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Introduction

Abstract. Owing to the inconsistent image quality existing in routine obstetric ultrasound (US) scans that leads
to a large intraobserver and interobserver variability, the aim of this study is to develop a quality-assured, fully
automated US fetal head measurement system. A texton-based fetal head segmentation is used as a prerequi-
site step to obtain the head region. Textons are calculated using a filter bank designed specific for US fetal head
structure. Both shape- and anatomic-based features calculated from the segmented head region are then fed
into a random forest classifier to determine the quality of the image (e.g., whether the image is acquired from a
correct imaging plane), from which fetal head measurements [biparietal diameter (BPD), occipital-frontal diam-
eter (OFD), and head circumference (HC)] are derived. The experimental results show a good performance of
our method for US quality assessment and fetal head measurements. The overall precision for automatic image
quality assessment is 95.24% with 87.5% sensitivity and 100% specificity, while segmentation performance
shows 99.27% (+0.26) of accuracy, 97.07% (+2.3) of sensitivity, 2.23 mm (+0.74) of the maximum symmetric
contour distance, and 0.84 mm (£0.28) of the average symmetric contour distance. The statistical analysis
results using paired t-test and Bland-Altman plots analysis indicate that the 95% limits of agreement for
inter observer variability between the automated measurements and the senior expert measurements are
2.7 mm of BPD, 5.8 mm of OFD, and 10.4 mm of HC, whereas the mean differences are —0.038 4+ 1.38 mm,
—0.20 £ 2.98 mm, and —0.72 4+ 5.36 mm, respectively. These narrow 95% limits of agreements indicate a good
level of consistency between the automated and the senior expert’s measurements. © 2017 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.4.2.024001]

Keywords: fetal head biometric measurements; image quality assessment; texton feature; random forest classifier; ultrasound fetal
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A good quality fetal head US image is recommended to be cap-
10

Obstetric ultrasound (US) imaging is commonly used in daily
clinical practice due to its noninvasive nature, low—cost, and
real-time acquisition." The main goals of the fetal US scan are
to estimate the gestational age (GA) and weight, confirm growth
patterns, and show the presence of possible abnormalities.
A set of standard fetal US biometrics is used in routine practice,
which includes: crown-rump length, biparietal diameter (BPD),
occipital-frontal diameter (OFD), head circumference (HC),
femur length (FL), and abdominal circumference.>* Among
these biometrics, fetal head-related measurements, such as BPD
and HC (Fig. 1), are recommended for the GA estimation during
the GA ranging from 13 to 25 completed weeks,>* and also for
estimating fetal weight.>® The current obstetric US examina-
tions require sonographers to perform measurements manually.
The accuracy of the measurements is highly dependent on oper-
ator training, skill, and experience.

Recent studies”® reported that intraobserver and inter-
observer variability exist in routine practice. Inconsistent US
image quality” is one of the main reasons that leads to the intra-
observer and interobserver variability. In this study, inconsistent
image quality means the scan itself presents variances in specific
anatomic structures (e.g., head) captured by different operators.

*Address all correspondence to: Xujiong Ye, E-mail: xye @lincoln.ac.uk
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tured in a correct imaging plane as required by the guidelines.
To this end, automatic approaches for fetal US image quality
assessment and biometric measurements are needed to ensure
the image captured at a correct imaging plane during the obstet-
ric US examination and to provide accurate and reproducible
fetal biometric measurements.'! It is noted that a good quality
image means that the image is acquired at a correct imaging
plane.

Fetal head boundary detection is performed as a prerequisite
step for image quality assessment (i.e., whether the scan is
captured at the correct imaging plane) and accurate biometric
measurements. According to the obstetric US guidelines,>!? the
assessment of fetal head US image is based on the appearance of
anatomic structures in the image, including skull shape, skull
orientation, and the midline. These features are calculated from
the segmented head structure and then fed into a random forest
(RF) classifier to automatically assess the image quality.

Over the past few years, a number of fetal head segmentation
(detection) methods have been investigated, including Hough
transform-based methods,'>"? parametric deformable models,'*
active contour models," texton-based methods,'® and machine
learning!™'® with varying degrees of success. For example,

2329-4302/2017/$25.00 © 2017 SPIE

Apr—Jun 2017 « Vol. 4(2)


http://dx.doi.org/10.1117/1.JMI.4.2.024001
http://dx.doi.org/10.1117/1.JMI.4.2.024001
http://dx.doi.org/10.1117/1.JMI.4.2.024001
http://dx.doi.org/10.1117/1.JMI.4.2.024001
http://dx.doi.org/10.1117/1.JMI.4.2.024001
http://dx.doi.org/10.1117/1.JMI.4.2.024001
mailto:xye@lincoln.ac.uk
mailto:xye@lincoln.ac.uk
mailto:xye@lincoln.ac.uk

Zhang et al.: Automatic image quality assessment and measurement of fetal head. ..

