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Abstract

The field of computational cognitive neuroscience (CCN) builds and tests neurobiologically 

detailed computational models that account for both behavioral and neuroscience data. This article 

leverages a key advantage of CCN – namely, that it should be possible to interface different CCN 

models in a plug-and-play fashion – to produce a new and biologically detailed model of 

perceptual category learning. The new model was created from two existing CCN models: the 

HMAX model of visual object processing and the COVIS model of category learning. Using 

bitmap images as inputs and by adjusting only a couple of learning-rate parameters, the new 

HMAX/COVIS model provides impressively good fits to human category-learning data from two 

qualitatively different experiments that used different types of category structures and different 

types of visual stimuli. Overall, the model provides a comprehensive neural and behavioral 

account of basal ganglia-mediated learning.
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1. Introduction

The goal of computational cognitive neuroscience (CCN) is to build and test 

neurobiologically detailed computational models that can account for behavioral and 

neuroscience data [Ashby and Helie (2011); O’Reilly et al. (2012)]. Even so, researchers 

who build and test CCN models are typically interested in one subprocess more than others. 

For example, researchers interested in visual perception might couple a detailed model of 

some regions in visual cortex with an oversimplified model of response selection that 

produces a stylized output, whereas researchers interested in motor performance might 
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couple a detailed model of primary motor cortex with an oversimplified model of visual 

perception that produces a stylized input to the motor module.

If two different CCN models are both faithful to the available neuroscience data and if they 

each model brain regions that are connected, then it should be possible to create a new 

model by linking the two together, and this new model should be consistent with all the 

behavioral and neuroscience data that are consistent with either model alone. This article 

leverages this property of CCN modeling by combining two well-established CCN models – 

the model of processing in visual cortex called HMAX [Riesenhuber and Poggio (1999)] 

and the model of procedural learning in the striatum that is included in the COVIS model of 

category learning [Ashby et al. (1998); Ashby and Waldron (1999)]. We believe that the 

combined model provides the best available and most comprehensive account of learning in 

several qualitatively different kinds of categorization tasks.

2. Category Learning

Categorization is the act of responding the same to all members of one stimulus class and 

differently to members of other classes. It is a key skill required of every organism because, 

for example, it allows prey and nutrients to be approached and predators and toxins to be 

avoided. There is now abundant evidence that multiple memory systems contribute to 

perceptual category learning, and that different systems dominate under different conditions 

depending on the structure of the contrasting categories and the training conditions [e.g., 

Ashby and Maddox (2005, 2010); Eichenbaum and Cohen (2001); Poldrack et al. (2001); 

Poldrack and Packard (2003); Squire (2004)]. For example, evidence suggests that 

declarative memory systems dominate when optimal performance is possible with an 

explicit rule that is easy to describe verbally.

The focus of this article is on learning that is mediated by the (nondeclarative) procedural 

memory system [e.g., Squire (2004); Willingham (1998); Willingham et al. (1989)]. 

Procedural memories are the memories of skills that are learned through practice. 

Traditionally these have been motor skills, but recent evidence suggests that procedural 

learning is also critical for the acquisition of many cognitive skills [e.g., Ashby and Ennis 

(2006); Seger (2008); Seger and Miller (2010)]. In contrast to learning that is mediated by 

declarative memory systems, procedural learning is slow and incremental and it requires 

immediate and consistent feedback. Much evidence suggests that procedural learning is 

mediated largely within the basal ganglia [e.g., Mishkin et al. (1984); Willingham (1998)].

Evidence suggests that procedural learning dominates in two different types of 

categorization tasks – information-integration (II) and unstructured category-learning tasks. 

II tasks are those in which accuracy is maximized only if information from two or more 

incommensurable stimulus dimensions (or components) is integrated at some pre-decisional 

stage [Ashby and Gott (1988)]. An example is shown in Figure 2. II categories are 

similarity-based in the sense that perceptually similar stimuli tend to belong to the same 

category, but the optimal strategy in II tasks is difficult or impossible to describe verbally 

[Ashby et al. (1998)]. Explicit-rule verbal strategies, such as “respond A if the stimulus has 

bars with steep orientation,” lead to sub-optimal levels of accuracy. Combining multiple 
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such verbal rules sometimes helps – for example combining a rule about orientation with 

one about thickness might improve accuracy. However, this compound rule will still lead to 

suboptimal performance unless information on multiple dimensions is integrated – that is, 

unless the values on multiple dimensions are directly compared. Although category 

membership in an II task is easily defined mathematically, a verbal description of that 

mathematical rule is not natural. For example, in Figure 2, a verbal description of the 

mathematical rule that defines category membership is: “respond A if the width of the 

stimulus bars is greater than their orientation.” But since width and orientation are 

incommensurable, this is comparing apples and oranges. Such incommensurability is a 

hallmark of II tasks, which is why the optimal strategy in II tasks is difficult to describe 

verbally.

