival 

time, t, are known approximately, we can estimate analytically the 

probabilities πt1 and πx1, p1, p2 (as we have done in Appendix 4 for our 

simulation studies) and calculate an estimate of the probability p under 

the null hypothesis (H0) as p̂ = mp̂1 + np̂2 / m + n  (pooled sample 

proportion).

In general, the distributions of both the primary endpoint and the 

survival time are not known. Optimal weights are estimated using either 

data from a pilot study (or from previous studies, when available) or the 

data at hand.

b. If we have data from prior studies, we can leverage them to estimate 

these parameters. Using Bayesian methods, we can elicit expert 

opinions to define prior distributions associated with Σ0 and μ that best 

reflect the characteristics of the disease under study and determine 

posterior distributions to provide a more accurate assessment of the 

optimal weights.26 Alternatively, if the data are structured such that we 

have multiple strata available (e.g., different enrollment periods or 

different clinical centers for patients), we can use an adaptive weighting 

scheme to estimate Σ0 and μ.27,28

c. In absence of data from prior studies, it is recommended to use a 

bootstrap approach to estimate the weights. To do this, we generate B 

bootstrap samples (e.g., B = 500, 1000, or 2000) and, for each bootstrap 

sample, we estimate the corresponding optimal weight vector copt. 

Then, we compute the average weights from the B estimates. Finally, 

using these average weights, we compute the test statistic Zopt on the 
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original sample with the average weights estimated in the first part and 

test the null hypothesis.

d. With the data at hand, we can also use a K-fold cross-validation. In that 

regard, we divide the data into K subsets of roughly equal size and 

estimate the weights copt,k and the test statistic Zopt,k exactly K times. 

At the k-th time, k = 1,…, K, we use the k-th subset as validation data 
to calculate the weights copt,k and combine the remaining K − 1 subsets 

as training data to estimate the test statistic Zopt,k using the weights 

defined at the validation stage. Then, we estimate the test statistic Zopt 

by averaging over all the K test statistics Zoptk
, k = 1, …, K and run the 

hypothesis test.

3 Simulation studies

We conducted simulation studies to assess the performance of the weighted test statistic. We 

generated data set to follow the pattern seen in stroke trials, where the outcome of interest 

(patient’s improvement on the NIHSS score over a three-month period) may be missing for 

some patients due to death. We simulated death times under a proportional hazards model 

with t1k ~ Exp(λ1), t2l ~ Exp(λ2), such that q2 = exp(−λ2T) and HR = λ1/λ2 with T = 3 

months, HR = 1.0, 1.2, 1.4, 1.6, 2.0, 2.4, 3.0 and q2 = 0.6, 0.8. For the non-fatal outcome, 

X1k ~ N(0, 1), X2l N 2Δx, 1 , k = 1,…,m; l = 1,…,n with 

Δx = μx2
− μx1

/ σx1
2 = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. The conditional probabilities, πty and 

πxy, γ = 1, 2, 3, are given in Appendix 4. We computed power for the weighted WMW test 

for n = m = 50 patients, using the analytical power formula (17) and a two-sided α = 0.05. In 

addition, we estimated power empirically by averaging over 10,000 simulated data sets.

The results, given in Table 1, illustrate the accuracy of the analytical power formula (17). 

They indicate also that the weighted WMW test statistic is more powerful than the ordinary 

WMW test for the worst-rank score composite outcome. The largest differences are seen in 

two different scenarios:

1. The standardized difference in the non-fatal outcome Δx is small (Δx < 0.3) and 

the difference in mortality is moderate or high (HR ≥ 1.2)

2. The difference in mortality is small (HR < 1.2) and the standard difference in the 

non-fatal outcome Δx is moderate or high (Δx ≥ 0.3).

Overall, these results mean that whenever the effect on the primary outcome is small, the 

larger difference in mortality is diluted when assessing the overall difference through the 

ordinary WMW, where mortality and the non-fatal outcome are weighted equally. Likewise, 

if the difference in mortality is small, but the difference in the non-fatal outcome is moderate 

or high, the ordinary WMW test on the composite outcome has less power than the weighted 

WMW.
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4 Application to a stroke clinical trial

A clinical trial of NBO therapy was conducted at Massachusetts General Hospital for 

patients who had an acute ischemic stroke.1,2 In this trial, 85 patients were randomly 

assigned to either NBO therapy (43 patients) or to room air (control) for 8 h and assessed 

serially with clinical function scores. The primary efficacy and safety endpoints were, 

respectively, the mean change in NIHSS from baseline to 4 h (during therapy) and 24 hours 

(after therapy).1 For illustration purposes, we focused on the secondary endpoint and 

examined the mean change in NIHSS scores from baseline to three months or at discharge.