Fig. 1 The biometric measurements of the fetal head. The BPD
measurement is taken on the outer border of the parietal bones
(outer to outer) at the widest part of skull. The OFD is measured
between the outer border of the occipital and frontal edges of the
skull at the point of the midline (outer to outer) across the longest
part of skull. The HC is the HC calculated from the formula
HC = z(BPD + OFD)/2.2

Anto et al.”® proposed fetal skull segmentation in two-dimen-

sional (2-D) US images using pixel intensities and an RF clas-
sifier. Namburete and Nobel'” considered local statistics and
shape features, which are fed into a RF classifier to obtain the
probability maps of the pixels belonging to the fetal skull in 2-D
US images. However, only a few attempts'** have been made
at automating quality assessment in fetal 2-D US images.
A few studies have considered automatic detection of the fetal
standardized plane from three-dimensional (3-D) US volumes.
Cuingnet et al.?> proposed a fast fetal head detection and align-
ment method in 3-D US volumes. The fetal skull is segmented
using a shape model followed by a template deformation algo-
rithm. The standardized plane is detected using weighted Hough
transform and an RF classifier. Sofka et al.>* proposed a system
for automatic fetal head and brain measurements from 3-D US
volumes. Several fetal head and brain anatomical structures
are detected and measured while corresponding standardized
planes are determined.

To address current clinical challenges in 2-D obstetric US
imaging, we aim to develop a good quality-assured, fully auto-
mated 2-D US fetal head measurement system. Such a system
can remove or reduce elements of human inconsistency, and
provides more accurate and reproducible image quality assess-
ment and measurements. Figure 2 shows the main framework of
our method. A texton-based US fetal head segmentation is first
adopted'® in which a filter bank is designed to extract texton
features specific to US fetal anatomic structures; multiscale local
brightness and texture cues are taken into account for an initial
skull boundary detection, which is then followed by the iden-
tification of the fetal skull using a supervised learning-based
method. The image quality assessment step includes skull mid-
line detection and feature calculation from the segmented head
region, and classification of US image quality using an RF
classifier.

The remainder of the paper is organized as follows: Sec. 2
introduces our method in detail; Sec. 3 presents the experimental
results and further discussions; the conclusion is given in the
final section.

2 Materials and Methods

2.1 Fetal Head Ultrasound Images

Two datasets with a total of 41 fetal head US images collected
from the United Lincolnshire Hospitals NHS Trust are used in
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Fig.2 Flow diagram of the proposed algorithm for fetal head segmen-
tation and image quality assessment.

this experiment. The US images are obtained in clinical practice
by trained sonographers using Toshiba Aplio 780, Toshiba Aplio
790, Toshiba Aplio 500 (Toshiba Medical Systems, Tokyo,
Japan), and GE Voluson 730 (GE Healthcare, Pollards Wood,
UK) US machines. The sonographers use an obstetric setting
on the scanners and appropriately optimize images during scan-
ning. The image datasets collected from 41 patients cover differ-
ent GAs (from 20 to 35 weeks) and different image qualities (poor
and good). Each image is stored as a DICOM format with a size
of 717 x 538 pixels. Two experts (one senior denoted as expert 1
and the other junior as expert 2) provided ground truths by man-
ually delineating the fetal head twice for each image in the data-
sets, and then the BPD, OFD, and HC were obtained from the
delineated skulls. Each US image is graded as either “poor” or
“good” quality by expert 1. In the datasets, there are 22 images
of good quality and 19 images of poor quality. Images with mixed
qualities (e.g., good or poor) with approximately even distribution
are obtained from each US machine. To train and validate our
method, we randomly selected 10 images from the good quality
dataset and 10 images from the poor image set, so in total, 20
images are used as training samples and the remaining 21 images
are used as testing images.

2.2 Texton-Based Fetal Head Segmentation

Nonlinear diffusion filtering® " is used as a preprocessing step

to remove speckle noise in US images. Multiscale and multi-
orientational local intensity and texture cues extracted from a
texton map specific to the US anatomic structures are then
combined for the initial skull boundary detection. Different from
our previous work,'® where a support vector machine (SVM)
was used to identify skull segments from the initial boundary
candidates, an RF algorithm?® is used for skull boundary iden-
tification. In the following subsections, each step is summarized.
More details could be found in Ref. 16.