In unstructured category-learning tasks, the stimuli are assigned to each contrasting category 

randomly, and thus there is no rule- or similarity-based strategy for determining category 

membership. Because similarity can not be used to learn the categories, the stimuli are 

typically visually distinct (i.e., non-confusable) and low in number. For example, each 

category generally includes 8 or fewer exemplars (and 4 is common). Figure 4 shows some 

examples. Unstructured category-learning tasks are similar to high-level categorization tasks 

that have been studied for decades in the cognitive psychology literature. For example, 

Lakoff (1987) famously motivated a whole book on a category in the Australian aboriginal 

language Dyirbal that includes women, fire, dangerous things, some birds that are not 

dangerous, and the platypus. Similarly, Barsalou (1983) reported evidence that ad hoc 

categories such as things to sell at a garage sale and things to take on a camping trip have 

similar structure and are learned in similar ways to other common categories.

The evidence is good that success in II and unstructured categorization tasks depends on 

striatal-mediated procedural learning [Ashby and Ennis (2006); Seger (2008); Seger and 

Miller (2010)]. A complete review is beyond the scope of this article, but briefly, patients 

with striatal dysfunction are highly impaired in these tasks [e.g., Ashby et al. (2003b); 

Filoteo et al. (2001, 2005); Knowlton et al. (1996); Sage et al. (2003); Shohamy et al. 

(2004); Witt et al. (2002)], and almost all fMRI studies of II and unstructured category 

learning have reported significant task-related activity in the striatum, rather than say in the 

medial temporal lobes [e.g., Lopez-Paniagua and Seger (2011); Nomura et al. (2007); 

Poldrack et al. (2001); Seger and Cincotta (2002, 2005); Seger et al. (2010); Waldschmidt 

and Ashby (2011)]. Behaviorally, one feature of traditional procedural-learning tasks is that 

switching the locations of the response keys interferes with performance [Willingham et al. 

(2000)], presumably because procedural learning includes a motor component. In agreement 

with this result, switching the locations of the response keys interferes with II and 

unstructured categorization performance but not with performance in control tasks where 

optimal accuracy is possible with an explicit rule [Ashby et al. (2003a); Crossley et al. 

(2012); Maddox et al. (2004); Spiering and Ashby (2008)].
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3. HMAX, COVIS, and HMAX/COVIS

3.1. HMAX

HMAX is a computational implementation of the simple-to-complex “Standard Model” of 

visual processing [Hubel and Wiesel (1962)]. It simulates processing in the cortical ventral 

visual stream thought to mediate object recognition in humans and other primates 

[Ungerleider and Haxby (1994)]. This stream extends from primary visual cortex, V1, to 

inferotemporal cortex, IT, forming a processing hierarchy in which the complexity of 

neurons’ preferred stimuli and receptive field sizes progressively increase.

The HMAX model is described in detail elsewhere [Riesenhuber and Poggio (1999); Jiang 

et al. (2006); Serre et al. (2007b); Cox and Riesenhuber (2015)]. Briefly, input images are 

densely sampled by arrays of two-dimensional Gabor filters, the so-called S1 units, each 

responding preferentially to a bar of a certain orientation, spatial frequency and spatial 

location, thus roughly resembling properties of simple cells in striate cortex. In the next step, 

C1 cells, which roughly resemble complex cells [Serre and Riesenhuber (2004)], pool the 

output of sets of S1 cells with the same preferred orientation (using a maximum, MAX-

pooling function) and with similar preferred spatial frequencies and receptive field locations, 

to increase receptive field size and broaden spatial frequency tuning. Thus, a C1 unit 

responds best to a bar of the same orientation as the S1 units that feed into it, but over a 

range of positions and scales. To increase feature complexity, neighboring C1 units of 

similar spatial frequency tuning are then grouped to provide input to an S2 unit, roughly 

corresponding to neurons tuned to more complex features, as found in V2 or V4. 