Twenty-four of the 85 patients died, 17 of whom were in the NBO group. Fifty-three 

patients (with 31 in the control group) were discharged prior to the three-month follow-up 

period. Subjects with missing three-month NIHSS scores were included in the estimation of 

the log rank test, but excluded in the assessment of the change in NIHSS scores. The log 

rank test of survival was significant (χ2 = 6 with 1 d.f., p = 0.016), indicating that the active 

treatment had an unfavorable effect on mortality. The ordinary WMW test applied to the 

survivors was not significant (W = 572.5, p = 0.27). Using the untied worst-rank composite 

endpoint of death times and NIHSS scores, we found a significant result with the ordinary 

WMW test (W = 1112.5, p = 0.01).

Finally, we applied the proposed method, estimating the weights and the test statistic Zw 

using B = 2000 bootstrap samples, as explained in part (iii) of the Remarks 2.3.3. The 

estimated weight vector c′, the mean difference μ, the variance-covariance matrix for U 
under the null, and the probability p were, respectively,

c′ = 0.45, 0.16, 0.24 , ∑0 =
0.59 0.50 −0.90
0.50 4.77 −1.27
−0.90 −1.27 5.16

, μ = − 0.016, 0.098, 0.073 , and p = 0.283.

This corresponds to w1 = 0.61 and w2 = 0.39, which means mortality was weighted more 

heavily (61 % of the weight) than NIHSS score, in addition to ranking death worse than any 

measure of the continuous outcome (NIHSS score). The optimally weighted WMW test 

statistic Zopt was equal to 3.42 with a correspondingp value of 6.2 × 10−4. This result is 

stronger than that from the ordinary WMW test as it captures the significant difference in 

mortality between the two treatment groups and demonstrates the efficiency of our test 

statistic.

5 Discussion

In this paper, we have generalized the notion of the WMW test for a worst-rank composite 

outcome by deriving the optimally weighted WMW test. Against the null hypothesis of no 

difference on both mortality and continuous endpoint, we have focused on the alternative 

hypothesis that “the active treatment has a preponderance of positive effects on the multiple 

outcomes considered, while not being harmful for any.”29 We have motivated the worst- 

rank composite outcome in the context of the clinical trial of a non-mortality primary 

outcome where the assessment of the primary outcome of interest at a pre-specified time-

point may be precluded by death, any other debilitating event, or worsening of the disease 
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condition. The corresponding composite outcome takes into account all patients enrolled in 

the trial, including those who had terminal events before the end of follow-up.

When there exists a hierarchy of the constituent endpoints of a composite outcome, the 

method we have presented in this paper enables different components of the WMW test 

statistic to be weighted differentially. Using weights allows for an additional level of 

discrimination between the component outcomes beyond ranks alone. While the worst-rank 

score mechanism pertains with how the different component outcomes of the composite 

endpoint are aggregated, assigning weights strengthen (or lessen) the influence these 

prioritized component outcomes exert in the overall composite. We considered weights 

obtained or elicited from expert judgments (utility weights) or determined in a way that the 

corresponding WMW test statistic has a maximum power. Based on a U-statistic approach, 

we first provided the test statistic and the power of the weighted WMW test when utilities 

(or severity) weights, determined a priori, are available. We also demonstrated that the 

ordinary (unweighted) WMW test on the worst-rank score outcome is a special case of the 

weighted WMW test, i.e. when the weights are all equal. Then, we derived the optimal 

weights such that the power of the corresponding weighted WMW test statistic is maximal. 

Finally, we conducted simulation studies to evaluate the accuracy of our power formula and 

confirmed, in the process, that the weighted WMW is more powerful than ordinary WMW 

test.