2.2.1 Initial fetal head boundary detection using textons
and brightness

A fetal skull maximum response 7 (FSMR7) filter bank is
employed to extract the texton features from a US fetal image,
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which includes a set of Gaussian derivatives. More specifically,
two types of filters are used: a second-order derivative of
Gaussian filter and a matched filter.?* This is based on an
assumption that the cross-sectional intensity profile of the
bone (skull) structure can be approximated as Gaussian-like
curves,’® whereas the intensities of those structures are on aver-
age higher than those of the surrounding tissues. These spatial
filters used for skull features extraction are also consistent in
their assumption of the skull cross-sectional profile “analyzed”
in spatial domain.

The fetal skull in US image may rotate to any orientation and
varies in thickness over the different fetal US images. Both sets
of anisotropic filter kernels (second-order derivative of Gaussian
and the matched filter) are applied at three scales to extract skull
orientation variant features and cover various thicknesses. At
each scale (6 = 1, 3, and 5 pixels, where o represents the scale
of the filter), both second-order derivative of Gaussian and
matched filter kernels are rotated in 12 orientations (0-, 15-,
30-, 45-, 60-, 75-, 90-, 105-, 120-, 135-, 150-, and 165-deg). The
standard isotropic Gaussian filter is also employed to extract
general image features from the background. Therefore, there
are a total of 73 filter kernels in the filter bank.

For the anisotropic filters, at each scale, the maximal
response across all 12 orientations is considered. Therefore,
among 73 filter kernels in the filter bank, only seven filter
responses (among which three are from second-order derivative
of Gaussian from three scales and another three are from the
matched filter, with one from the isotropic Gaussian filter)
are considered at three scales. We named it as the FSMR7 filter
bank. Figure 3 shows the maximal response of fetal head across
12 orientations at scalec = 5 for both the second-order derivate
of (a) Gaussian, (b) the matched filter, and (c) the response to the
standard Gaussian at scale ¢ = 1. These features are further used
to generate textons.

Given an image /(x, y), textons are calculated by employing
a seven-dimensional (7-D) k-means clustering algorithm on the
filter responses (i.e., seven maximal responses from FSMR7 to
construct a 7-D feature space), which are then aggregated based
on the distances calculated from membership to clustering cen-
ters. The number of clusters (textons, k) is chosen empirically
according to the number of tissues that may be present in the US
images. Our experiments show k = 32 are sufficient to generate
good primitives (clusters/textons). In the next stage, the texton
map is generated by assigning each pixel in the image to the
nearest texton. Each texton is assigned a texton id using one
of gray levels (from 1 to k = 32). Therefore, the texton map is
a grayscale image with values between 1 and 32. The generated

(b)

texton map (Tmap) is used to calculate the texture-oriented gra-
dient that provides significant local information for the initial
skull boundary detection.'® The oriented gradient magnitude
at each pixel (x,y) is calculated by employing the y? distance
of histograms between two-half discs defined as

I 5 (gihi)?
2 h) = — it
/‘( (g’ ) 2 - gl + hi ?

ey

where the two-half discs are generated by splitting a circular disc
of radius r drawn at a location (x,y) of the image along the
diameter at an orientation of 6, and g; and h; are the histograms
calculated from the two-half discs, respectively.

Equation (1) forms an oriented gradient magnitude. Both
image intensity and texture (Tmap) channels (i =2) are
taken into account for the histogram calculation. The general
local cue (denoted by mPb) is then obtained by calculating
the maximum response of the oriented gradient magnitudes
across all predefined orientations (). The spectral (global) sig-
nals (sPb) are incorporated by employing spectral clustering®!
according to the maximal mPb. The final global probability of
boundary (¢gPb) is formed as a weighted sum of mPb and
sPb.'3! This process allows weak boundaries to be determined
and excluded from strong boundaries while preserving contour
quality. Example results with respect to the mPb, sPb, and gPb
are shown in Figs. 4(a)—4(c), respectively. As we can see from
Fig. 4, those weak boundaries presented in (a) and (b) that are
related to the fetal brain are reduced in (c¢) while the skull
contours are preserved with a high-probability level. The final
skull boundaries shown in Fig. 4(d) are identified using an RF
classifier, which is discussed in the following section.