Intermediate S2 features can either be hard-wired [Riesenhuber and Poggio (1999)] or 

learned directly from image sets by choosing S2 units to be tuned to randomly selected 

patches of the C1 activations that result from presentations of images from a training set 

[Serre et al. (2007a,b)]. This latter procedure results in S2 feature dictionaries better 

matched to the complexity of natural images [Serre et al. (2007b)], and a similar set of 4,075 

features extracted from natural images was used in the present simulations (using the hmin 

package, see below).

To achieve size invariance over all filter sizes and position invariance over the modeled 

visual field while preserving feature selectivity, all S2 units selective for a particular feature 

are again pooled by a MAX operation to yield C2 units. Consequently, a C2 unit will 

respond at the same level as the most active S2 unit with the same preferred feature, but 

regardless of its scale or position. C2 units are comparable to V4 neurons in the primate 

visual system [Cadieu et al. (2007)]. Finally, these C2 units can then be combined to serve as 

inputs to “view-tuned” units selective for particular views of a complex object (e.g., a face or 

a car) as might be found for example, in ventral temporal cortex at the top of the ventral 

visual stream.

3.2. The COVIS Procedural-Learning Model

The COVIS procedural-learning model is based on open loops from visual cortical areas 

through the direct pathway of the basal ganglia to premotor areas of cortex [for details, see 

Ashby et al. (1998); Ashby and Crossley (2011); Ashby et al. (2007); Cantwell et al. 
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(2015)]. The major structures and projections in the model are shown in Fig. 1. Synpatic 

plasticity occurs at three different types of synapses: 1) synapses between cortical pyramidal 

neurons and medium spiny neurons (MSNs) in the striatum, 2) synapses between neurons in 

the centremedian and parafasicular nuclei in the thalamus and the striatal cholinergic 

interneurons known as the TANs, and 3) synapses between neurons in visual cortical 

neurons and neurons in premotor cortex (SMA and/or dorsal premotor cortex). Briefly, with 

visual categories, synapses between visual cortical neurons and MSNs in the body and tail of 

the caudate learn which stimuli cluster together, whereas synapses between neurons in 

preSMA and MSNs in the putamen learn what motor response is appropriate for each 

cluster. The thalamus/TAN synapses mediate learning of environmental contexts associated 

with reward, and the long-range cortical-cortical connections mediate the transition to 

automatic responding. The model successfully accounts for an enormous amount and 

diversity of data – including single-unit recordings of several neuron types within the 

striatum [Ashby and Crossley (2011)], neuroimaging results [Waldschmidt and Ashby 

(2011); Soto et al. (2013, 2016)], learning deficits of Parkinson’s disease patients [Hélie et 

al. (2012a,b)], and a wide variety of behavioral data [Ashby et al. (1998); Ashby and 

Crossley (2011); Ashby et al. (2007); Cantwell et al. (2015); Crossley et al. (2013); Valentin 

et al. (2014, 2016)].

Despite the model’s many successes, previous applications have grossly oversimplified 

activation in visual cortex – essentially assuming that each stimulus has a (unique) 

corresponding visual unit tuned to it. Activation in all other units is modeled as a spiking 

neuron. Firing in striatal MSNs and TANs as well as in neurons in premotor cortex is 

modeled with a modification of the Izhikevich (2003) spiking-neuron model, and firing in all 

other units is typically modeled with the quadratic integrate-and-fire model [Ermentrout and 

Kopell (1986)].

Learning at cortical-striatal and thalamic-TAN synapses follows reinforcement learning rules 

(also known as three-factor learning) [Calabresi et al. (1992); Suri and Schultz (1998); 

Wickens et al. (1996)] in which synaptic strengthening requires strong presynaptic activity, 

postsynaptic activity strong enough to activate NMDA receptors, and DA above baseline 

(which requires positive feedback). If the first two conditions hold but DA is below baseline, 

then the synapse is weakened. The three-factor learning rule requires specifying exactly how 

much DA is released on each trial. The COVIS procedural-learning model assumes that the 

amount of DA release is proportional to the reward prediction error (RPE), defined as the 

value of the obtained reward minus the value of the predicted reward. Thus, in this model 

DA release increases above baseline following unexpected reward, and the more unexpected 

the reward, the greater the release, and DA levels decrease below baseline following the 

unexpected absence of reward, and the more unexpected the absence, the greater the 

decrease [as is consistent e.g., with Schultz et al. (1997); Tobler et al. (2003)].

