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Cellular responses to stimuli involve dynamic and local-
ized changes in protein kinases and phosphatases.
Here, we report a generalized functional assay for high-
throughput profiling of multiple protein phosphatases
with subcellular resolution and apply it to analyze cox-
sackievirus B3 (CVB3) infection counteracted by inter-
feron signaling. Using on-plate cell fractionation opti-
mized for adherent cells, we isolate protein extracts
containing active endogenous phosphatases from cell
membranes, the cytoplasm, and the nucleus. The extracts
contain all major classes of protein phosphatases and
catalyze dephosphorylation of plate-bound phosphosub-
strates in a microtiter format, with cellular activity quan-
tified at the end point by phosphospecific ELISA. The
platform is optimized for six phosphosubstrates (ERK2,
JNK1, p38�, MK2, CREB, and STAT1) and measures spe-
cific activities from extracts of fewer than 50,000 cells.
The assay was exploited to examine viral and antiviral
signaling in AC16 cardiomyocytes, which we show can be
engineered to serve as susceptible and permissive hosts
for CVB3. Phosphatase responses were profiled in these
cells by completing a full-factorial experiment for CVB3
infection and type I/II interferon signaling. Over 850 func-
tional measurements revealed several independent, sub-
cellular changes in specific phosphatase activities. During
CVB3 infection, we found that type I interferon signaling
increases subcellular JNK1 phosphatase activity, inhibit-
ing nuclear JNK1 activity that otherwise promotes viral
protein synthesis in the infected host cell. Our assay pro-
vides a high-throughput way to capture perturbations
in important negative regulators of intracellular signal-
transduction networks. Molecular & Cellular Proteom-
ics 16: 10.1074/mcp.O116.063487, S244–S262, 2017.

Protein phosphorylation is a critical component of cellular
signal transduction (1, 2). In response to extracellular stimu-
lation by cytokines, hormones, and environmental stresses,
protein kinases catalyze phosphorylation events that alter
substrate activity, protein localization, gene expression, and
cell phenotype (Fig. 1). To reverse these events and return the
cell to a resting state, protein phosphatases dephosphorylate
many phosphoprotein substrates (3–5). Phosphatase abun-
dance and activity determine the extent of constitutive signal-
ing (6) as well as the magnitude and duration of pathway
stimulation (7). Accordingly, misregulated protein phospha-
tases have been implicated in many diseases, including car-
diomyopathy, cancer, and inflammatory conditions (8–11).

There are �500 protein kinases and �180 protein phos-
phatases in the human genome, indicating that phosphatases
must target a larger breadth of substrates (12). The catalytic
subunits of the protein phosphatases PP1 and PP2A dephos-
phorylate most phospho-Ser/Thr-containing proteins, with
selectivity conferred by regulatory subunits and subcellular
localization (13). In contrast, dual-specificity phosphatases
(DUSPs)1 hydrolyze phospho-Tyr residues paired with phos-
pho-Ser/Thr sites, narrowly targeting bisphosphorylated MAP
kinases (MAPKs) ERK, JNK, and p38 through kinase-interac-
tion motifs (14) (Fig. 1). DUSP targeting is further refined by
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subcellular localization and the nucleocytoplasmic shuttling
characteristics of each MAPK (5, 15–19). DUSPs comprise
part of a larger family of protein tyrosine phosphatases (PTPs)
that dephosphorylate phospho-Tyr exclusively (3). Receptor-
like PTPs have access to substrates near cell membranes,
whereas nontransmembrane PTPs act elsewhere within the
cell (Fig. 1). Phosphatases can dephosphorylate a variety of
substrates, but multiple phosphatases may also converge
upon the same substrate. For example, the bisphosphory-
lated site in MAPKs is deactivated by DUSPs but also by the
coordinate action of Ser/Thr phosphatases and PTPs (20).
The extent of targeting is dictated by the abundance of pro-
tein phosphatase and phosphosubstrate along with their re-
spective proximity in the cell (4, 5, 21, 22). The redundancy,
promiscuity, and multi-layered regulation of protein phospha-
tases make it challenging to define their specific roles in
intracellular signaling (23).

Monitoring cellular protein dephosphorylation events would
be greatly aided by high-throughput methods that capture
multiple mechanisms of phosphatase regulation. In typical
activity assays, phosphatases are purified from extracts and
measured using a synthetic phosphopeptide substrate (24–
27). This strategy captures changes in protein phosphatase
abundance, but the enzyme may lose endogenous regulators
during the purification, and subcellular localization is usually
homogenized. It is also doubtful that short, unstructured
phosphopeptides accurately reflect phosphatase activity in
the same way as full-length phosphoproteins. Endogenous

phosphatase activity measurements are possible by incubat-
ing total cell extracts with 32P-radiolabeled phosphoproteins
(28). However, robust protein phosphatase activities or heav-
ily labeled substrates are required; thus, the approach does
not scale well to dozens or hundreds of samples. We previ-
ously developed a substrate-focused protein phosphatase
activity assay using phosphorylated MAPKs and homoge-
nized cellular extracts in a phospho-ELISA format (29). Phos-
phatase activity in the extract was measured as the decrease
in phosphorylated full-length recombinant MAPK substrates
adsorbed to a 96-well plate. Although this approach captured
substrate-phosphatase interactions, it could not characterize
subcellular regulation of protein phosphatase activity and only
included MAPKs. A true multi-pathway protein phosphatase
assay with subcellular resolution would provide a better
systems-level view of how signal transduction is negatively
regulated.

Here, we introduce a high-throughput assay that now
measures substrate dephosphorylation by all major classes of
protein phosphatases in different biochemically defined sub-
cellular compartments. We begin with a high-throughput,
scalable lysis procedure that collects paired saponin- and
detergent-soluble extracts containing active protein phospha-
tases from adherent cells. The activity of subcellular phospha-
tases is then quantified by phospho-ELISA using a panel of
recognized full-length phosphoproteins. Building upon our
past success with phosphorylated MAPKs (29), we add three
new phosphosubstrates—phospho-MK2 (Thr334), phospho-
CREB (Ser133), and phospho-STAT1 (Tyr701)—each with dis-
tinct patterns of localization and targeting by protein phos-
phatase enzymes (Fig. 1). Together, these substrates provide
a subcellular phosphatase activity signature for the cellular
response to growth factors, cytokines, and environmental
stress.

As a prototypical cellular stress that engages several host-
cell signaling pathways, we investigated changes in protein
phosphatase activities during acute viral infection. Coxsacki-
evirus B3 (CVB3) is a cardiotropic picornavirus that causes
myocarditis in infants and young children (30, 31). The CVB3
genome encodes neither protein kinases nor phosphatases
but widely alters the phosphorylation state of the infected
host cell (32–36). For example, CVB3 infection cleaves a
negative regulator of Ras, which gives rise to ERK phosphor-
ylation that is important for viral replication (37–40). Various
protein phosphatases are required for early CVB3 infection
(41), and CVB3-encoded proteins can also modify host phos-
phatase activity directly. For example, viral protein 2C forms a
complex with PP1 to inhibit IKK� phosphorylation and NF-�B
signaling (42). Furthermore, CVB3 infection induces expres-
sion of proinflammatory and antiviral cytokines, such as TNF,
IL-1, and interferons, in both cardiomyocytes and infiltrating
immune cells (43, 44) (Fig. 1). Type I and Type II interferons
activate STATs resulting in partially overlapping antiviral tran-
scriptional responses that combat RNA viruses such as CVB3
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FIG. 1. Subcellular phosphatase activities reset intracellular
signaling triggered by growth factors, proinflammatory cyto-
kines, and pathogenic stresses. Hierarchical signaling cascades
initiated by extracellular stimuli cause downstream protein phos-
phorylation. Upon phosphorylation, some signaling proteins are
shuttled into (orange arrows) or out of (blue arrows) the nucleus.
Compartment- and substrate-specific phosphatases dephosphor-
ylate activated proteins thereby returning proteins to their resting
compartment.
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(45, 46). Understanding the degree to which CVB3 infection
intersects with interferons is important for more systematic
profiling of protein phosphatase cross-regulation by combi-
nations of cytokines and viral pathogens.

