
RESEARCH ARTICLE

An evaluation of mental workload with frontal

EEG

Winnie K. Y. So1, Savio W. H. Wong2, Joseph N. Mak3, Rosa H. M. Chan1*

1 Department of Electronic Engineering, City University of Hong Kong, Hong Kong, Hong Kong, 2 Centre for

Brain and Education and Department of Special Education and Counselling, The Education University of

Hong Kong, Hong Kong, Hong Kong, 3 NeuroSky Hong Kong Research Laboratory, Hong Kong, Hong Kong

* rosachan@cityu.edu.hk

Abstract

Using a wireless single channel EEG device, we investigated the feasibility of using short-

term frontal EEG as a means to evaluate the dynamic changes of mental workload. Frontal

EEG signals were recorded from twenty healthy subjects performing four cognitive and

motor tasks, including arithmetic operation, finger tapping, mental rotation and lexical deci-

sion task. Our findings revealed that theta activity is the common EEG feature that increases

with difficulty across four tasks. Meanwhile, with a short-time analysis window, the level of

mental workload could be classified from EEG features with 65%–75% accuracy across

subjects using a SVM model. These findings suggest that frontal EEG could be used for

evaluating the dynamic changes of mental workload.

Introduction

The construct of mental workload can be understood as the level of cognitive engagement

which has a direct impact on the effectiveness and quality of a learning process [1]. While an

optimal level of mental workload facilitates efficient learning, mental overload could negatively

affect task performance and result in more errors [2]. An overloaded individual may even

exhibit psychological symptoms, such as frustration, stress and depression [3]. Yet, there lacks

a real-time measure of mental workload which can help an individual identify the optimal

level of mental workload and hence enhance one’s learning performance.

Conventionally, the level of mental workload is assessed through the verbal or written feed-

back of an individual. However, the reliability of such self-reported measurements depends on

the metacognition skills of the individual [4]. In an educational setting, a continuous assess-

ment of student’s cognitive engagement can be used to determine the pace of teaching and

enhance the effectiveness of the learning process. Nevertheless, it is a challenging task for a

teacher to evaluate the cognitive engagement of 30–40 students in a typical classroom setting.

Although a teacher can evaluate the learning performance of students based on their course-

work and examination(i.e. offline assessment), the immediate need of students during the

learning process may not be addressed due to the lack of a real-time assessment of mental

workload.

PLOS ONE | https://doi.org/10.1371/journal.pone.0174949 April 17, 2017 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: So WKY, Wong SWH, Mak JN, Chan

RHM (2017) An evaluation of mental workload with

frontal EEG. PLoS ONE 12(4): e0174949. https://

doi.org/10.1371/journal.pone.0174949

Editor: Emmanuel Manalo, Kyoto University,

JAPAN

Received: June 14, 2016

Accepted: March 19, 2017

Published: April 17, 2017

Copyright: © 2017 So et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All data are available

within the paper, the supporting information files,

and at GitHub. Data can be accessed from GitHub

at the following URL: https://github.com/

cityuCompuNeuroLab/MentalWorkloadProject.git.

Funding: The work described in this paper was

supported by grants from the Research Grants

Council of the Hong Kong Special Administrative

Region, China [Project No. CityU110813, ECS-

28403414] the Innovation and Technology Fund

(ITS/139/14FX, ITS/141/14FX) provided by the

Innovation and Technology Commission, HKSAR

and Research Support Scheme 2016/2017 of the

https://doi.org/10.1371/journal.pone.0174949
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174949&domain=pdf&date_stamp=2017-04-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174949&domain=pdf&date_stamp=2017-04-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174949&domain=pdf&date_stamp=2017-04-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174949&domain=pdf&date_stamp=2017-04-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174949&domain=pdf&date_stamp=2017-04-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174949&domain=pdf&date_stamp=2017-04-17
https://doi.org/10.1371/journal.pone.0174949
https://doi.org/10.1371/journal.pone.0174949
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/cityuCompuNeuroLab/MentalWorkloadProject.git
https://github.com/cityuCompuNeuroLab/MentalWorkloadProject.git


To close the feedback loop in the teaching and learning system, researchers have looked

into the use of cutting edge technologies for real-time evaluation of learning performance. For

instance, wearable and ambient sensors were used to collect the external environmental infor-

mation, such as location, surrounding temperature, and people in contact, and provide contex-

tual data in supporting reflective learning of employees in a workplace setting [5]. In a study of

behavioral engagement, Liu et al. reported that the writing performance of participants was

benefited from the feedback of a learning analytic system which determines the level of

engagement based on the intermediate states of document development and how the docu-

ment is modified [6]. However, many of these technologies are task-specific or bounded by the

task nature and characteristics.