2.2.2 Fetal head boundary identification, segmentation,
and measurement

It is common that nonskull bright structures are presented
adjacent to the skull in US fetal images [shown in Fig. 4(c)].
To further identify the true skull segments (i.e., remove the
false segments) two steps are used. First, the global boundary
probability map (gPb) obtained in Sec. 2.2.1 is binarized by an
optimal threshold. The gray-level co-occurrence matrix™? is used
to calculate the optimum threshold by finding the gray level
corresponding to the maximum of the total second-order local
entropy of the object and the background. Second, the objects in
the binary image are further classified into skull and nonskull
boundaries. Different from our previous work in Ref. 16
where an SVM is used to identify skull segments from the initial

Fig. 3 Examples of maximal responses to the designed filter bank. (a) Fetal head response to the second
derivative of Gaussian at scale ¢ = 5, (b) response to the matched filter at scale ¢ = 5, and (c) response

to the standard Gaussian filter at scale ¢ = 1.
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(@)

(d)

Fig. 4 Examples of mPb, sPb, and gPb extracted from a fetal head US image and the final identified
fetal head contours. (a) Local boundaries mPb, (b) spectral boundaries sPb, (c) globalized probability of
boundary gPb, and (d) final identified fetal head boundaries.

boundary candidates, an RF classifier is used for skull boundary
identification. RF is an ensemble technique that uses multiple
decision trees. Each node in the trees includes a set of training
examples and the predictor. Splitting starts from the root node
and then continues at every node. The procedure is performed
based on the feature representation and allocating the partitions
to the right and left nodes. The tree grows until a specified tree
depth is reached. During the bagging process and at each attrib-
ute split, a random subset of features is used. In RF, by gener-
ating a large number of trees, the most popular class is voted.?

A set of features based on the prior knowledge of the fetal
skull is constructed for training the RF. These features include
shape, location, and orientation of the structure. To obtain the
shape features, each initial skull boundary segment is fitted
by an ellipse that best represents the boundary. The length of
major- and minor-axes and an eccentricity derived from the fit-
ted ellipse are considered as shape features. The eccentricity of
the ellipse is the ratio of the distance between the foci of the
ellipse and its major axis. It is used to represent the curvature
of the boundary. For example, if the eccentricity of a structure is
1, it denotes a line segment; while 0 indicates a circle. The posi-
tion and orientation of the boundary are also taken into account
based on the guidelines considered in the clinical work flow” on
the appearance of the skull’s position and orientation within the
2-D US images. An RF classifier containing 500 decision trees
was trained using 10 fold cross validation to identify the true
skull boundaries. Figure 4(d) shows an example of the boundary
identification using the trained RF model, where some nonhead
boundaries have been removed.

The final head segmentation is obtained by fitting an ellipse
on the identified skull boundaries, in which the direct least
square ellipse fitting method®® is used to construct a closed
head contour. Both BPD and OFD are obtained by calculating
the minor axis length and the major axis length of the fitted
ellipse, respectively. The formula HC = z(BPD + OFD)/2 is
used to calculate the HC.

2.3 Fetal Head Ultrasound Image Quality
Assessment

The studies published in Refs. 9 and 34 have indicated that the
poor quality of US fetal images (e.g., incorrect imaging plane) is
one of the important sources leading to inaccurate measure-
ments. Although a set of quality criteria>*!%** has been defined
to guide the routine fetal biometric measurements, the large
intraobserver and interobserver variability of fetal image acquis-
ition in clinical practice (e.g., reported in Refs. 7 and 8) signifi-
cantly affects the accuracy of fetal biometric measurements.
We proposed an automated fetal US image quality assessment
method (with a focus on the fetal head). Our automatic method
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is based on the clinical criteria, in which the appearances of the
head shape profile, appropriate angle, and midline in fetal head
US image are used as the main features to assess US image
quality.

In this study, the skull region [region of interest (ROI)] is
determined using the segmented fetal head region described
in Sec. 2.2. The matched filter”® is then designed to detect
the skull midline within the ROI, where the scale parameter
sigma o = 1 of size 13 X 13 pixel filter kernel was empirically
chosen. The filter kernel is rotated in 12 orientations. This filter
bank is shown in Fig. 5(a). An example of the maximal response
to the filter bank across all orientations is shown in Fig. 5(b),
where we can see that most of the bar structures are enhanced
in the image. It is noted that, in general, the midline can be
approximated to be a line or bar structure. However, in most
cases, the midline may not be presented as a continuous line
(i.e., may appear as a number of small line segments) in a
US image due to the artifacts, signal drop, and the natural prop-
erties of the midline in the US images. To fully detect the mid-
line, the following two steps are used. First, the initial response
to the matched filter is further binarized using the Sobel edge
detection. The binarized image contains edges (contours) of
the bar structures in the ROI (head region). Second, the standard
Hough transform (SHT)® is adopted to “analyze” the linear
components of these contours, from which a set of feature vector
related to the midline is then extracted. This assumes a line can
be given in the following parametric representation:

D = x%*cos 8+ yx*sin 0, 2)

where D is the distance from the origin to the line along the
direction, which is perpendicular to the line, and 6 denotes
the angle between the x axis and this vector. The rows and col-
umns in a 2-D matrix H correspond to the D and 6 values. The
peaks of the Hough transform matrix (denoted by H) are located
with a default threshold [0.5 * max(H)]. The line segments can
be detected according to the calculated H and peaks.

Based on the clinical guide]ine,2 two main features: skull
midline features and skull shape and orientation features are
considered to assess the image quality. For example, in clinical
practice, the fetal head is required to be captured within a certain
range of orientations (e.g., acquisition angle between biparietal
diameter and US beam <30 deg).’ The skull midline echo
should also appear as close as possible to the OFD. In our
study, the orientation feature is learned from good quality train-
ing data. The detected lines using the SHT [Eq. (2)] from
the whole head region are further analyzed according to the
Euclidean distance between the OFD and these lines, where
only the lines with distances <2 mm are considered for mid-
line-related feature calculation.
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Fig. 5 The matched filter used to extract midline feature (a) is the filter bank, (b) is an example of the
maximal response to the filter bank, and (c) is the detected lines using Hough transform analysis, where
the green line is the longest line segment and the other detected line segments are shown in red lines.

Given a midline in a fetal US image, the midline feature vec-
tor is then defined by Figine = [F™, f°, f4™, flcount] where the
f™ denotes the longest line segment detected by the Hough
transform. The f° is the orientation of the longest line [green
line in Fig. 5(c)], while other line structures shown in the red
lines in Fig. 5(c) are used to generate the features f*'™ and
flc‘“‘“‘, which denote the sum of the length of all other lines
[red line in Fig. 5(c)] and the total number of the line objects,
respectively.

In addition to the midline features discussed earlier, the skull
shape and orientation features are also considered for the image
quality assessment. This is because the fetal head in a good qual-
ity US image should be presented as an oval or rugby football
shape.>® The skull features are derived from the identified
fetal skull boundaries [Fig. 4(d)]. The skull feature vector
Fskull — (fconvex’fsolidity,forematjon) includes a convex area, sol-
idity of structure, and orientation of the structure, in which the
convex area is the number of the pixels in the smallest convex
polygon that can contain the structure (boundary). The solidity
feature is calculated by area/convex area, where the term “area”
is the actual number of pixels in the structure. The solidity fea-
ture provides the curvature profile of the structure. For a straight
structure, the value of the solidity is 1; while for an arc structure,
the solidity should be a fractional number between 0 and 1. The
orientation of the structure indicates whether the head is cap-
tured within a certain range of angles. The skull feature vector
(F gun) together with the midline feature vector (F';qiine) are fed
into an RF classifier to grade the fetal US images into good or
poor image quality. Specifically, in our experiment, the number
of trees is 500, which is determined by observing the out-of-bag
error among different numbers of trees. We set the default num-
ber of features as three in the feature bagging process and the
default cutoff value of 0.5. The ground truths (grading labels)
are provided by expert 1. Finally, the trained model (classifier)
is further used in the testing phase to assess the quality of the
fetal head US images.

2.4 Evaluation Methods

Our automated segmentation algorithm is validated using two
evaluation methods: region-based measures®® and contour dis-
tance-based measures.’’ The region-based measurement is used
to compare the regions produced by our automatic and manual
segmentation. Four region-based measure parameters (precision,
accuracy, sensitivity, and specificity) are used in our experiment.
The distance-based measure is the calculation of the difference
in millimeters between manually and automatically segmented
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contours of structures. The maximum symmetric contour dis-
tance (MSD), the average symmetric contour distance (ASD),
and the root mean square symmetric contour distance (RMSD)
are used to assess the performance. The MSD is the maximum
distance between two contours. A higher MSD value indicates
a larger difference between the two contours. The parameter
ASD is the average distance between the two contours. The
ASD equals zero if the two contours are identical. The RMSD
is the variant of the ASD, the larger difference compared to
the ground truth can be emphasized by a larger value of
RMSD. The results per image are averaged to obtain the overall
automatic segmentation performance compared with manual
segmentation.