EXPERIMENTAL PROCEDURES

Plasmids—For phosphosubstrate preparation and purification,
pGEX-4T-1 3�FLAG-ERK2, pGEX-4T-1 3�FLAG-JNK1, pGEX-4T-1
3�FLAG-p38�, pGEX-4T-1 3�HA-MEK-DD, pGEX-4T-1 3�HA-
MKK4-EE, pGEX-4T-1 3�HA-MKK7a1-EE, and pGEX-4T-1 3�HA-
MKK6-EE were described previously (29). Human MKK6-EE (Add-
gene plasmid #13518) (47) was cloned into the BamHI and SalI sites
of pCDFDuet-1 (Novagen, Madison, WI) by PCR with the primers
gcgcagatctatgtctcagtcgaaaggcaag (forward) and gcgcgtcgact-
tagtctccaagaatcagttttac (reverse) followed by digestion with BglII and
SalI to yield pCDFDuet-1 MKK6-EE. Murine p38� (Addgene plasmid
#20351) (48) was cloned into the BglII and XhoI sites of pCDFDuet-1
MKK6-EE by PCR with the primers gcgcggatccatgtcgcaggagaggccc
(forward) and gcgcctcgagtcaggactccatttcttcttgg (reverse) followed by
digestion with BamHI and XhoI to yield pCDFDuet-1 MKK6-EE p38�.
Human MAPKAPK2 (MK2) (hORFeome V5.1 #10384) (49) was cloned
into the BamHI and EcoRI sites of pGEX-4T-1 (3�FLAG) by PCR with
the primers gcgcggatccatgctgtccaactcccaggg (forward) and gcgc-
ctcgagtcagtgggccagagccg (reverse) followed by digestion with
BamHI and EcoRI to yield pGEX-4T-1 3�FLAG-MK2. Human CREB
(hORFeome V5.1 #3038) (49) was cloned into the BamHI and EcoRI
sites of pGEX-4T-1 (3�FLAG) by PCR with the primers gcgcggatc-
catgaccatggaatctggagc (forward) and gcgcgaattcttaatctgatttgtg-
gcagtaaag (reverse) followed by digestion with BamHI and EcoRI to
yield pGEX-4T-1 3�FLAG-CREB. Human STAT1 (hORFeome V5.1
#4126) (49) was cloned into the BamHI and EcoRI sites of pGEX-
4T-1 (3�FLAG) by PCR with the primers gcgcggatccatgtctcagtg-
gtacgaact (forward) and gcgcgaattcttacacttcagacacagaaatca
(reverse) followed by digestion with BamHI and EcoRI to yield
pGEX-4T-1 3�FLAG-STAT1.

For constitutive lentiviral overexpression, human CXADR/CAR
(hORFeome V5.1 #356) (49) was recombined with pLX304 (Addgene
plasmid #25890) (49) using Gateway LR clonase (Invitrogen,
Carlsbad, CA) to yield pLX304 CAR-V5. Human DUSP10/MKP5
(hORFeome V5.1 #8448), DUSP16/MKP7 (hORFeome V5.1 #11351),
DUSP19 (hORFeome V5.1 #2039), DUSP22/JSP1 (hORFeome V5.1
#8622), PTPRR/PTP-SL (hORFeome V5.1 #56450), and PPP1R8/
NIPP1 (hORFeome V5.1 #6578) were recombined with pLX302 (Ad-
dgene plasmid #25896) using Gateway LR clonase (Invitrogen) to
yield pLX302 MKP5-V5, pLX302 MKP7-V5, pLX302 DUSP19-V5,
pLX302 JSP1-V5, pLX302 PTP-SL-V5, and pLX302 NIPP1-V5.

For inducible lentiviral expression, human MKK4-EE was cloned
into the SpeI and MfeI sites of pEN_TTmiRc2 3�FLAG (50) by PCR
with the primers gcgcactagtggatccatgcagggtaaacg (forward) and
gcgccaattgctacactttacgttttttcttcggaccagaaccaccatcgacatacatgg (re-
verse, adding a short linker and the monopartite NLS of SV40 large T
antigen) followed by digestion with SpeI and MfeI to yield pEN_
TTmiRc2 3�FLAG-MKK4-EE-NLS. Human MKK7a1-EE was cloned
into the SpeI and MfeI sites of pEN_TTmiRc2 3�FLAG by PCR with
the primers gcgctctagaggatccatgctggggctc (forward) and gcgccaat-
tgctacactttacgttttttcttcggaccagaaccacccctgaagaagggca (reverse,
adding a short linker and the monopartite NLS of SV40 large T
antigen) followed by digestion with XbaI and MfeI to yield pEN_TT-
miRc2 3�FLAG-MKK7-EE-NLS. EGFP was cloned into the SpeI and
MfeI sites of pEN_TTmiRc2 3�FLAG by PCR with the primers gcg-
cactagtgtgagcaagggcgaggagct (forward) and gcgccaattgctacactttacgt-
tttttcttcggaccagaaccaccgtcggcgcgcccac (reverse, adding a short
linker and the monopartite NLS of SV40 large T antigen) followed by

digestion with SpeI and MfeI to yield pEN_TTmiRc2 3�FLAG-EGFP-
NLS. The pEN_TTmiRc2 donor vectors were recombined with pSLIK
hygro (50) using Gateway LR clonase (Invitrogen) to yield pSLIK 3�
FLAG-MKK4-EE-NLS, pSLIK 3�FLAG-MKK7-EE-NLS, and pSLIK
3�FLAG-EGFP-NLS.

All PCR-cloned constructs and donor vectors were verified by
restriction digest and sequencing, and all plasmids can be obtained
through Addgene (plasmids #82718 - 82723 and #87770 - 87781).

Protein Induction and Purification—ERK2 and MEK-DD purifica-
tions were performed as described previously (29). BL21-CodonPlus
(DE3)-RIPL competent cells (#230280, Stratagene, San Diego, CA)
were transformed with pGEX-4T-1 or pCDFDuet-1 and pGEX-4T-1
plasmids, and liquid cultures were grown at 37 °C until OD 0.6–1.
Cultures were cooled to 12 °C for 30–45 min and protein expression
was induced at 12 °C overnight with one of the following isopropyl-
D-1-thiogalactopyranoside (IPTG) concentrations: 0.4 mM (CREB,
MKK4), 1 mM (p38�, JNK1, STAT1, MKK7), 2 mM (MK2). Bacterial
cultures were collected by centrifugation and resuspended in 7.5 ml
RIPL TNE buffer (54 mM Tris [pH 7.4], 160 mM NaCl, 1 mM EDTA, 2
�g/ml leupeptin, 5 �g/ml aprotinin, 1 �g/ml pepstatin, 32 mM sodium
fluoride, 100 �M Na3VO4, 10 mM sodium pyrophosphate, 2 mM ATP,
1.2 mg/ml MgSO4, 13 mM MgCl2, 7 �g/ml DNase, and 1 mM DTT) per
250 ml culture. Bacteria were mechanically lysed using an EmulsiFlex
B15 (Avestin) at 80 psi. Lysates were clarified by centrifugation and
flowed over a 5-ml GSTrap column (#17–5131-02, GE Healthcare,
Chicago, IL) using an ÄKTAprime Plus chromatography system at 0.1
ml/min (GE Healthcare, Chicago, IL). The column was washed at 0.1
ml/min with 20–25 ml of Buffer A (25 mM sodium phosphate [pH 7.2],
150 mM NaCl), and proteins were eluted in 2 ml fractions with gluta-
thione elution buffer (6 mg/ml glutathione in Buffer A plus 2 mM DTT).
For MKK4-EE and MKK7-EE purifications, clarified lysates were in-
cubated with glutathione-agarose beads (Sigma, St. Louis, MO) for
4 h at 4 °C. Beads were then spun down and washed with PBS twice
before use.

Phosphorylation of Protein Substrates—ERK2 phosphorylation
was performed in vitro with purified MEK-DD as described previously
(29). In vivo phosphorylation of p38 and MK2 was achieved by co-
transformation of RIPL cells with pCDFDuet-1 MKK6-EE and pCDF-
Duet-1 MKK6-EE p38� respectively. Phosphorylation of JNK1 was
performed in vitro with purified 3�HA-MKK4-EE and 3�HA-
MKK7a1-EE bound to glutathione-agarose beads (Sigma, St. Louis,
MO) by incubating for 1 h at 37 °C in kinase assay buffer (30 mM Tris
[pH 7.5], 3 mM ATP, 45 mM MgCl2, 7.5 mM �-glycerophosphate, 1.5
mM Na3VO4, 1.5 mM EGTA, 0.6 mM DTT). The supernatant containing
phosphorylated JNK1 was collected after centrifugation of the kinase
assay reactions. CREB and STAT1 were phosphorylated in vitro with
phospho-MK2 or active JAK1 fragment (#14–918, Millipore, Dundee,
UK) respectively by incubation at 37 °C in kinase assay buffer for 24 h.

Phospho-stoichiometry of substrates was assessed in the phos-
phoprotein preparations relative to unstimulated or stimulated RIPA
lysates from AC16-CAR cells by immunoblotting with antibodies spe-
cific to the phosphoprotein and the total protein as described below.
Phosphoprotein bands were normalized to the total protein immuno-
reactivity and phospho-to-total ratio was assessed relative to un-
stimulated cell lysate.