Recent research has looked into the use of physiological responses to quantify individual

mental workload. From animal experiment such as using invasive electrode [7], to human

experiment using non-invasive device. Kapoor et al. used several body sensors, included eye

tracking, mouse sensitivity, skin conductance and chair pressure, to estimate the mental work-

load of an individual with an accuracy of 80% [8]. Studies have also used EEG technologies to

determine mental workload based on brain activities. Hogervorst et al. used traditional multi-

channel EEG setup to examine the mental workload of 2-minutes period and offered a high

classification accuracy (>80%) [9]. So et al. correlate the EEG signal to muscle EMG single to

investigate motor performance [10]. Nevertheless, the setup of traditional EEG with wet elec-

trodes requires at least 30–60 minutes. Such setting bounds the usage of conventional EEG in a

controlled environment, like research laboratory.

Recently, a range of mobile EEG systems, which only have a few electrodes channels and

transmit the recorded neural signal to a computer wirelessly, have been developed to measure

brain activities outside the laboratory setting [11–13]. For example, Wong et al. examined the

frontal EEG spectra associated with motor acquisition task using a single channel wireless

EEG system [14]. Researchers have also used the dry sensor EEG system to develop a neuro-

feedback training program for children with Attention Deficit Hyperactivity disorder [12].

Furthermore, mobile EEG has been used in developing Brain-Computer Interface (BCI) for

entertainment [15, 16]. Nevertheless, the potential of quantifying mental workload with a

mobile EEG system has yet to be explored.

In this study, we aim to examine the feasibility in developing a bio-marker of mental

workload based on the frontal activities measured by a mobile single channel EEG system.

Previous studies have demonstrated that EEG signals, in particular alpha and theta activities,

has a close relationship with cognitive performance and mental effort [17]. In a memory

study, Raghayachan et al. reported that event-related Theta activity increases with memory

load and decreases sharply at the end of the task [18]. However, these findings were obtained

from conventional multi-channel EEG with wet electrodes. To investigate how frontal EEG

signals collected from a dry sensor may vary with changes of mental workload, four cognitive

and motor tasks (i.e. arithmetic operation, lexical decision, mental rotation and finger tap-

ping task) with different level of difficulties were used to elicit a dynamic change of mental

workload in this study. Based on the findings of traditional EEG studies, we hypothesized

that the level of mental workload can be distinguished based on the alpha and theta activities

which are collected at the frontal cortex with a single channel dry sensor EEG system. More

specifically, we hypothesized that, relative to tasks with low level of difficulty, higher event-

related theta activities would be observed in tasks with hgih level of difficulty. We have also

identified the key EEG spectral feature associated with mental workload and explored the

feasibility to classify different levels of mental workload from EEG features using Supported

Vector Machine(SVM).
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Method

Experimental design

This study consisted of four different cognitive and motor tasks, namely arithmetic operation,

finger tapping, mental rotation and lexical decision task which were programmed with Matlab

Psychtoolbox [19]. Participants were asked to complete three difficulty levels in the order: low,

medium, high for each task. In each difficulty level, there are 25 trials grouped into 5 sessions

(i.e. 5 trials per session). In total, each participant had to complete 75 trials of each task. The

maximum duration for each trial was 2.5s. After each session, participants gave a subjective

mental workload rating on a continuous SMEQ 0–150 range questionnaire [20] see Fig 1. The

order of tasks was counterbalanced across participants. The whole experiment lasted for one

hour.