We applied the proposed method to the data from a clinical trial of NBO therapy for patients 

with acute ischemic stroke. Patients’ improvement was assessed using the National Institutes 

of Health Stroke Scale (NIHSS) Scores. The results indicated a statistically significant 

difference between NBO therapy and room air—using either the proposed method or the 

ordinary WMW test on the worst-rank composite outcome of death and change in NIHSS—

which we couldn’t detect using the ordinary WMW on the survivors alone.

The difference between NBO therapy and room air was driven by the difference in mortality 

since there was a disproportionate number of NBO-treated patients who died. It is actually 

for this reason the trial was stopped by the Data and Safety Monitoring Board (DSMB) after 

85 patients out of the projected 240 were enrolled. The stark imbalance between the two 

treatment group, although not attributed to the treatment, made it untenable to continue the 

trial.1,30

The end result of the NBO trial is one of the dreaded scenarios in the (traditional) analysis of 

composite endpoints. That the active treatment must be better than the control for one or 

both of the constituent outcomes (mortality and non-fatal outcome) and not worse for either 

of them as suggested by our alternative hypothesis H1 (stated in equation (4)), was clearly 

not the case for the NBO trial. While the active treatment was equivalent to the control 

treatment in change in NIHSS, the data showed also that NBO therapy increased mortality. 

Ideally, components of a composite endpoint should have similar clinical importance, 

frequency, and treatment effect. However, this is rarely the case as outcomes of different 

levels of severity are usually combined to facilitate the interpretation of such results, several 

authors have suggested running complementary analyses on components of the composite 

outcome.31–38
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When the impact of the active treatment on mortality is of greater clinical importance than 

its effect on the primary outcome of interest, the weighted WMW test statistic we have 

presented can be included into a set of testing procedures that ensure that the treatment is not 

inferior on both mortality and the outcome of interest and that it is superior on a least one of 

these endpoints. In the context of ischemic stroke, the clinical investigators desired a 

treatment that would have a positive impact on mortality while also improving survivors’ 

functional outcomes. Testing procedures that incorporate contributions of each individual 

component of the composite while penalizing for any disadvantage in the active treatment 

when the treatment operates in opposite directions on the components of the composite 

outcome have been discussed.39–42 For the analysis of NBO clinical trial, we propose two 

different stepwise procedures to analyze data using this weighted test: (1) two individual 

non-inferiority tests on mortality and non-fatal outcome followed (if non-inferiority 

established) by a global test using the optimal- weighted WMW test on the worst-rank 

composite endpoint; or (2) a global test using the optimal-weighted WMW test on the worst-

rank composite endpoint, and then (if significant global test) two individual non-inferiority 

tests followed by individual superiority tests on mortality and non-fatal outcome. In either 

scenario, the overall type I error is preserved.39,40,43,44

The method presented in this paper can be applied or extended to many other settings of 

composite endpoints beyond the realm of death-censored observations. The rationale, 

advantages (and limitations), and recommendations for using composite outcomes—based 

on clinical information, expert knowledge or practical matters—abound in the literature.
14,35,45 One can also accommodate ties as well as noninformative censoring in the definition 

of the WMW U-statistic. In particular, when non-informative censoring is present (and, 

without loss of generality, assuming there is no ties), survival times can be assessed using 

Gehan’s U-statistic, which is an extension of the WMW U-statistic to right censored data.46 

In this case, I(t1k < t2l) will be equal to 1 if subject l in group 2 lived longer than subject k in 

group 1 and 0 if it is uncertain which subject lived longer.

Our method can be applied in many disease areas in which different outcomes are clinically 

related and represent the manifestation of the same underlying condition. Clinical trials of 

unstable angina and non-ST segment elevation myocardial infarction are examples of such 

an application.47,48 The method can also be applied in clinical trials where the overall effect 

of treatment on a disease depends on hierarchy of meaningful—yet of different importance, 

magnitude, and impact—heterogenous outcomes. For instance, in clinical trials of asthma or 

of benign prostatic hyperplasia (BPH), several outcomes are necessary to capture the 

multifaceted manifestations of the disease. For patients with asthma, four outcomes (forced 

expiratory volume in 1 second (FEV1), peak expiratory flow (PEF) rate, symptom score, and 

additional rescue medication use) are necessary to measure the different manifestations of 

the disease.49. Due to subjective nature of BPH symptoms, in addition to BPH symptom 

score index, measures to assess disease progression include: prostate specific antigen (PSA), 

urinary cytology, post-void residual volume (PVR), urine flow rate, cystoscopy, urodynamic 

pressure-flow study, and ultrasound of the kidney or the prostate.