Cell Lines and Culture—MCF10A-5E cells were obtained and cul-
tured as previously reported (51, 52). CVB3-permissive HeLa cells
were provided by Dr. Bruce McManus (University of British Columbia,
Vancouver BC, Canada) and were cultured in DMEM (#11965092,
Gibco, Grand Island, NY) supplemented with 10% fetal bovine serum
and 1% penicillin-streptomycin (#15140–122, Gibco). HT-29 cells
(ATCC, Manassas, VA) were cultured according to the distributor’s
recommendations. AC16 cells were purchased from Dr. Mercy Da-
vidson (Columbia University, NY, New York) (53) and cultured in
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DMEM/F12 (#11330–032, Gibco) supplemented with 12.5% fetal
bovine serum and 1% penicillin-streptomycin. AC16-CAR cells were
prepared by transducing parental AC16 cells with pLX304 CAR-V5
lentiviruses as described previously (54) and selecting for stable
expression with 10 �g/ml blasticidin (#46–1120, Invitrogen) until con-
trol plates had cleared. AC16-CAR cells overexpressing pLX302
MKP7-V5, pLX302 JSP1-V5, pLX302 NIPP1-V5, or pLX302 PTP-
SL-V5 were prepared by transducing AC16-CAR cells with lentivi-
ruses as described previously (46). Two days after transduction, cells
were either fractionated as described below or selected in 2 �g/ml
puromycin (#100552, MP Biomedicals, Santa Ana, CA) plus 10 �g/ml
blasticidin (#46–1120, Invitrogen) until control plates had cleared.
AC16-CAR cells dually expressing 3�FLAG-MKK4-EE-NLS and
3�FLAG-MKK7-EE-NLS (3�FLAG-MKK4/7-EE-NLS) or 3�FLAG-
EGFP-NLS were prepared by transducing AC16-CAR cells with single
or pooled lentiviruses as described previously (54). Two days after
transduction, cells were selected for stable integration with 100 �g/ml
hygromycin (#ant-hg-5, Invivogen, Toulouse, France) and 10 �g/ml
blasticidin (#46–1120, Invitrogen) until control plates had cleared.

On-plate Subcellular Fractionation—Cells were washed briefly with
ice-cold PBS and then incubated with saponin extract (SE) buffer (50
mM HEPES [pH 7.5], 0.05% [w/v] saponin, 20 �g/ml aprotinin, 20
�g/ml leupeptin, 1 �g/ml pepstatin, 2 mM MgCl2, 1 mM DTT, 50 mM

2-mercaptoethanol, 5 mM D-glucose, and 15 �g/ml hexokinase
[#H5000, Sigma]) on a platform rocker for 30 min at 4 °C. The hexoki-
nase stock for the extraction buffer was prepared at 5 mg/ml with 15
�M phenylmethylsulfonyl fluoride (PMSF). After incubation, the SE
fraction was collected and cells were washed three times with 0.05%
(w/v) saponin in ice-cold PBS for 5 min on ice with rocking. After the
third wash, permeabilized cells were incubated with Nonidet P-40
extract (NE) buffer (50 mM HEPES [pH 7.5], 0.1% [w/v] Nonidet P-40
[NP40], 150 mM NaCl, 20 �g/ml aprotinin, 20 �g/ml leupeptin, 1 �g/ml
pepstatin, 2 mM MgCl2, 1 mM DTT, 50 mM 2-mercaptoethanol, 5 mM

D-glucose, and 15 �g/ml hexokinase) for 5 min on ice with rocking.
After incubation, the NE fraction was collected and cells were washed
with 0.05% (w/v) saponin in ice-cold PBS for 5 min on ice with
rocking. Then, the insoluble fraction was collected by addition of 1�
sample buffer (62.5 mM Tris pH 6.8, 2% [w/v] sodium dodecyl sulfate
[SDS], 10% [v/v] glycerol, 0.01% [w/v] bromphenol blue) and cell
scraping. EGF-stimulated subcellular fractions for immunoblotting
were lysed in SE and NE buffers supplemented with phosphatase
inhibitors (200 �M Na3VO4, 10 mM sodium pyrophosphate, and 1
�g/ml microcystin-LR) to preserve phosphoproteins.

Subcellular Protein Phosphatase Assays—High protein-binding 96-
well plates (#9018, Corning Costar, Lowell, MA) were coated over-
night with recombinant phosphoprotein diluted in 100 �l PBS (see
supplemental Table S1 for details). The next morning, plates were
washed three times with Tris-buffered saline � 0.1% (v/v) Tween-80
(TBS-T) and blocked for 1 h at room temperature on platform rocker
with 5% (w/v) BSA in TBS-T (blocking buffer) and washed three times
with TBS-T before use.

SE and NE fractions were diluted to cellular equivalents (an amount
of cell extract estimated from the cellular density at the time of
fractionation) that fall within the optimal dynamic range of each assay
(see supplemental Tables S2 and S3 for equivalents used in each
figure). SE fractions were diluted to 85 �l in SE buffer, whereas NE
fractions were diluted to 85 �l in 10% (v/v) NE buffer � 90% (v/v)
NP40- and NaCl-free NE buffer (for phospho-ERK2, phospho-p38�,
phospho-JNK, and phospho-STAT1 assays) or 30% (v/v) NE buffer �
70% (v/v) NP40- and NaCl-free NE buffer (for phospho-MK2 and
phospho-CREB assays). Diluted extracts were added to the phos-
phosubstrate-coated plate and incubated in a Jitterbug Microplate
Incubator-Shaker (Thomas Scientific, Swedesboro, NJ) at 575 RPM
and 30 °C for 30–90 min depending on the kinetics of the assay (see

supplemental Table S1 for details). Dephosphorylation reactions were
terminated with 85 �l of 2� phosphatase inhibitor solution (20 mM

sodium pyrophosphate, 60 mM sodium fluoride, and 400 �M Na3VO4

in TBS) followed by three washes with 1� phosphatase inhibitor
solution diluted in TBS-T.

After washing once with TBS-T lacking phosphatase inhibitors,
each well was incubated for one hour at room temperature on a
platform rocker with 50 �l of one of the following primary antibodies
diluted in blocking buffer: phospho-ERK2 (Thr202/Tyr204) (1:1000,
#4370, Cell Signaling Technology, Beverly, MA), phospho-p38
(Thr180/Tyr182) (1:1000, #4511, Cell Signaling Technology), phospho-
JNK (Thr183/Tyr185) (1:100, #9251, Cell Signaling Technology), phos-
pho-MK2 (Thr334) (1:1000, #3007, Cell Signaling Technology), phos-
pho-CREB (Ser133) (1:1000, #9198, Cell Signaling Technology),
phospho-STAT1 (Tyr709) (1:5000, #9167, Cell Signaling Technolo-
gy). Primary antibody solutions were removed and plates washed
three times with TBS-T. Each well was then incubated for 1 h at room
temperature on a platform rocker with 50 �l of biotinylated goat
anti-rabbit secondary antibody (1:10,000, #111–065-045, Jackson
Immunoresearch, West Grove, PA) diluted in blocking buffer. The
secondary antibody solution was removed and wells were washed
three times with TBS-T followed by incubation for 1 h at room tem-
perature on a platform rocker with 50 �l of streptavidin-HRP diluted in
blocking buffer (1:200, #DY998, R&D Systems, Minneapolis, MN).
After washing three times with TBS-T, wells were incubated at room
temperature on a platform rocker with 100 �l of 1:1 mix of ELISA
Reagent A (stabilized hydrogen peroxide) and Reagent B (stabilized
tetramethylbenzidine) (#DY999, R&D Systems). ELISA reactions were
stopped with 50 �l of 1 M sulfuric acid after 10 min, with the exception
of phospho-p38� assays that were allowed to proceed for 15 min.
Well absorbance of the phospho-ELISA end point was measured at
450 nm with background correction at 540 nm on an Optima plate
reader.

Phosphatase activity was calculated as the decrease in phospho-
ELISA signal relative to buffer-only controls. For calibration of relative
activities, a 2-fold serial dilution of pooled SE or NE fraction was used
to prepare a standard alongside the unknown samples. Standards
were regressed against input material by using a four-parameter
logistic curve, which was inverted to calculate relative phosphatase
activity from unknown samples. Last, activity measurements were
adjusted for relative total protein concentration as quantified by o-
pthalaldehyde assay (see below). For inhibitor studies, concentrated
inhibitors were spiked into diluted extracts to achieve a final concen-
tration of 10 mM sodium pyrophosphate, 200 �M activated Na3VO4

(55), or 1 �g/ml microcystin-LR before the start of the assay.
Cell Lysis—Total cell extracts were prepared in radioimmunopre-

cipitation assay (RIPA) buffer (25 mM Tris-HCl [pH 7.6], 150 mM NaCl,
1% NP40, 1% sodium deoxycholate, 0.1% SDS, 10 �g/ml aprotinin,
10 �g/ml leupeptin, 1 �g/ml pepstatin, 200 �M Na3VO4, 1 �g/ml
microcystin-LR and 30 �M phenylmethylsulfonyl fluoride [PMSF]) as
described previously (56).

Cell Infection and Stimulation—For assessment of the stoichiom-
etry of recombinant phosphosubstrates, AC16-CAR cells were
seeded at 50,000 cells/cm2 for 24 h and stimulated with EGF (#AF-
100–15, Peprotech, Rocky Hill, NJ), TNF (#300–01A, Peprotech,
Rocky Hill, NJ), or IFN� (#300–02BC, Peprotech) by spiking in a 20�
concentrated stock for the indicated times before lysis in RIPA buffer.

For the EGF time course, AC16-CAR cells were seeded at 50,000
cells/cm2 for 24 h on a 12-well plate precoated for 2 h with 0.02%
[w/v] gelatin (#G9391, Sigma) at 37 °C. Cells were either unstimulated
or stimulated for 120, 60, 30, 15, or 5 min with 100 ng/ml EGF before
simultaneous extraction using the on-plate subcellular fractionation
technique described above.
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For CVB3 infection of AC16 and AC16-CAR cells, culture plates
were coated with 0.02% [w/v] gelatin as described above before
plating at �25,000 cells/cm2 for 24 h. Before infection, 75% of the
culture medium volume was removed, and virus stock was spiked in
at a multiplicity of infection (MOI) of 10 virions per cell. Cells were
infected for one hour with gentle rocking every 10–15 min, and then
cells were washed with PBS and refed with growth medium lacking
selection antibiotics until lysis. In the full-factorial experiment with
type I/II interferons, CVB3-infected cells were stimulated with 30
ng/ml IFN�, 50 U/ml IFN� (#11040596001, Roche, Mannheim, Ger-
many), or both by spiking in cytokine stocks at 3 h after the start of
CVB3 infection (two hours after refeeding). After 4 h of cytokine
stimulation, SE and NE fractions were prepared as described above.