3.3. Combining HMAX and COVIS

As mentioned earlier, previous implementations of the COVIS procedural-learning model 

have assumed a highly stylized sensory input. The model has been applied to many different 

experiments, but all of these used one of two qualitatively different kinds of stimulus sets. A 
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number of applications have been to II categorization experiments that include many 

perceptually similar stimuli that vary across trials on two continuous stimulus dimensions. 

An example is shown in Figure 2. A common approach to modeling data from experiments 

of this type is to assume a large ordered array of units in sensory cortex (e.g., 10,000 units), 

each tuned to a different stimulus. Each unit responds maximally when its preferred stimulus 

is presented and its response decreases as a Gaussian function of the distance in stimulus 

space between the stimulus preferred by that unit and the presented stimulus (the Gaussian 

function models a tuning curve). Activation in each unit equals the height of this Gaussian 

function during the duration of stimulus presentation, and zero at all other times.

The second type of application has been to experiments that include only a few perceptually 

distinct stimuli (typically 12 or fewer). Included in this list are unstructured categorization 

experiments and instrumental (or operant) conditioning studies. In this case, each stimulus is 

assumed to activate a unique unit in sensory cortex. The idea is that the units in sensory 

cortex maximally tuned to each stimulus are far enough apart in sensory space that the 

tuning curve of each sensory unit does not overlap the units tuned to any other stimuli. In 

these applications, during stimulus presentation, activation in the unit associated with the 

presented stimulus equals some positive constant and activation in all other units equals 

zero.

Although both of these approaches have been quite successful, they clearly make no serious 

attempt to model visual processing. In fact, it is not immediately obvious that the model 

would even be able to learn if given inputs that are more biologically realistic.

Since both HMAX and the COVIS procedural-learning model aim to be biologically 

grounded models, and since it is known that all of extrastriate visual cortex projects directly 

to the striatum, it should be possible to combine these models without substantive 

modification. We call this combination HMAX/COVIS. As a model of perceptual category 

learning, HMAX/COVIS has some major advantages over previous models. HMAX models 

the visual processing and takes bitmap images as its inputs. Therefore, the combined 

HMAX/COVIS model also takes bitmaps as input. To our knowledge, no other model of 

human category learning possesses this feature. Furthermore, the same HMAX/COVIS 

architecture can theoretically be used for virtually any visual inputs, whereas COVIS alone 

requires remodeling of the visual input for different tasks.

A minimal implementation of HMAX (dubbed HMIN) was retrieved from the internet 

(http://cbcl.mit.edu/jmutch/hmin/). The input to HMIN is an unmodified 128 pixel × 128 

pixel bitmap image. We took the activations in the C2 layer of HMIN as the relevant output 

that then serves as visual input to COVIS. A minimal implementation of the COVIS 

procedural-learning model was also taken from previous work [Cantwell et al. (2015)]. This 

minimal version lacked striatal TANs and the long-range cortical-cortical projections, and it 

included only one loop through the striatum. No other modifications were made except to 

remove the primitive “visual system” it already had. Thus, the only substantive modeling 

problem was how to translate each C2 activation into something appropriate for COVIS.
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Units in the striatal layer of COVIS are activated in proportion to the weighted sum of the 

inputs from the visual system. For this reason, it is advantageous for there to be a reasonable 

amount of variation in the input vector as the stimuli change over the course of the 

experiment. To achieve this from the C2 activations, a linear scaling was used and extreme 

values were discarded.

Specifically, the ith C2 activation, denoted Xi, was transformed to:

(1)

where  and sX were the approximate mean and standard deviation of all Xi across all 

stimuli used in our two applications. Note that this linear transformation1 resets the mean to 

0.5 and the standard deviation to approximately 1.0. Next, any Yi values that fell outside of 

the 0 to 1 interval were then reset to 0. It was observed that the extreme values tended to be 

constant across stimuli, and that almost all of the C2 variation that occurred as the stimuli in 

our applications varied were in values close to the C2 mean . Thus, this transformation 

was chosen to emphasize the intermediate values (values close to ), and to spread these out 

across the 0 to 1 interval.