Arithmetic (Simple calculation task). In this task, subjects were told to determine the

correctness of arithmetic equations showing on the computer screen and responded with but-

ton pressing—Left arrow for correct and Right arrow for wrong. Three different difficulty lev-

els were applied in this task—low: single-digit addition, medium: double-digit addition or

subtraction with carry set and high: mixed arithmetic operations. Example equations for each

difficulty level are shown in Table 1.

Finger tapping (Visual-motor coordination task). In this task, subjects were asked to

follow the pattern presented on computer screen and perform specific finger tapping pattern

on a keyboard. Their wrist and arm maintained stationary, with their fingers other than the

thumbs ready on FGHJ buttons and ASDFJKL buttons for single-hand task and two-hand task

respectively. Three difficulty levels were established in the task—low: single hand single finger,

medium: single hand multiple fingers and high: two hands multiple fingers. For medium and

high level trials, subjects were instructed to press all the keys at the same time instead of one-

by-one. Fig 2 showed the finger positions and examples of trials.

Mental rotation (Visual-spatial task). In the mental rotation task [21], subjects were

asked to compared a pair of figures presented on computer screen and determine if they were

Fig 1. Subjective mental effort questionnaire. SMEQ template for subjective rating used in our experiment [20].

https://doi.org/10.1371/journal.pone.0174949.g001

Table 1. Example questions of three difficulty levels in the arithmetic task.

Low Answer Medium Answer High Answer

3 + 4 = 6 F 13 + 18 = 51 F 7 × 3 − 12 = 19 F

4 + 2 = 6 T 61 − 12 = 49 T 63/3 − 32 = −19 T

2 + 7 = 4 F 52 − 67 = −8 F 78 + 11 × 3 = 71 F

3 + 6 = 9 T −11 + 28 = 17 T (21 − 13) × 4 = 32 T

5 + 2 = 8 F −13 − 56 = −60 F 6 × 6 − 79 = −23 F

https://doi.org/10.1371/journal.pone.0174949.t001
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the same object. The pair of figures could be the same object with different rotation, mirror

images or different objects. Easy level contained 6 squares in 2D plane, whereas medium and

high level were in 3D space with 6 and 9 cubes respectively. Examples trials were shown in Fig 3.

Lexical decision (Linguistic task). In the lexical decision task [21], subjects were asked to

identify whether the stimulus presented was a real English word or a pseudo-word. Different

difficulty levels were applied and created by varing the word usage frequency [22], word length

and part of speech(Low: concrete noun, Medium/High: noun, adjective, verb). The pseudo-

words were generated using the Wuggy software [23]. Examples of each difficulty level are

given in Table 2.

A summary of all experimental tasks are in Table 3 and listing out the variations of task con-

tent and difficulty level.

Data collection

Twenty healthy participants (age: 22± 0.71; male/female: 6/14) were recruited in this study. All

participants are university students, have normal or corrected-to-normal vision and have no

history of neurological or psychological disorder. Participants gave written informed consent

to participate by signing the consent form. The experimental procedures were reviewed and

approved by the ethics committee at the City University of Hong Kong.

The experiment was conducted in a recording studio room. Participants were told to sit still

and relax throughout the experimental. At the beginning of the experiment, 20 seconds of

eyes-opened resting state EEG were collected as baseline. Then, participants completed a prac-

tice session and became familiarized with the tasks. Data collection began when the partici-

pants reached 75% accuracy in 10 consecutive trials or finished 30 trials for each difficulty

level. Frontal brain signal was collected at Fp1 channel using a single-channel wireless EEG

Fig 2. Finger tapping task. Left: finger position with single hand (green) and both hands (red). Right: The

blue spots indicate which finger the subject should press.

https://doi.org/10.1371/journal.pone.0174949.g002

Fig 3. Mental rotation task. 2D, 3D with 6 cubes and 9 cubes in mental rotation task corresponding to low, medium and high level of

difficulty.

https://doi.org/10.1371/journal.pone.0174949.g003
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device (Neurosky MindWave Mobile headset) at 512Hz sampling rate. The ground and

referencing was at the lobule. Behavioral data including response time and accuracy were

recorded in Matlab. Both the experimental tasks and the EEG recording were controlled with a

tablet computer (Surface Pro 3) connected to an external keyboard (Dell L30U).