For experiments involving JNK inhibition, AC16-CAR cells were
seeded �25,000 cells/cm2 for 21 h and treated with 1 �M JNK-IN-8
(#sc-364745, Santa Cruz Biotechnology, Santa Cruz, CA) prepared as
a 1 mM stock in DMSO. Three hours after JNK-IN-8 addition, cells
were infected and stimulated with 30 ng/ml IFN� as described above.
Cells were lysed in RIPA buffer 20 h after the start of CVB3 infection.

For the genetic perturbation of JNK activity, AC16-CAR cells stably
expressing inducible 3�FLAG-MKK4/7-EE-NLS or 3�FLAG-EGFP-
NLS control were seeded at �25,000 cells/cm2. To induce expres-
sion, 1 �g/ml doxycycline hyclate (#D9891, Sigma, St. Louis, MO)
was added two hours before the start of CVB3 infection (MOI � 10),
and 30 ng/ml IFN� was added 3 h after the start of CVB3 infection as
before. Cells were lysed in RIPA buffer 20 h after the start of CVB3
infection.

Protein Quantification—RIPA lysates were quantified for total pro-
tein as previously described (56). Subcellular extracts were quantified
by o-pthalaldehyde assay with incomplete phthaldialdehyde reagent
(#P7914, Sigma) in 96-well black-walled, clear-bottom microtiter
plates (#3720, Corning, Lowell, MA). Phthaldialdehyde reagent was
activated with 1/500th volume of 2-mercaptoethanol and then 50 �l of
activated reagent was incubated with 10 �l of sample for 2 min on an
orbital shaker at room temperature. Fluorescence (�ex � 355 nm,
�em � 440 nm) was detected using an Optima plate reader. All
subcellular extracts were regressed against a bovine serum albumin
standard run on the same plate under the same conditions.

ATP Quantification—Subcellular SE and NE fractions were col-
lected with or without hexokinase in the extraction buffer. ATP con-
centration in the extracts was quantified using the Kinase-Glo Assay
(#V6701, Promega, Madison, WI). Extracts (25 �l) or ATP standards
were incubated with 25 �l of Kinase-Glo Reagent for 10 min at room
temperature in black-walled, solid-bottom microtiter plates (#655209,
Greiner Bio-One, Kremsmünster, Austria). Luminescence was de-
tected using an Optima Plate reader. ATP standards were diluted in
either SE or NE buffer lacking glucose and saponin, which act as
substrates for hexokinase and cause loss of luminescence in the ATP
standards.

Plaque Assay—CVB3-permissive HeLa cells were plated at 1 mil-
lion cells/well in a 6-well dish overnight, washed, and incubated with
200 �l of diluted conditioned medium from AC16 or AC16-CAR cells
infected with CVB3 for 24 h. HeLa cells were infected for 40 min,
washed with serum-free DMEM, and overlaid with 2 ml of a 1:1 mix of
1.5% (w/v) agar and 2� DMEM (#12100–046, Gibco) for 72 h. Wells
were fixed with 2 ml of Carnoy’s fixative (75% [v/v] ethanol, 25% [v/v]
acetic acid) for 30 min at room temperature. Fixative was decanted
and agar plugs removed with a pliable weighing spatula. Viral plaques
were counterstained with 0.5% (w/v) crystal violet. Plates were
scanned on a LI-COR Odyssey scanner in the 700 channel.

Immunofluorescence—Glass coverslips were coated with 2 �g/
cm2 poly-D-lysine (#P6407, Sigma) in a 6-well dish for 5 min, washed
briefly with cell culture grade water, and allowed to dry for at least 2 h.
AC16 or AC16-CAR cells were plated at 20,000 cells/cm2 for 24 h and

then infected as described above. Cells were LIVE/DEAD stained and
processed for immunofluorescence as described (39, 54) with the
following primary antibodies: mouse anti-VP1 (1:1000, #M7064,
Dako, Carpinteria, CA) and rabbit anti-cleaved caspase 3 antibody
(1:200, #9661, Cell Signaling Technology). For MKK4/7-EE-NLS and
EGFP-NLS lines, cells were plated in medium containing 1 �g/ml
doxycycline to induce expression. Cells were processed for immuno-
fluorescence as described (39, 54) with the following primary antibod-
ies: rabbit anti-p-cJun (1:100, #9164, Cell Signaling Technology),
mouse anti-FLAG (1:200, #F3165, Sigma).

Immunoblotting—Quantitative immunoblotting of RIPA lysates and
subcellular extracts was performed as described (56) with the follow-
ing primary antibodies: caspase 3 (1:1000, #9662, Cell Signaling
Technology), eIF4G (1:1000, #2498, Cell Signaling Technology), FLAG
(1:5000, #F3165, Sigma), HSP90 (1:2000, #sc-7947, Santa Cruz Bio-
technology), I�B� (1:1000, #4814, Cell Signaling Technology), JunD
(1:1000, #sc-74, Santa Cruz Biotechnology), MEK1/2 (1:1000, #4694,
Cell Signaling Technology), MKP3 (1:1000, #2138, Epitomics, Burlin-
game, CA), PARP (1:1000, #9532, Cell Signaling Technology), PP1c
(1:1000, custom polyclonal from D.L.B.), PP2Ac (1:1000, custom
polyclonal from D.L.B.), tubulin (#ab89984, Abcam, Cambridge, MA),
V5 (1:5000, #46–0705, Invitrogen), VP1 (1:1000, #M7064, Dako),
phospho-ERK2 (Thr202/Tyr204) (1:1000, #4370, Cell Signaling Tech-
nology), total ERK (1:1000, #4695, Cell Signaling Technologies),
phospho-p38 (Thr180/Tyr182) (1:1000, #4511, Cell Signaling Technol-
ogy), total p38 (1:5000, #sc-535, Santa Cruz Biotechnology), phos-
pho-JNK (Thr183/Tyr185) (1:100, #9251, Cell Signaling Technology),
total JNK (1:1000, #9252, Cell Signaling Technology), phospho-MK2
(Thr334) (1:1000, #3007, Cell Signaling Technology), total MK2 (1:500,
#ADI-KAP-MA015-F, Enzo Life Sciences, Farmingdale, NY), phos-
pho-CREB (Ser133) (1:1000, #9198, Cell Signaling Technology), total
CREB (1:1000, #9197, Cell Signaling Technology), phospho-STAT1
(Tyr709) (1:1000, #9167, Cell Signaling Technology), and total STAT1
(1:1000, #9172, Cell Signaling Technology).

MKP1, DUSP19-V5 and MKP5-V5 phosphatases were immuno-
blotted by chemiluminescence as described (56) using the following
primary antibodies: MKP1 (1:200, #sc-1102, Santa Cruz Biotechnol-
ogy), V5 (1:5000, #46–0705, Invitrogen), and MKP5 (1:1000, #3483,
Cell Signaling Technology). Blots were then stripped for 30 min at
50 °C in high stringency stripping buffer (2% [w/v] SDS, 62.5 mM Tris
pH 6.8, 100 mM 2-mercaptoethanol in water) and reprobed for vinculin
(1:10,000, #05–386, EMD Millipore, Dramstadt, Germany) and
GAPDH (1:20,000, #AM4300, Thermo Fisher Scientific, Waltham, MA)
as loading controls.

shRNA Cloning and Validation—The following shRNA sequences
were obtained from the RNAi Consortium and cloned into
tet-pLKO-puro (57) as previously described (58): shMKP1
(#1: TRCN0000356127 and #2: TRCN0000367631), shMKP5 (#1:
TRCN0000220147 and #2: TRCN0000314618), shMKP7 (#1:
TRCN0000052013 and #2: TRCN0000052017), and shDUSP19
(TRCN0000356162). These plasmids can be obtained through Add-
gene (plasmid #87790 - 87796). Lentiviruses were packaged, trans-
duced into AC16-CAR cells, and selected with 2 �g/ml puromycin
and 100 �g/ml blasticidin as previously described (54). shRNAs in
AC16-CAR stable lines were induced with 1 �g/ml doxycycline for
72 h before the start of the experiment. shMKP5 and shDUSP19
sequences were validated by transient co-transfection with pLX302
MKP5-V5 and pLX302 DUSP19-V5, respectively, using Lipofectamine
2000 (#11668019, Invitrogen) in the presence of 1 �g/ml doxycycline
for 48 h. shMKP1 sequences were verified in AC16-CAR stable lines
induced with 1 �g/ml doxycycline 24 h prior to stimulation with 100
ng/ml EGF for 1 h.