Values above 1 were reset to 0 because they carried no diagnostic information (since they 

had roughly the same value for all stimuli) and the COVIS procedural model selects a 

response based on a weighted sum of all inputs. Therefore, if all weights are equal (as they 

are in the beginning of learning) then the largest inputs dominate this weighted sum, and if 

the largest inputs have no diagnostic value, then learning will be compromised. In principle, 

the model should still be able to learn under these conditions – by driving the weights on the 

large and useless inputs to 0 – but we did not explore this option. Instead, we reasoned that 

the resetting to 0 was akin to directing perceptual attention away from irrelevant visual 

features. Such attentional phenomena are inherent to any object-based task. One example 

occurs during figure-ground segregation. As another, note that the stimuli in Figure 2 are all 

circular disks of the same diameter. Instructions to participants in this task stress that 

stimulus size and shape are irrelevant to the categorization decision, which encourages 

subjects to direct attention at the spatial frequency and orientation of the grating2.

Some assumption had to be made about how to interpret C2 output, and this is a fairly 

conservative, mostly linear transformation. This process is similar to normalization, which 

has been argued to be a canonical neural computation [Carandini and Heeger (2012)]. 

Beyond this exceedingly simple interface, no additional structure was added to create the 

combined model. All parameter values in both models were set to values from previous 

applications, with the exception of two learning rates in COVIS.

1The mean and standard deviation of the Xi were different in the two applications described below. Even so, we used the same 
transformation in both applications. As a result, the mean and standard deviation of the Yi were somewhat different from 0.5 and 1.0 
in the two applications.
2Previous applications of the COVIS procedural model made even more restrictive assumptions because the coding of the visual input 
only included the stimulus features that were relevant to the behavioral decision.
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4. Testing HMAX/COVIS

The most rigorous test of HMAX/COVIS would be against data from experiments that used 

the two qualitatively different types of visual stimuli discussed earlier. If the same HMAX/

COVIS model could account for data from experiments that used such different types of 

stimuli then that model would represent a significant advance over any current 

categorization models. For this reason, we tested the model against learning data from two 

different categorization experiments – an II category-learning task and an unstructured 

category-learning task.

4.1. II Category Learning

Figure 2 describes the stimuli and categories in the II task used in the current experiment. 

Note that the two categories are composed of circular sine-wave gratings that vary in the 

spatial frequency (i.e., thickness) and orientation of the dark and light bars. The solid line 

denotes the category boundary. Note that no verbal rule correctly separates the two 

categories. Many articles have reported the results of II tasks that used similar stimuli and 

category structures [e.g., Ashby and Maddox (2005, 2010)]. Even so, for a fair comparison, 

it is critical that the model and human participants learn to classify exactly the same visual 

images. For this reason, we collected data from a new II task that used the stimuli shown in 

Figure 2. Each of the 30 stimuli shown there were rendered as a 128 × 128 bitmap image, 

and both the model and every participant were shown these same bitmaps. Stimuli were 

shown one at a time, and corrective feedback was provided following each response.

4.1.1. Methods

Participants: Seventeen participants completed the study and received course credit for 

their participation. All participants had normal or corrected to normal vision. Each 

participant learned the category structures shown in Figure 2.

Stimuli and Category Structure: Stimuli were 30 Gabor patches (i.e., sine-wave gratings 

with Gaussian masks, rather than the circular uniform masks used to create Figure 2) – 15 in 

each category. The stimuli differed across trials only in the orientation and spatial frequency 

of the dark and light bars. Values for orientation and frequency were assigned to uniformly 

cover the spatial frequency/bar width space (i.e., as in Figure 2). The optimal decision bound 

for these categories is the line y = x, which would achieve 100% accuracy.

To convert the sampled values into orientations and spatial frequencies the following 

transformations were chosen:

These values were selected so as to give roughly equal salience to both dimensions.

Procedure: The experiment was run on computers using PsychoPy [Peirce (2007)]. Before 

the experiment, participants were told that they would learn to categorize novel stimuli. An 
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initial set of on-screen instructions told participants that two buttons would be used (the ‘f’ 

and ‘j’ keys), and that initially they would have to guess, having not seen such stimuli 

before. The experimental session consisted of 12 blocks of 50 trials each. Between each 

block there was a participant-terminated rest period. The stimuli were shuffled and presented 

in a random order for each participant.