Data processing

Normalization of subjective rating. To reduce between-subject effect, subjective rating

was scaled within subject across tasks into [0, 1] range using Eq 1.

X0 ¼
X � Xmin

Xmax � Xmin
ð1Þ

The normalized between-subjects ratings were then grouped by subjective ratings at 0–33%

(low), 34–65% (medium) and 66–100% (high) quantile shown as Fig 4.

Pre-processing of EEG signal. Data was first detrened, then bandpass filtered at 0.5 to

45Hz using a FIR filter with a 5th order butterworth window. ICA-based method is commonly

used for eye blink and movement artifact removal. Yet ICA requires multi-channel EEG and

demand relatively heavier computation. In this study, we employed a wavelet-based filter to

Table 2. Lexical decision task: Real word and pseudoword used in the three levels of difficulty.

Low Medium High

Real Word Pseodo Word Real Word Pseodo Word Real Word Pseodo Word

Butter narrator steadiness

Bread determined anomalous

Hair dependency supposition

Pepper forecast expatriate

hlnd carriage carround erudition erumition

hnajl moderate moterate negligible nefligible

eiloul rehearsal reheandal dehydrate dehyflate

phnqa inhabit inhobit adjudication aggudicaiton

https://doi.org/10.1371/journal.pone.0174949.t002

Table 3. Summary of all the experimental tasks.

Task Content Variation Low Medium High Remark

Arithmetic Determine whether the

arithmetic equation is correct or

not

Digit 1 2 2 −
Arithmetic + + − + − */

Type Simple Simple Operation

Carry Set No Yes Yes

Finger Tapping Follow the spot light to press the

button on the keyboard

Hand Single Single Both −
Fingers Single Multi multi

Mental Rotation Judge whether the pair of

figures is the same object or not

Dimension 2D 3D 3D A mirror image of the object is

considered as different objectNumber of cube 6 6 9

Lexical Decision Determine whether the

presented word is a real English

word or not

Word Frequency Rank 1–5000 5000–10000 >10000 Word Frequency based on the

WORD and PHRASE database

Pesudowords are fake words

that follow the orthographic and

phonological rules of English

Number of syllable 1–2 3–4 >3

word length 4–6 8–10 >9

word type non word pseudo pesudo

Part of Speech concrete n n, v, adj n, v, adj

Remark: n-noun v-verb adj-adjustive

https://doi.org/10.1371/journal.pone.0174949.t003
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the real-time signal channel EEG data to remove eye blink and movement related artifacts

[24]. Signal was then segmented into 2.5s epoch according to each trial starting time.

Time-frequency analysis. To compute the Time-Frequency matrix (TF Matrix), each

trial was segmented with 437.5ms signal window (lower quantile response time of the finger

tapping task (low level), 224 data points), with window slide every 31.25ms (16 data points).

Welch’s power spectra were calculated over 50% overlapped 2s hamming windows. A trial was

rejected if the response time was smaller than 437.5s. Instant Relative power (IRP) is defined

as a function of the normalized instantaneous frequency and normalized baseline power in the

following form.

IRPi ¼ ln
RPi

RPb

� �

where RPtðf1; f2Þ ¼
Ptðf1; f2Þ

Ptð0:5; 45Þ
ð2Þ

where (f1, f2) is the frequency is range, i is the instant time interval and b is the baseline period.

Fig 4. Subjective rating result. The normalized rating of each task. Blue, red, and green indicates low, Medium, and high

difficulty levels respectively. The horizontal lines represent the 0.33 and 0.66 quantile respectively.

https://doi.org/10.1371/journal.pone.0174949.g004
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We computed the EEG frequency band power using two sets of EEG band distributions

-traditional EEG frequency band definitions (theta: 4–8Hz, alpha I: 8–11Hz, alpha II: 11–

14Hz, beta I: 14–25Hz, beta II: 25–35Hz, gamma I: 35–40Hz, gamma II: 40–44Hz) and indi-

vidualized frequency band distribution from individual alpha frequency (IAF) [17, 25]. Con-

cerning about individual differences, theta and alpha ranges were defined from the baseline

IAF with the following formula [26]. FBIW theta, alpha I and alpha II were defined as (IAF
− 4) to (IAF − 2), (IAF − 2) to (IAF) and (IAF) to (IAF+2) respectively. IBIW theta, alpha I and

alpha II were defined as (IAF × 0.6) to (IAF × 0.8), (IAF × 0.8) to (IAF) and (IAF) to (IAF ×
1.2). We focused on the time course between trial start and key pressing. The average power

spectra across the time series were also computed.