Experimental Design and Statistical Rationale—The number of
samples analyzed per experiment is indicated by “n � ” at the bottom
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of each figure legend, where the distinction is made between assay
replicates (same extract, different microtiter wells) and biological rep-
licates (different extracts). All quantitative data were collected with
n � 3 replicates, providing �82% minimum power to detect a 1.5-fold
difference in unpaired means according to noncentral t statistics
assuming a coefficient of variation (CV) of 20%, which conservatively
models error in the assay. Among biological replicates, the error of
some assays was much higher (CV � 30–50%), prompting a paired
design with n � 9 samples to maintain �75% minimum power to
detect a 1.5-fold difference when CV � 50%. Negative controls in the
phosphatase assays (n � 4–14) were phosphosubstrate-coated wells
incubated with the appropriate extraction buffer instead of cellular
extract. Negative controls in the biological studies (n � 9) were cells
treated with viral or cytokine diluent lacking CVB3 or cytokines. No
randomization of plates or wells within plates was performed, but lack
of spatial bias or artifacts was confirmed retrospectively.

Statistical Analysis—Standard statistical analyses are described in
the figure subpanel legend where used. For the full-factorial experi-
ment involving CVB3, IFN�, and IFN�, the assumption of normally
distributed biological replicates was assessed by Lilliefors test. Given
their empirical cumulative distribution functions, the null hypothesis
was rejected for the following phosphatase assays: phospho-JNK1
(SE fraction), phospho-MK2 (SE fraction), phospho-CREB (SE and NE
fractions), and phospho-STAT1 (SE and NE fractions). For these six
assays, differences in relative ranks were assessed by rank-sum test
with Bonferroni correction for multiple-hypothesis testing, and main
effects or two-factor interactions were assessed by the three-way
extension of the Scheirer-Ray-Hare test at a 10% false-discovery
rate. For the remaining six assays where the normality assumption
could be retained, differences in means were assessed by two-tailed
Student’s t test with Bonferroni correction for multiple-hypothesis
testing, and main effects or two-factor interactions were assessed by
three-way ANOVA at a 10% false-discovery rate.

RESULTS

Reliable Subcellular Extraction for Protein Phosphatase Ac-
tivity Profiling—Preserving endogenous protein phosphatase
activity from different subcellular fractions is technically chal-
lenging. Detergents rapidly extract proteins but lyse subcel-
lular compartments indiscriminately (59). Cell lysis itself can
inactivate protein phosphatases by oxidation, and phospha-
tase activity in lysates may be offset by constitutive kinase
activities that co-extract (60, 61). We surmounted all of these
hurdles by heavily modifying our whole-cell extraction proce-
dure (29) originally developed to preserve the activity of pro-
tein phosphatases targeting MAPKs (Fig. 2A, Experimental
Procedures). Adherent cells are gently permeabilized without
mechanical disruption by using a saponin extraction buffer to
permeabilize cells by displacing cholesterol selectively in cell
membranes (62). The nuclear envelope has negligible choles-
terol and thus only small nuclear proteins (� 40 kDa) that
freely diffuse through nuclear pore complexes will be released
with saponin extraction (59, 63). Cells are washed with sapo-
nin-containing PBS and then incubated briefly with phos-
phate-free Nonidet P-40 (NP40) extraction buffer to solubilize
lipid bilayers, including the nuclear envelope. The NP40 buffer
also contains isotonic NaCl to partially disrupt electrostatic
interactions between nuclear protein complexes and DNA.
Both extraction buffers were supplemented with hexokinase

and glucose to consume ATP and therefore prevent kinase-
catalyzed phosphorylation in the extract (see below). Multiple
reducing agents were included in both buffers to preserve the
active site Cys of extracted protein phosphatases. Collec-
tively, we reasoned that these modifications to the lysis pro-
cedure should yield two matched biochemical fractions—a
saponin extract (SE) and an NP40 extract (NE)—which each
retain the activity of endogenous protein phosphatases.

We first evaluated whether the on-plate extraction proce-
dure accurately fractionated subcellular proteins in multiple
biological settings. Using cell lines of breast (MCF10A-5E),
cervical (HeLa), colonic (HT29) and cardiac (AC16-CAR) ori-
gin, we immunoblotted SE and NE fractions for multiple pro-
teins that strongly localize to the cytoplasm or the nucleus
(Fig. 2B). We found that the dual-specificity kinase MEK and
the NF-�B inhibitor I�B� were restricted to the S.E. fraction,
as expected (64, 65). The lack of MEK and I�B� immunore-
activity in the NE fractions confirmed that the intermediate
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FIG. 2. On-plate subcellular fractionation of adherent human
cells. A, Extraction procedure schematic for collection of cytoplasmic
proteins (blue circles), nuclear proteins (orange and small blue cir-
cles), and transmembrane proteins (orange rectangles) from adherent
cell cultures. HK, hexokinase. Gluc, glucose. G6P, glucose-6-phos-
phate. B–C, Immunoblot comparison of saponin extracts (SE), Non-
idet P-40 extracts (NE) and insoluble proteins (I) for cytoplasmic
(MEK1/2 and I�B�) and nuclear (PARP and JunD) proteins (B) as well
as endogenous MKP3 phosphatase, the catalytic subunit of PP1
(PP1c) phosphatase, and the catalytic subunit of PP2A (PP2Ac) phos-
phatase (C) in the indicated human cell lines.
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washing steps completely removed residual SE proteins from
the plate. To assess the overall fractionation efficiency, we
extracted the remaining insoluble (I) material on the cell cul-
ture plate with Laemmli sample buffer (66) and noted that pure
SE proteins were almost completely removed. Reciprocally,
the DNA-repair enzyme PARP and the transcription factor
JunD were only detectable in the NE and I fractions (Fig. 2B).
These results indicated that the preceding permeabilization
and washing steps retained the proper localization of nuclear
proteins within the size restriction of the nuclear pore complex
(67), while recognizing that proteins bound tightly to DNA and
chromatin-associated factors would not be completely re-
moved by NE fractionation.

The extraction characteristics of SE and NE proteins ex-
tended to endogenous protein phosphatases (Fig. 2C). The
cytoplasmic DUSP MKP3 resided entirely in the SE fraction,
whereas the Ser/Thr phosphatases PP1 and PP2A were dis-
tributed in both SE and NE fractions with overall efficiencies of
�53 � 17% and �81 � 11% respectively. The extraction of
marker proteins and protein phosphatases varied across cell
lines but did not change when cells were stimulated with
epidermal growth factor (EGF) (supplemental Fig. S1). Repli-
cated fractionation of resting and EGF-stimulated cells further
showed that partitioning of endogenous protein phospha-
tases into SE and NE fractions was highly reproducible (sup-
plemental Fig. S2). We concluded that the biochemical frac-
tionation strategy (Fig. 2A) robustly isolates proteins from
distinct subcellular compartments.

To assess protein separation more broadly, we ectopically
expressed various V5-tagged constructs in AC16-CAR cells
and repeated the fractionation. The DUSP MKP7 predomi-
nantly resided in the SE fraction (supplemental Fig. S3A),
consistent with the cytoplasmic localization reported in pre-
vious overexpression studies (68). The nuclear regulatory sub-
unit of PP1, NIPP1 (69), was also mostly extracted in the S.E.
fraction probably because of its small size and passive diffu-
sion through nuclear pores (supplemental Fig. S3B). However,
�17% was still detectable in the NE fraction, including a
faster migrating form that was exclusively NE resident. We
observed a similarly interesting fractionation of the myristoy-
lated JNK-stimulatory phosphatase, JSP1, whose localization
has been reported to be perinuclear (70). A slower migrating
form of JSP1 resided in the SE fraction, whereas a doublet
was apparent in the NE fraction, which contained a faster
migrating JSP1 that was also partially insoluble (supplemental
Fig. S3C). Curiously, the transmembrane phosphatase PTP-
SL, which localizes to intracellular vesicles (71–74), was com-
pletely solubilized in the SE fraction (supplemental Fig. S3D),
suggesting that it may reside in a population of vesicles that is
especially cholesterol rich. By contrast, the tight junction-
associated transmembrane receptor CAR was negligibly ex-
tracted by saponin but solubilized efficiently in the NE fraction
as expected (supplemental Fig. S3E). The V5-tagging exper-

iments together indicated that the SE and NE fractions access
many compartments within cells.

The precision of subcellular extraction was determined in
different culture formats by measuring total extracted protein
content with o-pthalaldehyde, a fluorogenic reagent that is
compatible with strong reducing conditions (75). We found
that on-plate SE and NE extraction was consistent from day
to day and compatible with 10-cm, 6-well, 12-well, and 24-
well formats (supplemental Fig. S4A–S4B). Total protein ex-
traction decreased in the smaller formats, likely because of
reduced shear forces and mixing during incubations on the
platform rocker (see Experimental Procedures). However, the
impact was equivalent for the SE and NE extraction steps,
such that the ratio of the two fractions was roughly equal
across all formats (supplemental Fig. S4C). The overall gen-
erality of the on-plate extraction procedure ensured that the
method could be rapidly adapted to different biological
applications.