Our method does not immediately apply to the case where the treatment effect is assessed by 

stratifying for a confounding variable (baseline scores, baseline disease severity, age,…) pre-
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specified in the study design.50,51 For the NBO trial, had the investigators anticipated the 

imbalance between subjects on some baseline variables (e.g., large infarcts, advanced age, 

co-morbidities, and most importantly, withdrawal of care based on pre-expressed wishes or 

family preference), they could have stratified the study population with respect to these 

variable.1,30 The test statistic we have proposed does not adjust for such baseline covariates 

as the appropriate-weighted WMW test for this case must take into account the stratum 

specific characteristics in addition to the specificities of the worstranking procedure; this is a 

topic for future investigations.

A strong case may be made on why one should prefer analysis of covariance to the analysis 

of change from baseline score as we have done in this paper.52 But in reality, issues are more 

nuanced and the approach to use depends closely on the nature of the data as well as the 

clinical question of interest.53–58 For the difference in NIHSS scores (from baseline to three 

months), the fundamental question of interest was “on average, how much NBO-treated 

patients changed over three-month period compare to patients assigned to room air?” The 

change- from-baseline-score paradigm assumes that the same measure is used before and 

after the treatment and that these two measures are highly correlated.59,60 In the stroke 

literature, it is proven that change from baseline in NIHSS satisfies this assumption since 

baseline NIHSS is a strong predictor of outcome after stroke.61,62 Moreover, it has been 

shown that change in the NIHSS score is a useful tool to measure treatment effect in acute 

stroke trials (see for instance the papers by Bruno et al.63 and by Parsons et al.64) Hence, this 

justified the choice of improvement (or change) in NIHSS score as outcome of interest in 

this paper.

We have assumed throughout this paper that mortality is worse than any impact ischemic 

stroke may have on patients. Our assumption stems from the common view that ranks death 

as inferior to any quality-of-life measure, such a view is advocated in several medical fields.
7,8,65–70 However, some people (patients, their family members or caregivers) may argue 

otherwise and affirm that there are levels of stroke that are worse than death. For instance, in 

a study of the effects of thrombolytic therapy in reducing damage from a myocardial 

infarction, the hierarchy of the quality of component outcomes was “stroke resulting in a 

vegetative state, death, serious morbidity requiring major assistance, serious morbidity but 

capable of self-care, excess spontaneous hemorrhage (≥ 3 blood transfusions), and 1–2 

transfusions”.10 There are number of papers in the causal inference literature that offer an 

alternative approach based on Rosenbaum’s proposal of using different “placements of 

death”.71 However, as Rubin72 pointed out, this elegant idea “maybe difficult to convey to 

consumers”72 and we have not pursued this avenue here.

Finally, the null hypothesis (3) for WMW test stipulates that the treatment does not change 

the outcome distribution, which means that the treatment has no effect on any patient. 

However, some studies may require a weaker version of the null hypothesis, i.e. the 

treatment does not affect the average group response.73,74 In such a case, the WMW is not 

an asymptotically valid test for the weaker null hypothesis.75,76 As an alternative, one can 

use the Brunner and Munzel test77 where the marginal distribution functions of the two 

treatment groups are not assumed to be equal and may have different shapes, even under the 

null hypothesis. In this paper, we have chosen the WMW test because it is simple, widely 
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used, efficient, and robust against parametric distributional assumptions. The use of a 

weighted Brunner-Munzel test for analysis of the worst-rank composite outcome of death 

and a quality-of-life (such as the NIHSS score) warrants further investigations and is beyond 

the scope of this paper.
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Appendix 1. Mean and variance of the U-statistic

Consider the untied worst-rank adjusted values for subjects in the control and active 

treatment groups X∼1k = 1 − δ1k X1k+δ1k η + t1k , for k = 1,…, m and 

X∼2l = 1 − δ2l X2l + δ2l η + t2l , for l = 1,…, n.