The Bland—Altman plots®® are employed to compare the
biometry measurements between our method and the experts
and to assess the interobserver and intraobserver variability.
This evaluation method provides statistical significance to
validate the clinical value of our method in routine obstetric
examinations.

3 Experimental Results and Discussion

Two experiments were carried out to validate our fetal head
segmentation and the US image quality assessment method.
The fetal biometric measurements are directly derived from the
segmented region. In our experiment, the primary aim of evalu-
ation of the automated measurement is to validate the robustness
of the automatic segmentation method especially for those chal-
lenging (i.e., poor quality) images. Therefore, the biometric
measurements obtained from both good and poor images are
considered. The proposed fetal head segmentation and measure-
ment method are evaluated on the dataset described in Sec. 2.1.
Table 1 shows the average interobserver and intraobserver vari-
ability over all images. The intraobserver variability for experts
1 and 2 shown in Table 1 is obtained by comparing two manual
segmentation results that were delineated twice by each expert.
We can observe that although the intraobserver variability is
close for the two experts, the interobserver variability reflects
the different levels of two experts’ experiences. For the intra-
observer variability, the overall precision of the two experts is
approximate to 97% with similar standard deviations. The MSD,
ASD, and RMSD of two experts’ intraobserver variabilities
have on average minor differences, while expert 1 has less
disagreement (0.44 of ASD) between the two independent
manual segmentations compared to that of expert 2 (0.49 of
ASD). For the interobserver variability, the 93.90% of precision
together with relatively larger distances of MSD, ASD, and
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Table 1 Intraobserver and interobserver variability of manual segmentation and automatic segmentation evaluation results.

Parameters (head) Intraobserver variability-E12  Intraobserver variability-E2*  Interobserver variability-E1 versus E2  Our method (GT = E1)

Pre. (%) 97.17% (1.58)° 96.91% (1.28)
Acc. (%) 99.61% (0.23) 99.56% (0.18)
Sen. (%) 98.10% (1.52) 98.63% (1.01)
Spe. (%) 99.85% (0.13) 99.72% (0.26)
MSD (mm) 1.32 (0.70) 1.33 (0.53)
ASD (mm) 0.44 (0.25) 0.49 (0.20)
RMSD (mm) 0.57 (0.30) 0.60 (0.25)

93.90% (2.41) 94.63% (1.71)

99.14% (0.36) 99.27% (0.26)
94.76% (2.61) 97.07% (2.30)

99.86% (0.17) 99.60% (0.25)

2.40 (0.92) 2.23 (0.74)
0.98 (0.40) 0.84 (0.28)
1.18 (0.47) 1.05 (0.34)

2E1 = Expert 1; E2 =Expert 2.

PResults are given as an average value (standard deviation) for each measure.

RMSD comparing to the corresponding intraobserver variability
(2.4 of MSD, 0.98 of ASD, and 1.18 of RMSD) show that there
are some degrees of disagreements of head delineation between
the two experts. These results reflect the reproducibility of
manual segmentations using the experimental dataset, and can
be used as a reference to comparatively assess the performance
of our automated-segmentation method.

In our experiment, the segmentations produced by our
method are compared to manual segmentations produced by
expert 1. The corresponding evaluation results are shown in the
last column of Table 1. The results show that on average, the
fetal head segmentation performance of our method outperforms
the interobserver variability between two experts. The evalu-
ation parameters derived from our method (precision, accuracy,
sensitivity, MSD, ASD, and RMSD) are better than the values of
the interobserver variability. The lower standard deviation of
each parameter presented in parentheses in Table 1 also reflects
the robustness of the method. This shows a good performance of
our method for fetal head segmentation.

Figure 6 shows examples of automatic segmentation com-
pared to the experts’ segmentations, where the test images
include good- and poor-quality images graded by expert 1.
As we can observe from the good-quality images (a) to (d), the
results obtained from automatic segmentation and expert seg-
mentation are almost identical. This is because there are fewer
uncertainties on the fetal skull in the good images compared to
that of the poor images (e) to (h). We conjectured that one
important factor that influences the segmentation is that the
fetal skull appearing as fuzzy boundaries in the image. This
may result in difficulties of accurate delineation of the skull
boundary.