Multiplex Quantification of Subcellular Protein Phosphatase
Activity—To capture a range of endogenous protein phospha-
tase activities, we generated six recombinant phosphosub-
strates, which are compartmentalized in different subcellular
locales and regulated by various stimuli (Fig. 1). Phosphoryl-
ated MAPKs were previously produced using mutated, con-
stitutively active dual-specificity kinases in vitro with their
cognate MAPK substrate: MEK1-DD with ERK2, MKK4-EE
and MKK7-EE with JNK1, and MKK6-EE with p38� (29). The
efficiency of phosphorylated p38� (phospho-p38�) genera-
tion was increased considerably by coexpressing the consti-
tutively active MKK6-EE in bacteria together with GST-tagged
p38�. We built upon the success of in vivo p38� phosphoryl-
ation and produced phosphorylated MK2 (phospho-MK2) by
triple coexpression of MKK6-EE, p38�, and GST-tagged MK2
in bacteria. To expand beyond phosphosubstrates that were
themselves kinases, we purified two transcription factors,
CREB and STAT1. Like ERK2 and JNK1, CREB and STAT1
were sufficiently phosphorylated in vitro: CREB with phospho-
MK2 (described above) and STAT1 with a recombinant JAK1
fragment purified commercially (see Experimental Proce-
dures). Using quantitative immunoblotting (56), we found that
the phospho-stoichiometry of all substrates was well below
that observed in stimulated cells (Table I), excluding the pos-

TABLE I
Phospho-stoichiometry of Recombinant Phosphosubstrates

Substrate Phosphosite Recombinanta In vivoa (stimulationb)

ERK2 Thr202/Tyr204 0.10 1.9 (EGF)
p38� Thr180/Tyr182 0.040 3.5 (TNF)
JNK1 Thr183/Tyr185 0.046 3.1 (TNF)
MK2 Thr334 0.69 4.8 (TNF)
CREB Ser133 0.033 2.2 (TNF)
STAT1 Tyr709 6.4 36 (IFN�)

a Values are reported relative to unstimulated AC16-CAR cells.
b EGF, 100 ng/ml EGF for 5 min; TNF, 20 ng/ml TNF for 15 min;

IFN�, 50 ng/ml IFN� for 30 min.
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sibility of off-target dephosphorylation arising from excess
phosphosubstrate. For each target, we identified adsorption
conditions and phosphospecific antibody titers that yielded
an extended linear dynamic range of the ELISA end point
(supplemental Fig. S5, arrows). These conditions provided a
starting point for each protein phosphatase assay, where loss
of phosphoryl groups on the microtiter well caused a propor-
tional loss of ELISA signal.

The expanded panel of phosphosubstrates presented new
challenges in measuring protein phosphatase activity. In SE
fractions prepared with earlier versions of extraction buffers
(29), we found that the phospho-ELISA end point increased
rather than decreased for substrates such as CREB, suggest-
ing that uninhibited kinase activity was overwhelming phos-
phatase activity (Fig. 3A, columns 1 and 2). This phenomenon
was not observed in NE fractions, which as a second-step
extraction would contain much lower concentrations of resid-
ual ATP (Fig. 3A, columns 5 and 6, supplemental Fig. S6A–
S6B). We depleted ATP from the SE fractions by adding
recombinant hexokinase together with its substrate glucose in
the extraction buffer. To irreversibly deactivate serine pro-
teases that copurify with hexokinase (76) and destroy phos-
phosubstrates (supplemental Fig. S3C), we further supple-
mented the concentrated hexokinase stock solution with
PMSF. The modified extraction buffer completely depleted
residual ATP and resulted in substantially enhanced protein
phosphatase activity measurements (Fig 3A, columns 3 and 4,
supplemental Fig. S6A). Therefore, depletion of endogenous
ATP from extracts is critical for widespread measurements of
protein phosphatase activity.

We encountered a separate challenge with activity meas-
urements in NE fractions. Efficient extraction of nuclear and
transmembrane proteins requires NP40 and NaCl; however,
these reagents inhibit protein-protein interactions important

for substrate recognition by protein phosphatases. Indeed,
extracts in pure NE buffer yielded small and variable de-
creases in phospho-ELISA signal (Fig. 3B, columns 1 and 3).
After converting absorbance to phosphatase activity (see Ex-
perimental Procedures), non-diluted extracts yielded an un-
acceptable technical CV of 20%. We found that 10-fold dilu-
tion of NP40 to 0.1% (w/v) and NaCl to 15 mM increased the
measured protein phosphatase activity by more than 2-fold
and reduced the technical CV to 3% (Fig. 3B, columns 3 and
4). For assays requiring more concentrated NE fractions in a
given culture format (supplemental Fig. S4), protein phospha-
tase activity could be reliably measured with up to 0.3% (w/v)
NP40 and 45 mM NaCl, allowing flexibility to adapt measure-
ments to specific experimental settings.

Before quantifying protein phosphatase activity, we altered
the temperature and duration of phosphatase reactions to
maximize signal (decrease in phospho-ELISA end point) while
minimizing technical noise relative to extract-free phospha-
tase blank wells. We sought conditions where the CV was
consistently less than 20% when the extracted phosphatases
reduced the phospho-ELISA signal by at least 30%. In vitro
dephosphorylation kinetics were linear during the assays
(supplemental Fig. S7), ensuring that the extracted phospha-
tases preserved their activity and did not deplete the available
phosphosubstrate on the plate. We calibrated the dynamic
range of each assay by measuring protein phosphatase ac-
tivity in serially diluted SE or NE fractions that maintain the
concentration of critical buffer constituents (hexokinase, re-
ducing agents, etc.). SE and NE protein phosphatase activi-
ties increased hyperbolically with extract concentration, as
expected, and the optimal dynamic range across the panel
was well below 50,000 cells (corresponding to �20 �g SE
fraction and �9 �g NE fraction) (Fig. 4A–4L). This sensitivity
and overall performance is comparable to quantitative immu-
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FIG. 3. ATP depletion and salt-detergent dilution are required for reliable subcellular phosphatase activity measurements. A,
Adsorbed recombinant phospho-CREB was incubated with (�) or without (–) SE or NE fractions (50,000 cell equivalents) and with (�) or without (�)
exogenous hexokinase (Hexo) to deplete intracellular ATP. CREB phosphorylation was measured by phospho-ELISA after incubation for one
hour at 30 °C. Interaction between hexokinase and lysate was assessed statistically by two-way ANOVA. Data are shown as the mean of n �
4 independent biological extracts. B, Adsorbed recombinant phospho-p38� was incubated with NE fraction (8,500 cell equivalents) in NE buffer
containing the indicated final concentrations of NaCl and NP40. p38� phosphorylation was measured by phospho-ELISA after incubation for
one hour at 30 °C. Data are shown as the mean of n � 8 (buffer) or 4 (extract) assay replicates. Difference in means was assessed by two-tailed
Student’s t test.
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noblotting of protein abundance from total cellular extracts
(56). NE phosphatase activity assays for MK2 and CREB
phosphatases required more extract, which was achieved by
diluting to 0.3% (w/v) NP40 and 45 mM NaCl (see above). The
reduced sensitivity toward phosphorylated Ser/Thr substrates
is consistent with the low relative abundances of PP1 and
PP2A holoenzymes observed in the NE fraction (Fig. 2C,
supplemental Fig. S2B–S2C). The aggregate sensitivity of the
measurement platform readily enables six-plex subcellular
activity profiling of extracts from one well of a 12-well plate.

We evaluated protein phosphatase specificity of the activity
assays by using small-molecule inhibitors. With the pan-
phosphatase inhibitor sodium pyrophosphate (NaPP) (77, 78),
all activity measurements were potently inhibited as expected
(Fig. 5A–5F). The tyrosine dephosphorylation of STAT1 was
also strongly reduced by sodium orthovanadate (Na3VO4)
inhibition of PTPs (79, 80) (Fig. 5A). Reciprocally, the MK2 and
CREB phosphatase assays were blocked by microcystin-LR
(MCLR), implicating the substrates as targets of PP1, PP2A,
or PP4,5,6 phosphatases (81) (Fig. 5B–5C). Moreover, be-
cause MCLR does not inhibit acid or alkaline phosphatases
(82), these results also exclude contaminating activity from
other phosphatases in various cellular subcompartments.

The response of the MAPK phosphatase assays was more
complex because of the multiple dephosphorylation reactions
involved and the mixed specificity of the antibody detection
reagents (20, 83, 84). ERK2 phosphatase measurements in SE
and NE fractions were almost entirely MCLR sensitive (Fig.
5D), probably reflecting the phospho-Thr preference of the
ELISA antibody (83) or the low abundance of inducible DUSPs
for ERK, relative to PP2A, in resting cells (85, 86). Conversely,
JNK1 phosphatases were highly vanadate sensitive (Fig. 5E);
a phospho-Tyr preference for the phospho-JNK antibody has
not been reported, but multiple JNK-selective DUSPs reside

in both the cytoplasm and nucleus (5). The observed lack of
MCLR sensitivity may stem from the prolyl isomerization of
JNK within its pThr-Pro-pTyr activation loop (87), which pre-
vents dephosphorylation by PP2A (88).

Most interesting was the behavior of p38� phosphatases,
which were much more vanadate sensitive in the NE fraction
(Fig. 5F, gray) but showed similar susceptibility to MCLR as to
vanadate in the SE fraction (Fig. 5F, black). These data are
consistent with negative p38� regulation by PP2A in the
cytoplasm (89) and DUSPs in the nucleus (5). Together, our
inhibitor results confirm that the assay platform measures all
major classes of protein phosphatases in the SE and NE
subcellular fractions.