Define the WMW U-statistic

U = mn −1 ∑
k = 1

m
∑

l = 1

n
Ukl, where Ukl = I X∼1k < X∼2l

Since Ukl = 1 if {t1k < t2l and δ1kδ2l = 1}, {δ1k = 1 and δ2l = 0}, or {X1k < X2l and (δ1k = 

δ1l = 0)}, we have Ukl = I(t1k < t2l, δ1kδ2l = 1) + I(δ1k = 1, δ2l = 0) + I(X1k < X2l, δ1k = δ2l = 

0)

Therefore

E U = E Ukl

= P t1k < t2l δ1kδ2l = 1 P δ1kδ2l = 1 + P δ1k = 1, δ2l = 0 + P X1k < X2l P δ1k = δ2l = 0
= p1p2 ⋅ P t2l < t2l δ1k = δ2l = 1 + p1q2 + q1q2 ⋅ P X1k < X2l

= p1p2πt1 + p1q2 + q1q2πx1 = πU1

(20)

where q1 = 1− p1, q2 = 1 − p2, πt1 = P(t1k < t2l|δ1k = δ2l =1), and πx1 = P(X1k < X2l)
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Var U = mm −2 ∑
k = 1

m
∑

l = 1

n
Var Ukl + ∑

k = 1

m
∑

l = 1

n
∑

k′ = 1

m
∑

l′ = 1

n
Cov Ukl, Uk′l′ , with k ≠ k′ or l ≠ l′ or both

= mn −1 Var Ukl + m − 1 Cov Ukl, Uk′l + n − 1 Cov Ukl, Ukl′

Note that Cov(Ukl, Uk′l′) = E(Ukl, Uk′l′)−E(Ukl)E(Uk′l′) = 0 Cov(Ukl, Uk′l′) = E(Ukl, Uk′l′)

−E(Ukl)E(Uk′l′) and Cov(Ukl, Ukl′) = E(UklUkl′) − E(Ukl)E(Ukl′), for k ≠ k′, l ≠ l′. In 

addition, because Ukl = I X∼1k < X∼2l  follows Bernoulli distribution with probability πU1, we 

derive the variance Var(Ukl) = E(Ukl)[1 − E(Ukl)] = πU1 (1 − πU1).

E UklUk′l = P UklUk′l = 1

= P δ1kδ1k′ = 1, δ2l = 0 + P t1k < t2l, t1k′ < t2l δ1kδ1k′δ2l = 1 P δ1kδ1k′δ2l = 1

+P X1k′ < X2l P δ1k = 1, δ1k′ = δ2l = 0 + P X1k < X2l P δ1k = 0, δ1k′ = 1, δ2l = 0

+P X1k < X2l, X1k′ < X2l P δ1k = δ1k′ = δ2l = 0

= p1
2q2 + p1

2p2πt2 + 2p1q2πx1 + q1
2q2πx2

E UklUkl = P UklUkl′ = 1

= P δ1k = 1, δ2l = δ2l′ = 0 + P t1k < t2l, t1k < t2l′ δ1kδ2lδ2l′ = 1 P δ1kδ2lδ2l′ = 1

+P t1k < t2l δ1kδ2l = 1, δ2l = 0 P δ1kδ2l = 1, δ2l′ = 0

+P t1k < t2l δ1k = 1, δ2l = 0, δ2l′ = 1 P δ1k = 1, δ2l′ = 0, δ2l′ = 1

+P X1k < X2l, X1k < X2l′ P δ1k = δ2l = δ2l′ = 0

= p1q2
2 + p1q2

2πt3 + 2p1p2q2πt1 + q1q2
2πx3

with πt2 = P t1k < t2l, t1k′ < t2l δ1k = δ1k′ = δ2l = 1 , πx2 = P X1k < X2l, X1k′ < X2l

πt3 = P t1k < t2l, t1k < t2l δ1k = δ2l = δ2l′ = 1 , and πx3 = P X1k < X2l, X1k < X2l′

In summary

Var U = mn −1 πU1 1 − πU1 + m − 1 πU2 − πU1
2 + n − 1 πU3 − πU1

2 (21)

where πU2 = p1
2q2 + p1

2p2πt2 + 2p1q1q2πx1 + q1
2q2πx2 and 

πU3 = p1q2
2 + p1q2

2πt3 + 2p1p2q2πt1 + q1q2
2πx3 .