At the start of each trial a fixation crosshair was presented for 600ms. Following this, a 

response-terminated stimulus was presented for a maximum of 3000ms. Auditory feedback 

was given immediately after each response. A happy sound was played after each correct 

response – the notes E, G#, and B were played in quick succession with an organ sound. 

Incorrect responses were followed with a negative sound: G then E with a klaxon sound.

4.1.2. Results—Figure 3 shows the block-by-block accuracies (mean across participants). 

Ignore the red and blue curves for now. Note that accuracy increased with training from 

about 63% correct in block 1 to about 82% correct in block 12.

4.2. Unstructured Category Learning

We chose to test the model against the unstructured category-learning data reported by 

Crossley et al. (2012). In this experiment, participants learned to categorize 16 stimuli that 

were each randomly assigned to one of two categories of 8 stimuli each. Some examples of 

the stimuli that were used are shown in Figure 4. The block-by-block accuracies (mean 

across participants) are shown in Figure 5. Ignore the red and blue curves for now. Note that 

accuracy increased with training from about 63% correct in block 1 to about 82% correct in 

block 12.

4.3. Model Fitting

We fit HMAX/COVIS to the learning curves shown in Figures 3 and 5, and as a comparison 

we also fit an exponential function that had the same number of free parameters. First we 

describe the fitting process for both models and then we compare the results.

4.3.1. HMAX/COVIS—Fitting HMAX/COVIS to the data required adjusting only two 

learning rates in the COVIS striatum – namely, the constant of proportionality on trials when 

synaptic strengthening occurs and the constant of proportionality on trials when synaptic 

weakening occurs. To begin, we set the initial synaptic strengths between HMAX output j 
and COVIS striatal unit k, denoted by wjk, to a random value that was sampled from a 

uniform [0.1, 0.2) distribution. During training, each synaptic strength was updated after 

each trial via a biologically plausible reinforcement learning algorithm [Ashby and Helie 

(2011)]. Specifically, after feedback on trial n, the strength of the synapse between HMAX 

output unit j and COVIS striatal unit k was adjusted as follows:

(2)
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where Yj(n) is the jth HMAX output on trial n (transformed according to Eq. 1), Vk(n) is the 

total activation in the kth COVIS striatal unit on trial n [see, e.g., Cantwell et al. (2015)], 

[g(t)]+ is equal to g(t) when g(t) > 0 and 0 otherwise, θNMDA represents the activation 

threshold for post-synaptic NMDA receptors, D(n) represents the amount of dopamine 

released on trial n, Dbase is the baseline dopamine level, wmax is the maximum synaptic 

strength, and α and β are the learning rates. Equation 2 specifies that three factors are 

required to strengthen or weaken a synapse. In either case there must be presynaptic 

activation (i.e., Yj(n) > 0) and postsynaptic activation must be above the threshold for 

NMDA receptor activation (i.e., Vk(n) > θNMDA). If these two conditions are met then the 

synapse is strengthened if dopamine is above baseline (i.e., D(n) > Dbase) and the synapse is 

weakened if dopamine is below baseline (i.e., D(n) < Dbase).

To complete the model, we must specify how much dopamine is released on each trial. 

Following the standard approach and as in previous applications [e.g., Ashby and Crossley 

(2011); Cantwell et al. (2015)], we assumed that dopamine release is a piecewise linear 

function of the reward prediction error on trial n, which is defined as RPE(n) = Rn − Pn, 

where Rn is the value of the obtained reward and Pn is the value of the predicted reward. We 

assumed that Rn = 1 on trials when reward feedback is given, Rn = 0 in the absence of 

feedback, and Rn = −1 when error feedback is given. The predicted reward, Pn is assumed to 

equal a simple temporally discounted average of past rewards:

(3)

where the constant 0.075 reflects the amount of temporal discounting [and is the same value 

used by Ashby and Crossley (2011)]. Finally, we assumed that the amount of dopamine 

release is related to the RPE in the manner consistent with the dopamine firing data reported 

by Bayer and Glimcher (2005). Specifically, we assumed that

(4)

Thus, note that in this model synaptic strengthening can only occur following positive 

feedback and weakening can only occur following negative feedback. Furthermore, the 

amount of synaptic strengthening increases with the unexpectedness of the reward.

In the present applications, the values of all constants in this model were set to the same 

numerical values that were used by Cantwell et al. (2015). The only exceptions were the two 

learning rates, α and β in Equation 2, which were treated as free parameters.