We benchmarked the assay platform by performing a brief
time-course experiment in cells stimulated with EGF to induce
phosphorylation of ERK and the up-regulation of DUSPs (90).
In parallel with extracts for phosphatase activity, subcellular
samples were prepared for phospho-ERK quantification by
supplementing SE and NE buffers with phosphatase inhibitors
(see Experimental Procedures). In the SE fraction, we ob-
served a rapid increase in ERK phosphorylation within 5 mins
that remained elevated for up to two hours (Fig. 6A–6B). ERK2
phosphatase activity also increased in the SE fraction, likely
blunting the peak phosphorylation observed, but the increase
was transient and could not revert phospho-ERK abundance
to pre-stimulus levels (Fig. 6C). Similar transients were ob-
served for p38� and JNK1 phosphatases in the SE fraction
(supplemental Fig. S8A–S8B), suggesting activity by a shared
set of DUSPs. In contrast, MK2 and CREB phosphatase ac-
tivities in the SE fraction were slowly reduced after EGF stim-
ulation (supplemental Fig. S8C–S8D), and STAT1 phospha-
tase activity was rapidly elevated and sustained, perhaps in
response to STAT1 phosphorylation induced by EGF (91, 92)
(supplemental Fig. S8E). The qualitatively different phospha-
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tase dynamics in the SE fraction provide a further validation of
substrate specificity afforded by the assay.

A very different time course of phospho-ERK abundance
was observed in the NE fraction. ERK phosphorylation was
slower, peaking at 30 min concomitant with maximum total
ERK shuttled into the nucleus (Fig. 6D–6E). Importantly, phos-
pho-ERK in the NE fraction reverted to pre-stimulus levels
within two hours, suggesting that negative regulation in this
subcompartment was more persistent than in the SE fraction.
Corroborating the phospho-ERK dynamics, we found that
ERK2 phosphatase activity in the NE fraction was increased
and sustained from 30–120 min after EGF stimulation. More-
over, this trajectory was unique among MAPKs, as p38�

phosphatase activity in the NE fraction was transiently in-
creased and JNK1 phosphatase activity was slightly de-
creased (supplemental Fig. S8F–S8G). Among other phos-
phosubstrates, MK2 and CREB phosphatases were largely
unaltered in the NE fraction, whereas STAT1 phosphatases
were slowly and transiently activated (supplemental Fig. S8H–
S8J). Overall, the measured subcellular ERK2 phosphatase
activities reconcile the observed phospho-ERK dynamics,
whereas the broader panel of phosphosubstrates in the assay
reinforces the more-widespread alterations caused by EGF
stimulation.

Viral and Antiviral Regulation of Protein Phosphatases Dur-
ing Acute Infection of Cardiomyocytes with Coxsackievirus
B3—To profile subcellular protein phosphatase dynamics in
infectious disease, we investigated the interactions between
host-cell antiviral signaling and acute infection by CVB3,
which perturbs most of the signaling pathways in the assay
panel (Fig. 1). Despite its recognized tropism for juvenile car-
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diomyocytes (93, 94), CVB3 pathogenesis is largely studied in
permissive HeLa cells because of the efficiency of viral prop-
agation (40, 95, 96). As an alternative, neonatal mouse HL-1
cells have been used (35, 39), but these cells are atrially
derived, and CVB3 infections disproportionately impact the
ventricular myocardium (97, 98). A human ventricular car-
diomyocyte cell line that is susceptible to CVB3 would
be highly desirable for in vitro studies of host-pathogen
interactions.

We tackled this challenge by starting with AC16 cells, a
clonal human line derived by fusing adult ventricular car-
diomyocytes with SV40-transformed fibroblasts (53). Al-
though lacking the typical sarcomeric organization of the
myocardium, AC16 cells express several markers of immature
cardiomyocytes, including cardiac-specific transcription fac-
tors and contractile proteins. SV40 small t antigen alters PP2A
function as an unavoidable facet of the line (99), but AC16
cells nonetheless have detectable MCLR-sensitive phospha-
tase activity at baseline (Fig. 5B–5D, 5F). Given that AC16
cells originate from adult tissue and expression of the CVB3-
obligate receptor CAR declines with age (100), we reconsti-
tuted CAR by lentiviral transduction and stable selection to
generate AC16-CAR cells (see Experimental Procedures).
Compared with the parental AC16 line, AC16-CAR cells were
much more supportive of intracellular viral protein synthesis

upon CVB3 infection, as indicated by expression of the viral
capsid protein VP1 (Fig. 7A). We also detected cleavage of
eIF4G, a recognized target of the active enteroviral protease
2A (101). Accordingly, CVB3 infection was substantially more
toxic to the AC16-CAR line. By fluorescence microscopy, we
observed cells with increased caspase-3 cleavage as well as
others with compromised membrane integrity (Fig. 7B), indi-
cating concurrent apoptosis and necrosis within the culture
(39). Cardiomyocyte apoptosis has been shown to be corre-
lated with CVB3 viral titer (102), and we found that viral titers
increased 1000-fold in conditioned media from infected
AC16-CAR cells (Fig. 7C–7D). Therefore, with the restoration
of CAR, AC16 cells support all stages of the viral life cycle
required to amplify an acute infection.

We sought to use AC16-CAR cells together with the sub-
cellular phosphatase assay to profile activity changes during
CVB3 infection and the associated interferon response. Type
I interferons (IFN�, IFN�) are potently induced by double-
stranded RNA (dsRNA) that accompanies viral replication, but
CVB3 counteracts the type I response by cleaving sensors
and transducers of dsRNA (103). Type II interferon (IFN�)
signaling is initiated by the paracrine action of natural killer
cells, which become activated upon CVB3 infection (44). Co-
treatment of cells with IFN� and IFN� synergistically inhibits
CVB3 replication (104), and IFN� treatment alone has shown
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some success in clearing persistent CVB3 infections (98).
Phosphatases are rare among interferon-stimulated genes
(105), but some viruses directly perturb interferon action by
upregulating phosphatase activity (106). Whether more-dis-
tant crosstalk occurs between phosphatases modulated by
interferons and CVB3 has not been examined.

The throughput of the assay enabled a highly replicated
(n � 9), fully crossed design of three factors: CVB3 (MOI �

10), IFN� (30 ng/ml), and IFN� (50 U/ml). Samples receiving
CVB3 were infected for three hours before stimulation with
IFN�, IFN�, or both, followed by on-plate fractionation and
phosphatase-activity profiling of the resulting extracts. Some
assays showed skewed or leptokurtic error distributions
across biological replicates, requiring the use of nonparamet-
ric methods for statistical inference in these instances (see
Experimental Procedures). Without antiviral cytokines, we
did not detect significant differences in phosphatase activity
caused by CVB3 infection alone after correcting for multi-
ple-hypothesis testing (Fig. 8A). Therefore, day-to-day and
plate-to-plate variation was accounted for by normalizing
data to the median activity of no-cytokine samples in each
group (see Experimental Procedures). The full-factorial de-
sign of the experiment allowed us to test for main effects of
CVB3, IFN�, and IFN�, as well as nonlinear interactions
between factors that would indicate synergistic or antago-
nistic regulation.

Overall, we observed various single-factor perturbations
consistent with the literature (Fig. 8B). For example, IFN�

independently suppressed ERK2, p38�, and MK2 phospha-
tase activities in the SE fraction (Fig. 8C–8E, p � 0.01). ERK
activity is critical for the type I interferon response (107). Also,
the p38-MK2 pathway stabilizes mRNAs with AU-rich ele-
ments (108, 109), a characteristic of many interferon-re-
sponse genes (105) (supplemental Table S4). Reduced phos-
phatase activity toward these targets may collectively prolong
the duration of the type I interferon response. Notably, we did
not observe IFN�-stimulated decreases in all DUSP or Ser/Thr
phosphatase targets (Fig. 8B, JNK1 and CREB), reinforcing
the specificity of the assay panel.

IFN� suppression of p38� phosphatase activity was also
observed in NE fractions (Fig. 8C, p � 0.001), but there were
multiple instances of changes specific to one cellular sub-
compartment. In contrast to IFN�, we found that IFN� up-
regulated p38 phosphatase activity only in the NE fraction
(p � 0.01). A similar trend was observed for JNK1 phospha-
tase in the SE fraction (Fig. 8F), although the IFN� effect did
not retain statistical significance after correction for multiple-
hypothesis testing at a false-discovery rate of 10%. Long-
term (3� hours) stimulation of macrophages with IFN� up-
regulates MKP5 and MKP7 (110), which dephosphorylate
JNK-p38 and endogenously localize to the cytoplasm and
nucleus (5). Our findings raise the possibility that these in-
duced DUSPs exhibit different substrate preferences depend-
ing on their localization.

Despite median normalization, specific subcellular pertur-
bations were also detected in CVB3-infected cells: ERK2
phosphatase activity in the SE fraction was increased overall
(Fig. 8D, p � 0.01) along with the activity of JNK1 phospha-
tases in the NE fraction (Fig. 8F, p � 0.001). ERK2 phospha-
tase activity likely reflected the compensatory up-regulation
of cytoplasmic DUSPs, such as MKP3, that could be in-
duced by CVB3 activation of the ERK pathway (37). The
NE-associated JNK1 phosphatase result was more intrigu-
ing given conflicting reports involving the role of JNK acti-
vation in CVB3 pathogenesis (38, 111). We therefore pur-
sued follow-on experiments to dissect mechanistically the
role of CVB3-associated JNK1 phosphatase activity in the
NE fraction.