Moreover, for many poor-quality images, the missing boun-
daries (on the OFD direction) also cause the large uncertainty for
the delineation. Normally, the skull presented in such US images
is an incomplete structure in the areas around the horizontal left
and right points, while the ellipse is fitted (automatically or man-
ually) based on the visible structures in US images. This may
lead to the disagreements in the ellipse estimations among

Fig. 6 Examples of our automatic segmentations comparing to two experts segmentations on the good
quality and poor quality cases. The contours of structures produced by the automatic method are shown
in green (dot lines), contours delineated by experts 1 and 2 are shown in red and yellow (solid line),
respectively. (a)—(d) are fetal head segmentations in the good-quality images and (e)-(h) are the seg-
mentations in the poor-quality images.
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different experts, and thus may lead to the disagreements of
segmentations. For example, comparing automatic segmentation
(green dotted line) with expert 1’s segmentation (red solid line),
we can see from Figs. 6(e) and 6(f), although the contours on the
superior and inferior side of the skull (BPD direction) are almost
identical, the main disagreement occurs on the right side of
the image, due to the missing skull boundaries in that area.
The disagreements of skull delineation from the two experts
are also derived from the disagreements of identifying bone
structures in the areas where the skulls have fuzzy boundaries
[i.e., red and yellow lines on the inferior side of the skull in
Fig. 6(e)]. Commonly, these phenomena are characterized as
flocculent structures surrounding the highlighted bone struc-
tures in which the discriminations between bone and nonbone
structures cannot be preattentively perceived.

Bland—Altman plots and paired #-test are used to assess the
measurement consistency between the automated and the
manual methods. The intraobserver and interobserver variability
of the manual fetal head biometric measurements are reported in
Table 2. The comparative measurement results between our
method and the expert 1 are shown in the last column of
Table 2. It can be observed that the intraobserver variability of
BPD and OFD for each expert is very small, at <1 mm level,
whereas the interobserver variability between the two experts
shows a significant difference, the average difference of BPD
is 1.23 mm with a standard deviation of 1.53 mm, the average
difference of OFD is 2.76 mm with a standard deviation of
2.58 mm, and the 6.37 mm of HC with a 5.04 mm of standard
deviation. The differences of all the measurements between two
experts are significant at the p < 0.01 confidence level (the cor-
responding p values of BPD, OFD, and HC are p = 0.0015,
p=2842x1075, and p = 1.15 x 107>, respectively).

It can also be observed in the last column of Table 2 that
the mean difference of BPD between our method and expert
1 reaches —0.038 mm with a 1.38 mm standard deviation, and
the mean difference of OFD and HC are —0.20 4+2.98 and
—0.72 4 5.36 mm, respectively. The paired ¢-test results showed
that there is no significant difference between our method and
expert 1 for all biometric measurements at p = 0.90 of BPD,
p = 0.76 of OFD, and p = 0.54 of HC.

Figure 7 shows the Bland—Altman plots for a set of biomet-
rical measurements (BPD, OFD, and HC) obtained by the auto-
mated and manual methods. Compared with the two experts,
the mean difference of BPD is 1.2 mm with a 95% confidence
interval —1.8 to 4.2 mm. The mean difference of OFD is 2.8 mm
with a 95% confidence interval —2.3 to 7.8 mm, and the mean
difference of HC is 6.4 mm with a 95% confidence interval —3.5
to 16 mm.

The relatively large mean differences for all biometric mea-
surements shown in Table 2 (interobserver variability-E1 versus

E2) indicate that there are significant inconsistencies between
the two experts. The appearances of blurred fetal skull in the
poor-quality images are more likely to cause high disagreements
for the fetal head delineation. From Fig. 7, we summarize that
the 95% limits of agreements for interobserver variability
between the automated method and expert 1 measurements
are 2.7 mm of BPD, 5.8 mm of OFD, and 10.4 mm of HC.
The small inter-observer variability and relatively narrow limits
shown in Fig. 7 indicate a good level of agreement between the
automatic and the manual measurements. The 95% limits of
agreement for HC between the automatic and the manual mea-
surements are also narrower than the recently reported interob-
server variabilities exiting in the clinical practice, 11.0 mm of
HC® and 12.1 mm of HC.

It is noted that it would be nice to also consider GA compar-
isons derived from manual measurements and our automated
measurements. However, the main reason that the GA evalu-
ation is not included in our current study is because the GA
regression equation recommended by Loughna et al.® is sug-
gested to be used to estimate GA ranging from 13 to 25
weeks. In the clinics, the best practice is to establish GA in
the first trimester. While for our image dataset, the GA ranges
from 20 to 35 weeks (e.g., second and third trimesters). At these
stages of pregnancy (second and third trimesters) the scans are
generally for growth and not to establish GA, so that comparison
of GA may not be very helpful. In the case of growth assess-
ment, our current absolute measurements and their reproducibil-
ity are important.