4.3.2. Exponential Learning Curve—As a comparison, we also fit an exponential 

function to the learning curve from each experiment. The exponential function, which has a 

long history as a model of learning curves [Estes (1950); Hull (1943); Thurstone (1919)], is 
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still widely used today [e.g., Leibowitz et al. (2010)]. Specifically, the exponential model 

that we fit assumes that

(5)

where P(n) is proportion correct on trial n, and a and b are free parameters. Note that this 

function equals 0.5 on “trial 0” and asymptotes at a after many trials of training. The 

parameter b characterizes the learning rate.

4.3.3. Results—HMAX/COVIS and the exponential learning curve were both fit 

simultaneously to the learning curves from the II and unstructured category-learning 

experiments (i.e., the curves shown in Figures 3 and 5). To fit HMAX/COVIS, we first re-

rendered the image of each stimulus as a 128 × 128 bitmap, which then served as input to 

the model. Next, the model was run through exactly the same sequence of trials as the 

human participants.

For both models, two free parameters were estimated: α and β from Equation 2 in the case 

of HMAX/COVIS, and a and b from Equation 5 in the case of the exponential function. In 

both cases the parameters were estimated using the method of least squares. Note that the 

exponential model must necessarily predict identical learning curves in the two experiments 

since the same values of a and b were used to fit both curves (although the two experiments 

included different numbers of trials). In contrast, HMAX/COVIS predicts that the two 

learning curves will be different – even though α and β did not vary across conditions – 

because the predicted accuracy of the model depends on the trial-by-trial feedback it 

receives, which will differ across experiments.

The results are shown in Figures 3 and 5. The broken blue curves show the fits of HMAX/

COVIS and the broken red curves show the fits of the exponential model. The overall mean-

square error (MSE) is 0.000713 for HMAX/COVIS and 0.00518 for the exponential model, 

indicating that HMAX/COVIS fits substantially better than the exponential model (by about 

an order of magnitude). Furthermore, the better fit of HMAX/COVIS is seen in both 

experiments. In the II experiment, the MSE is 0.000346 for HMAX/COVIS and 0.00309 for 

the exponential model. In the unstructured category-learning experiment, the MSE is 

0.000367 for HMAX/COVIS and 0.00208 for the exponential model.

If the exponential model is fit separately to the data from each experiment, so that the 

number of free parameters in the model doubles from 2 to 4, then the two-parameter version 

of HMAX/COVIS still provides the better absolute fit, although its advantage is sharply 

reduced. In this case, the overall MSE is 0.000953 for the exponential model, compared to 

0.000713 for HMAX/COVIS. So HMAX/COVIS fits slightly better than an atheoretical 

curve-fitting approach that has twice as many free parameters, and the neurobiological detail 

of HMAX/COVIS gives it the extra advantage of making many other predictions that are 

outside the scope of the exponential model.
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5. Discussion

This article leverages one of the core advantages of CCN; namely, that it should be possible 

to interface different CCN models in a plug-and-play fashion. As a strong demonstration of 

this property, we constructed a new and biologically detailed model of visual category 

learning from two existing CCN models: the HMAX model of visual object processing and 

the COVIS model of procedural category learning. The models were combined in a simple 

two-step procedure. First, the primitive visual module in COVIS was replaced by an 

unmodified version of HMAX, and second, the HMAX outputs were rescaled in a piecewise 

linear way to facilitate communication between HMAX and the striatal learning component 

of COVIS.

In line with the expectations of CCN modeling, the new HMAX/COVIS model provided 

impressively good fits to human category-learning data from two experiments that used 

qualitatively different types of category structures (II versus unstructured) and different 

types of visual stimuli. It is also noteworthy that the human learning curves for the two tasks 

are somewhat different: the II curve plateaus earlier and stays lower than the learning curve 

for the unstructured categories. Impressively, the model accounts for this difference.

The new HMAX/COVIS model is a significant improvement over either model alone, and to 

our knowledge is unique in the literature3. Using bitmap images as inputs and by adjusting 

only a couple of learning-rate parameters, HMAX/COVIS can account for

• II category learning (as demonstrated in Figure 3).

• unstructured category learning (as demonstrated in Figure 5).