Nuclear JNK1 Phosphatases Impede CVB3 Pathogenesis—
Given the considerable vanadate sensitivity of JNK1 phos-
phatases in the NE fraction (Fig. 5E), we first sought to identify
nuclear DUSPs that contributed to the activity measured by
the assay. We cloned inducible shRNAs (supplemental Fig.
S9) for four JNK-targeting DUSPs and transduced AC16-CAR
cells to assess their individual contributions toward JNK1
phosphatase activity in the NE fraction. Significant changes
were not observed with shMKP7 or shDUSP19 perturbations,
but knockdown of MKP1 and MKP5 reduced JNK1 phospha-
tase activity in the NE fraction by �50 and �30% respectively
(supplemental Fig. S10). These results implicate MKP1 and
MKP5 as the predominant JNK1 phosphatases in the NE
fraction of AC16-CAR cells.

Next, it was important to clarify the role of JNK pathway
activity in CVB3 pathogenesis. Prior CVB3 studies involving
the JNK pathway relied on a first-generation inhibitor that is
now known to inhibit many other kinases (38, 111, 112). We
therefore turned to JNK-IN-8 (IN8), a newer covalent JNK
inhibitor that is much more selective (113). Rather than block
the JNK pathway constitutively, we sought to exploit the
covalent nature of IN8 and achieve a slow reactivation of JNK
by washout during infection. Three-hour preincubation of cells
with IN8 strongly reduced cJun phosphorylation—a surrogate
of JNK activity—but phosphorylation was nearly restored to
control levels after 20 h of washout (Fig. 9A). By shifting the
initial baseline, IN8 washout achieves a fold-change activation
of the JNK pathway that can be overlaid on viral and antiviral
signaling (Fig. 9B) (114–116).

As a single factor, CVB3 increased JNK1 phosphatase ac-
tivity in the NE fraction (Fig. 8F), but there was also a sugges-
tive synergy with IFN� (interaction p � 0.05), prompting us
to perform the IN8 washout experiments in CVB3-infected
cells � IFN�. The interferon response initiated by IFN�

strongly suppressed translation of VP1 during CVB3 expres-
sion, as expected, but we found that VP1 abundance doubled
when the JNK pathway was activated by IN8 washout (Fig.
9C–9D). These results suggest that CVB3- and IFN�-induced
activation of JNK phosphatases may contribute to the host
antiviral response.
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The IN8 washout experiment generally implicates the JNK
pathway in CVB3 pathogenesis but cannot assign a specific
role for nuclear-localized activity. To do so, we engineered

inducible MKK4-EE and MKK7-EE alleles harboring a potent
nuclear localization sequence (NLS) that should restrict JNK
activation to the nucleus. By immunofluorescence, we con-
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firmed the localization of MKK4-EE-NLS and MKK7-EE-NLS
and observed an increased frequency of cells with elevated
cJun phosphorylation compared with EGFP-NLS controls
(Fig. 9E). Timed induction of JNK activators was reliable under
resting conditions but became highly variable during CVB3
infection and IFN� stimulation because of the shutdown of
protein translation during the host-cell interferon response.
We exploited this variability to ask whether the amount of
induced MKK4/7-EE-NLS corresponded to a proportional in-
crease in VP1 abundance for the same biological replicate.
Indeed, VP1 expression was significantly correlated with
MKK4/7-EE-NLS but not EGFP-NLS controls, indicating that
nuclear JNK activation promotes viral propagation in infected
host cells. These follow-on experiments together provide a
rationale and molecular basis for the CVB3- and IFN�-stimu-
lated JNK1 phosphatase activity measured by the assay in the
NE fraction.

DISCUSSION

This work considerably extends the premise of substrate-
directed phosphatase activity profiling (29) by doubling the
number of substrates and subcellular compartments acces-

sible with the method. Phosphoprotein-focused mathematical
models of cell signaling often separate rate processes that
occur in the cytoplasm and nucleus (117–119). Subcellular
measurements of protein phosphatase activity will help to
parameterize time- and subcompartment-specific deactiva-
tion rates, which determine steady-state signaling (6). Further-
more, it should be easier to hone in on detailed mechanisms
of phosphosubstrate regulation (29) by focusing on the spe-
cific phosphatases localized to where activity changes were
measured (5, 22). In this way, systematic experiments per-
formed with high-throughput methods set the stage for more
in-depth mechanistic hypotheses (120, 121).

The expanded phosphatase format revealed cellular ATP as
an important confounder in the assay. We had noted in-
creased, rather than decreased, substrate phosphorylation in
the assay before (29) but discounted it because it was ob-
served only when JNK phosphatases were measured in the
presence of vanadate. After ATP depletion, phospho-JNK
dephosphorylation is considerably inhibited by vanadate in
both NE and SE fractions (Fig. 5E). Our results corroborate
observations in clinical isolates, which illustrated that kinases
are as problematic as phosphatases when seeking to accu-
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rately capture the cellular phosphoproteome accurately (61).
For enzyme-catalyzed depletion of ATP, hexokinase is a use-
ful alternative to apyrase (122) when extracts must be kept at
low temperature (123).

Isolation of NE-fractionated protein phosphatases was a
tradeoff between extraction efficiency and retention of cata-
lytic activity. Proteins tightly associated with chromatin, in-
cluding some protein phosphatases (22), likely remain in the
nucleus after extraction. However, the conditions required to
displace such proteins would undoubtedly interfere with ac-
tivity in the entire extract. Nuclear MK2 and CREB phospha-
tase activity measurements were somewhat less sensitive
than others in the panel, possibly because of unextracted PP1
isoforms (124). More important than total extraction is the
ability to capture stimulus-dependent changes in phospha-
tase activity, as observed in response to growth factors, in-
terferons, and viruses.

We found that reconstitution of CAR expression was suffi-
cient to render AC16 cells permissive to CVB3. CAR is not
universally rate-limiting for CVB3 infection—A549 lung ade-
nocarcinoma cells express as much CAR as permissive HeLa
cells, but their ability to propagate the virus is restricted by
deficient expression of the DAF coreceptor (125). CVB3 per-
missiveness is also dictated by more than cell-surface recep-
tors, with many intracellular factors contributing positively or
negatively to infectivity (41). For example, HeLa cells become
non-permissive upon overexpression of the mitochondrial an-
tiviral signaling protein MAVS (126). AC16 cells were originally
isolated from human ventricular cardiomyocytes of an adult
(53), and their initial CVB3 restriction likely stems from the
natural decline in CAR expression that occurs with age (100).
CAR-supplemented AC16 cells provide an improved CVB3
host, which reflects the natural tropism of the virus.

Our crossed experimental design with CVB3 and antiviral
factors uncovered multiple changes in protein phosphatase
activity that could contribute to systems analyses of virus-
host interactions. By coupling protein phosphatase profiles
with matched observations of kinase activity and substrate
phosphorylation, related data types could be assessed for
concordance (127–129). The substrate-focused phosphatase
assays are ideal for such a comparison, with the tradeoff that
it is more complicated to identify the specific phosphatase(s)
involved. Nevertheless, it is possible to dissect mechanisms
as we showed for the elevated JNK1 phosphatase activity
observed in the NE fraction of AC16-CAR cells. For interfer-
ons and other extracellular ligands, transcriptomic profiles of
protein phosphatase subunits could provide clues about in-
duced changes in abundance. The challenge is greater for
CVB3-induced perturbations, which are largely mediated by
the proteases 2A and 3C or by innate antiviral mechanisms.
Many protein phosphatases contain high scoring consensus
sequences for enteroviral proteases (130), suggesting that
perturbations could be highly multifaceted.

The demonstrated generality of the assay platform opens
up additional opportunities to interrogate protein phospha-
tase activities related to CVB3 infection. In epithelia, viral
docking rapidly activates Abl and Fyn, and CVB3 crosslinking
of DAF in lymphocytes triggers phosphorylation of Lck (32–
34). These nonreceptor tyrosine kinases readily autophosphor-
ylate in bacteria and in vitro (131, 132), suggesting that such
substrates could be prepared in high yield for Abl-, Fyn-, and
Lck-focused phosphatase assays. CVB3 infection also mobi-
lizes Ca2� stores (133), and the Ca2�-activated phosphatase
calcineurin disinhibits NFAT, a transcription factor whose acti-
vation in T cells promotes myocarditis (134). A calcineurin-
focused NFAT phosphatase assay would enable a further elab-
oration of the host-cell signaling networks perturbed by CVB3.

The CVB3 genome engages many intracellular signaling
pathways to disrupt host-cell functions (135). Decoding viral
mechanisms of action on specific host phosphoproteins will
be critical for devising strategies to block or offset these
mechanisms during CVB3 infection. Reciprocally, one can
envision future virus-inspired interventions for diseases of
signaling misregulation such as lung cancer, where high CAR
expression is important for tumorigenesis (136) and CVB3 has
been shown to be oncolytic (137).
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