The performance of the automatic fetal US images quality
assessment method is validated using the classification param-
eters of accuracy, specificity, and sensitivity. The classification
results are summarized in Table 3. The overall accuracy for
automatic image quality classification (good or poor) is 95.24%
with 87.5% of sensitivity and 100% specificity. The results
demonstrated the good performance of our quality-assessment
method. The 100% specificity also indicates that there are no
poor images that were misclassified as good images, namely
all images that are not captured at the correct imaging plane can
be detected.

Our automatic fetal segmentation and image quality assess-
ment algorithm were implemented on a workstation with Interl
(R) Core (TM) i7-4770 CPU; 16 GB RAM, using mixed pro-
gramming languages of MATLAB™ and C++. The portability
of our algorithm was also considered. It is a cross-platform
application, which was originally developed in Mac OS and
Linux and currently we have imported it into Window OS.
The portability of our method allows us to easily deploy the
algorithm as an embedded system application in different clini-
cal machines. Moreover, on the average, the computation time is

Table 2 Intraobserver and interobserver variability of manual and automatic biometric measurements for fetal head.

Parameters (head) Intraobserver variability-E12  Intraobserver variability-E2 Interobserver variability-E1 versus E2 Our method (GT = E1)

BPD (mm) 0.18 (0.52)° ~0.16(1.23)
OFD (mm) 0.78 (1.66) -0.41(2.02)
HC (mm) 1.55 (2.86) -0.91(3.79)

1.23 (1.53) ~0.038 (1.38)
2.76 (2.58) -0.20 (2.98)
6.37 (5.04) -0.72 (5.36)

2E1 = Expert 1, E2 =Expert 2.

PResults are given as an average value (standard deviation) for each measure.
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Fig. 7 Interobserver variability in fetal biometric measurements (BPD, OFD, and HC). (a)-(c) are the
interobserver variability between two experts; and (d)-(f) are the differences between automatic and
manual measurements, where BPD 1 denotes the expert 1, BPD 2 is expert 2, and BPD 3 denotes

automatic measurements, same for OFD and HC.

166.53 s per image. We are working on code optimization to
further improve the algorithm’s efficiency.

Owing to the long process of the ethical approval and patient
recruitment, only 41 patients were involved in the current study.
To further validate our method, currently, we are working on

Journal of Medical Imaging

collecting more clinical data. In the meantime, we will also con-
sider investigating the method using fetal US videos as recently
proposed by Maraci et al.*® The temporal features derived from
the neighboring frames in fetal US video data can provide
additional information to improve the accuracy of image quality
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Table 3 Evaluation results of automatic fetal US image quality
assessment.

Parameters (%) Our method (%)

Accuracy 95.24
Sensitivity? 87.5
Specificity? 100

2The term sensitivity also equals to truth positive ratio and the speci-
ficity also equals to 1-false positive ratio.

assessment and fetal biometric measurements. Moreover, adapt-
ing our current method from 2-D US images to videos that en-
able the possibility of real-time selection of the correct imaging
plane (i.e., image quality assessment) during US image acquis-
ition will be further investigated in the near future.

4 Conclusion

We present an automated method for US fetal head image quality
assessment and fetal biometric measurements in 2-D US images.
A texton-based fetal head segmentation method is used as a first
step to obtain the head region. Both shape- and anatomic-based
features (e.g., midline and skull orientation) calculated from the
segmented head region using the matched filter designed specific
to the US fetal head structure are then fed into an RF classifier to
determine whether the image is acquired from a correct imaging
plane (e.g., good- or poor-quality image). Fetal head measure-
ments (BPD, OFD, and HC) are then derived from a direct ellipse
fitted to the identified skull boundary.

The evaluation results show that our segmentation method
outperforms the intervariability between two experts. On aver-
age, our method reaches 94.63% precision, 99.27% accuracy,
and 0.84 mm ASD. The paired #-test and Bland—Altman plots
analysis on the automatic biometric measurements show that the
95% limits of agreements for interobserver variability between
automatic measurements and expert 1 measurements are 2.7 mm
of BPD, 5.8 mm of OFD, and 10.4 mm of HC. These narrow
limits indicate a good level of consistency between the auto-
matic and the manual measurements. The overall accuracy for
automatic image quality classification (good or poor) is 95.24%
with 87.5% sensitivity and 100% specificity. The good perfor-
mance of our automated-image quality assessment ensures the
US image is captured at a correct imaging plane during the
obstetric US examination, leading to accurate and reproducible
fetal biometric measurements.
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