• single-unit recordings from MSNs and TANs during instrumental conditioning 

[based on Ashby and Crossley (2011), who modeled data from experiments that 

all included only a single stimulus].

• many behavioral phenomena from instrumental conditioning experiments, 

including fast reacquisition after extinction, the partial reinforcement extinction 

effect, spontaneous recovery, and renewal [based on Crossley et al. (2016), who 

modeled data from experiments that all included only a single stimulus].

• the effects of feedback delays on II category learning [based on Valentin et al. 

(2014), who used essentially the same II categories as in Figure 2].

• the result that recovery from a full reversal is quicker than learning new 

categories constructed from the same stimuli [based on Cantwell et al. (2015), 

who used II categories that were essentially the same as in Figure 2].

• deficits by patients with Parkinson’s disease in II and unstructured category 

learning [based on Hélie et al. (2012a)].

3Perhaps the most similar existing model is Spaun [Eliasmith et al. (2012)], which takes as input a 28 × 28 bitmap image and produces 
behavior with a robotic arm. However, Spaun has not been applied to any category-learning related phenomena and it lacks much of 
the biological detail of the COVIS basal ganglia.
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• unlearning and failures of unlearning (e.g., renewal) during II categorization 

[based on Crossley et al. (2013, 2014)].

The fact that HMAX/COVIS takes bitmap images as inputs is a significant advance. First, it 

eliminates the arbitrariness that previously existed in the modeling of stimulus sets. In 

particular, HMAX/COVIS eliminates the need for the experimenter to make ad hoc 

decisions regarding the choice of stimulus representation (e.g., whether to use a feature-

based or Gestalt representation of the stimuli), thus avoiding potential concerns as to 

whether observed simulation results might have depended on the choice of a particular hand-

crafted “high-level” stimulus representation. Second, it removes free parameters from 

COVIS (e.g., the width parameter on the radial basis functions), which makes applications of 

the model less a matter of curve fitting and more a matter of testing a priori predictions. This 

elimination of parameters in turn should make it easier to identify components of the model 

that most oversimplify the underlying structure and function, and therefore that are in the 

most need of revision.

In addition, the model also has the potential to account for a variety of phenomena 

associated with the transition to automatic responding that occurs after extended practice. In 

the Figure 1 model, this transition is mediated by Hebbian learning at synapses between 

visual cortex and SMA [Ashby et al. (2007)]. The idea is that reinforcement learning at 

cortical-striatal synapses quickly begins to activate the correct postsynaptic targets in SMA 

more strongly than incorrect targets. This allows cortical-cortical Hebbian learning to 

gradually learn the correct stimulus-response associations. Eventually these associations 

become strong enough that the subcortical path through the striatum is no longer needed to 

initiate the correct motor response, at which point the behavior could be said to have become 

automatized. It seems highly likely that HMAX/COVIS would display similar properties if 

the HMAX outputs were connected to the two motor output units (fully interconnected at 

first) and the strength of these synapses were modified with a biologically detailed version 

of Hebbian learning. A test of this prediction should be the goal of future research.
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Figure 1. 
Schematic showing some of the structure of the COVIS procedural-learning model. (MSN = 

medium spiny neuron, SNPC = substantia nigra pars compacta, TAN = tonically active 

neuron, GPtexti = internal segment of the globus pallidus, VL = ventral lateral nucleus, VA = 

ventral anterior nucleus, CM/Pf = centremedian and parafasicular nuclei, SMA = 

supplementary motor area)
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Figure 2. 
Example of II categories. Each point represents a stimulus with the specified spatial 

frequency and orientation. Example stimuli are shown. The category decision boundary is 

denoted by the diagonal line.
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Figure 3. 
Accuracy by block (50 trials) for the II task. The black curve denotes the data from the 

human participants, the broken blue curve denotes fits by HMAX/COVIS, and the broken 

red curve denotes fits by an exponential function (i.e., Equation 5).
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Figure 4. 
Examples of stimuli assigned to the two contrasting categories (i.e., A and B) in the 

unstructured category learning experiment reported by Crossley, Madsen, and Ashby (2012).
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Figure 5. 
Accuracy by block (100 trials) for the unstructured category-learning task reported by 

Crossley, Madsen, and Ashby (2012). The black curve denotes the data from the human 

participants, the broken blue curve denotes fits by HMAX/COVIS, and the broken red curve 

denotes fits by an exponential function (i.e., Equation 5).
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