Under the null hypothesis of no difference between the two groups, with respect to survival 

and non-fatal outcome, we have F1 = F2 = F, G1 = G2 = G, and p1 = p2 = p, q1 = q2 = q. This 

implies
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πt1 = P t1k < t2l/t1k ≤ T , t2l ≤ T = 1
p2∫0

′F(t)dF(t) = 1
2p2 F T 2 − F 0 2 = 1

2

πt2 = P t1k < t2l, t1k′ < t2l t1k ≤ T , t1k′ ≤ T , t2l ≤ T = 1
p3∫0

′F t 2dF t = 1
3p3 F T 3 − F 0 3 = 1

3

πt3 = P t1k < t2l, t1k < t2l′ t1k ≤ T , t2l ≤ T , t2l′ ≤ T) = 1
p3∫o

T
1 − F t 2dF t = 1

3p3 1 − F T 3 − 1 − F 0 3 = 1
3

πx1 = P X1k < X2l = ∫−∞
∞

G x dG x = 1
2 G x 2

−∞
∞ = 1

2

πx2 = P X1k < X2l, X1k′ < X2l = ∫−∞
∞

G t 2dG t = 1
3 G x 3

−∞

∞
= 1

3

πx3 = P X1k < X2l, X1k < X2l′ ∫−∞
∞

1 − G t 2dG t = − 1
3 1 − G x 3

−∞
∞ = 1

3

Therefore

πU1 = p1p2πt1 + p1q2 + q1q2πx1 = 1
2 p2 + pq + 1

2q2 = 1
2 p + q 2 = 1

2

πU2 = p1
2q2 + p1

2p2πt2 + 2p1q1q2πx1 + q1
2q2πx2 = p2q + 1

3 p3 + pq2 + 1
3q3 = 1

3 p + q 3 = 1
3

πU3 = p1q2
2 + p1p2

2πt3 + 2p1p2q2πx1 + q1q2
2πx3 = pq2 + 1

3 p3 + p2q + 1
3q3 = 1

3 p + q 3 = 1
3 .

The mean and variance become

μ0 = E0 U = πU1 = 1
2

σ0
2 = Var0 U = mn −1 πU1 1 − πU1 + m − 1 πU2 − πU1

2 + n − 1 πU3 − πU1
2

= mm −1 1
2 1 − 1

2 + m − 1 1
3 − 1

2
2

+ n − 1 1
3 − 1

2
2

= mm −1 1
4 + 1

12 m − 1 + 1
12 n − 1 = m + n + 1

12mn

Appendix 2. Mean and variance of the weighted U-statistic

Consider the weights w = (w1, w2), we define the vector c′ = (c1, c2, c3) = (w1
2, w1w2, w2

2). Let 

X∼1k = w1δ1k(η + t1k) + w2(1 − δ1k)X1k, for k = 1,…, m and X∼2l = w1δ2l(η + t2l) + w2(1 − δ2l)X2l, 

for l=1,…,n.

We define the weighted WMW U-statistic by c′U=(Ut, Utx,Ux)where U′ = (Ut, Utx,Ux) and
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Ut = (mn)−1 ∑
k = 1

m
∑
l = 1

n
δ1kδ2lI(t1k < t2l)

Utx = (mn)−1 ∑
k = 1

m
∑
l = 1

n
δ1k(1 − δ2l)

Ux = (mn)−1 ∑
k = 1

m
∑
l = 1

n
(1 − δ1k)(1 − δ2l)I(X1k < X2l)

(22)

E(U) = P δ1k = 1 P δ2l = 1 P t1k < t2l δ1k = δ2l = 1 , P δ1k = 1 P δ2l = 0 p δ1k = 0 P δ2l = 0 P X1k < X2l ′
= p1p2 · P t1k < t2l δ1k = δ2l = 1 , p1q2, q1q2 · P X1k < X2l ′
= p1p2πt1, p1q2, q1q2πx1 ′

(23)

where q1 =1−p1, q2=1−p2, πt1 = P t1k < t2l δ1k = δ2l = 1  and πx1 = P(X1k < X2l).Var(U) = 

Σ, where ∑ = mn −1 ∑i j 1 ≤ i, j ≤ 3 is a 3 × 3 matrix such that

∑11 = E Ut − p1p2πt1 Ut − p1p2πt1

= p1p2 πt1 1 − πt1 + p1 m − 1 πt2 − πt1
2 + p2 n − 1 πt3 − πt1

2 + πt1
2 mp1q2 + n − 1 p2q1 + q1

∑12 = ∑21 = E Ut − p1p2πt1 Utx − p1q2 = πt1p1p2q2 n − 1 q1 − mp1
∑13 = ∑31 = E Ut − p1p2πt1 Ux − q1q2πx1 = − πt1πx1 m + n − 1 p1q1p2q2
∑22 = E Utx − p1q2 Utx − p1q2p = p1q2 mp1p2 + n − 1 q1q2 + q1
∑23 = ∑32 = E Utx − p1q2 Ux − q1q2πx1 = πx1p1q1q2 m − 1 p2 − nq2

∑33 = q1q2 πx1 1 − πx1 + q1 m − 1 πx2 − πx1
2 + q2 n − 1 πx3 − πx1

2 + πx1
2 mq1p2 + n − 1 q2p1 + p1

= = =

Therefore
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Var c′U = c′∑c

Under the null hypothesis of no difference between the two groups, with respect to both 

survival and non-fatal outcome, we have p1 = p2 = p, q1 = q2 = q = 1 −p, πx1 = 1/2, and πt2 

= πx2 = πt3 = πx3 = 1/3: Thus

E0(U) = 1
2 p2, 2pq, q2 ′ and Var0(U) = ∑0 (24)

where ∑0 = (mn)−1 ∑0i j 1 ≤ i, j ≤ 3 is a symmetric matrix with

∑011 = p2
12 A(p), ∑012 = ∑021 = p2q

2 ((n − 1)q − mp), ∑013 =∑031 = − p2q2
4 (n + m − 1)

∑022 = pq(nq2 + mp2 + pq), ∑023 =∑032 = pq2
2 ((m − 1)p − nq), ∑033 = q2

12 A(q)

A(x) = 6 + 4(n + m − 2)x − 3(n + m − 1)x2

Moreover, since Var0(c′U) = c′∑0c ≥ 0 by definition, the matrix Σ0 is positive semi-definite. 

In practice, p is estimated by the pooled sample proportion p̂ = (mp1 + np2)/(m + n) and both 

E0(U) and Var0(U) are calculated accordingly.

Appendix 3. Optimal weights

From equation (17), we have

μ1w − μ0w = c1 πt1p1p2 − 1
2 p2 + c2(p1q2 − pq) + c3 πx1q1q2 − 1

2q2 c′μ

where c′ = (c1, c2, c3), c1+2c2+c3 = 1, and μ′ = (πt1p1p2 − 1
2 p2, p1q2 − pq, πx1q1q2 − 1

2q2) and 

p is estimated by p = (mp1 + np2)/(m + n) .

We assume that det(Σ0) > 0 i.e. Σ0 is positive-definite. Maximizing 
μ1w − μ0w

σ0w
, subject to c1 

+ 2c2+c3 = 1 with respect to c corresponds to maximizing the Lagrange function

O(c, λ) = c′μ c′∑0c
− 1

2 − λ c′b − 1

with respect to the vector c and λ where λ is the Lagrange multiplier and b′ = (1, 2, 1)

Let K(c) = sign(c′μ)[(c′∑0c)
− 3

2], we have
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∂
∂c O(c, λ) = K(c)[(c′∑0c)μ − (∑0c)(c′μ)] − λb = 0 (25)

∂
∂λ O c, λ = c′b − 1 = 0 (26)

From equations (25) and (26), we have

0 = c′ K(c) c′∑0c μ − ∑0c c′μ − λb = K(c) c′∑0c c′μ − c′∑0c c′μ − λc′b = λ

because both (c′Σ0c) and (c′μ) are scalars and c′b = c1+2c2+c3 = 1.

Then equation (25) implies (c′Σ0c)μ = (Σ0c)(c′μ), i.e. μ = ∑0c c′μ
c′∑0c

= ∑0
c′μ

c′∑0c
c .

Since we assume that the matrix ∑0
−1 exists, this implies

∑0
−1 μ = c′μ

c′∑0c
c (27)

and thus, b′∑0
−1 μ = c′μ

c′∑0c
b′c = c′μ

c′∑0c
.

Replacing c′μ
c′∑0c

 by b′∑0
−1 μ in equation (27) yields ∑0

−1 μ = b′∑0
−1 μ c . Therefore, the 

optimal weight-vector is

copt =
∑0

−1 μ

b′∑0
−1 μ

(28)

as long as b′∑0
−1 μ ≠ 0. In addition

∂2

∂c2 O(c) c = copt
= sign c′μ c′∑0

−1c
− 3

2 2 c′∑0 μ − μ′ ∑0c − ∑0 c′μ c = copt
− 3sign c′μ ∑0c μ′∑0

−1 μ
− 5

2 c′∑0c μ − ∑0c c′μ c = copt

= 2sign c′μ μ′∑0
−1 μ

− 3
2 b′∑0

−1 μ
2

μμ′ − μ′∑0
−1 μ ∑0

= 2sign b′∑0
−1 μ μ′∑0

−1 μ
− 3

2 b′∑0
−1 μ

2
μμ′ − μ′∑0

−1 μ ∑0
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Since Σ0 is positive definite, we can show that the border-preserving principal minors of 

order k > 2 have sign (−1)k Therefore, c = copt =
∑0

−1 μ

b′∑0
−1 μ

 maximizes O(c).

Let us define two vectors. d1′ = (1, 1, 0) and d2′ = b′ − d1′ = (0, 1, 1) . To calculate w1 and w2, 

we just need to consider the relationships c = w1
2, w1w2, w2

2  and w1+w2 = 1. We have 

d1′ c = w1
2 + w1(1 − w1) = w1 . Therefore, using the result given in equation (28), we can 

deduce w1 = d1′ c =
d1′ ∑0

−1 μ

b′∑0
−1 μ

 and w2 = 1 − d1′ c =
(b′ − d1′ )∑0

−1 μ

b′∑0
−1 μ

=
d2′ ∑0

−1 μ

b′∑0
−1 μ

.

Appendix 4. Conditional probabilities

D.1. Exponential distribution

Suppose that the death times t1, t2 follow exponential distributions with hazards λ1, λ2, 

respectively, and denote θ =
λ1
λ2

, q1 = q2
θ, and q2 = e

−Tλ2 Given that 

P δ1k = 1 = p1, p δ21 = 1 = p2, we have

πt1 = P t1k < t21 δ1k = δ21 = 1 = p1p2
−1∫o

T
1 − e

−λ1u
λ2e

−λ2u
du

= 1
1 − q2

θ 1 −
1 − q2

1 + θ

1 + θ 1 − q2

πt2 = P t1k < t2l, t1k′ < t2l δ1k = δ1k′ = δ2l = 1 = p1
−2p2

−1∫o

T
1 − e

−λ1u 2
λ2e

−λ2u
du

= 1 − q2
θ −2 1 + 1

1 − q2

1 − q2
1 + 2θ

1 + 2θ −
2 1 − q2

1 + θ

1 + θ

πt3 = P t1k < t2l, t1k < t2l′ δ1k = δ2l = δ2l′ = 1 = p1
−1p2

−2∫0
T

e
−λ2T

− e
−λ2u 2

λ1e
−λ1u

du

=
q2

1 − q2

2
1 +

θ 1 − q2
2 + θ

2 + θ 1 − q2
θ q2

2 −
2θ 1 − q2

1 + θ

1 + θ 1 − q2
θ q2

D.2. Normal distribution

Suppose that the non-fatal outcomes X1, X2 follow normal distributions N(μx1, σx1) and 

N(μx2, σx2), respectively.

Consider Δx =
μx2

− μx1
σx1

2 + σx2
2 , ρx j

=
σx j

2

σx1
2 + σx2

2 , and Zkl =
x1k − x2l − μx1

− μx2
σx1

2 + σx2
2
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We can show that

πx1 = P X1k < X2l = Φ Δx

πx2 = P X1k < X2l, X1k′ < X2l = P Zkl < Δx, Zk′l < Δx

πx3 = P X1k < X2l, X1k < X2l′ = P Zkl < Δx, Zkl′ < Δx

Zkl, Zk′l ∼ N
0
0 ,

1 ρx2
ρx2

1 and Zkl, Zkl′ ∼ N
0
0 ,

1 ρx1
ρx1

1
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