Visualization of task similarity. Linear and Kernel Discriminate Analysis (LDA, KDA)

[27] were implemented to investigate the similarity among the tasks separately. LDA is a

supervise dimensionality reduction method which preserves the class discriminatory informa-

tion. It tried to find the good linear subspace to project the input data and maximize the sepa-

ration among classes. KDA extend KDA to nonlinear by transforming the space. The kernel

operators used is Gaussian kernel.

Both within subject and across subject analyses had been performed. The input features

were the EEG power bands and the label information was the task type. We visualized the first

two component of disseminate analysis on the x-y plane. The axes are dimensionless after

LDA/KDA transformation, which implies no physical meaning.

T-Statistics analysis on time-frequency analysis. Here we investigated the oscillatory

activities during the task at different difficulty levels. TF matrix from the time frequency analy-

sis was rescaled with respect to completion rate. Each pixel on TF matrix underwent the mini-

mum t statistic for comparison.

After computing the TF analysis, we calculated the t-value [28] for each time-frequency

point using 1-sample t-test within each difficulty level for each subject. Next, pairwise compar-

ison between the t-maps of low and high level was performed for the study of largest task

differentiability. At last, we worked out the conjunction by finding the minimum t-value

between t-maps from pairs of tasks to investigate the common features.

Classification of difficulty level. Support vector machine (SVM) [29] was used to classify

EEG data at different task difficulty level. Time averaged power of each frequency band was

computed from each 2.5s trial, while both subjective and objective task difficulty level were

used as class labels. We used a simple 2-class classification first to distinguish the lowest and

highest task difficulty levels. Radial basis function kernel (RBF) was used, and repetitions of

10-fold cross validation was.

Results

Behavioral result

Repeated measure ANOVA (Table 4) and pairwise analysis (Table 5 and Fig 5)were performed

on EEG features and the behavioral performance measures, namely reaction time, missing

rate, accuracy and subjective rating within each task. All the behavioral measures exhibited a

significant main effect of Task and Difficulty Level (p< 0.001). Significant interaction effect

between task and difficulty level was observed in the subjective rating (p< 0.01), response

time, missed rate and accuracy (p< 0.001). Post hoc multiple comparisons analysis was con-

ducted to compare each pair of levels. The behavioral data also showed that when the difficulty

level increased, the response time and missing rate increased and the accuracy decreased

across four tasks. The Spearman correlation between objective level and the subjective rating

also showed a significant positive correlation for all four tasks (p< 0.05; Table 6). These results
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implied that the task design successfully created different levels of difficulty for each task.

Meanwhile, the difficulty levels between the tasks were not necessarily the same. Because a

consistent significant difference in the behavioral measures is observed only between the com-

parison of low and high difficulty trials (Table 5), therefore the analysis of the EEG data

focused on the comparison of the low and high difficulty trials.

TF analysis: Dynamic change in trials

Fig 6 shows the time-frequency analysis of each task. The baseline has been taken into account

using Eq 2. The entire trial from the start point to 2.5s is shown and the vertical line indicates

the minimum time response within all the trials. Comparing the low and high difficulty levels,

Table 4. Repeated measure ANOVA of EEG feature and behavioral responses. The within-subjects factors are task (4 levels) and difficulty (3 levels),

***p < 0.001, **p < 0.05 and *p < 0.01.

Task Level Task*Level

F(3, 17) p Wilks F(2, 8) p Wilks F(6, 14) p Wilks

Subjective Rating 10.069 *** 0.36 57.682 *** 0.135 2.459 * 0.487

Normalized Rating 19.162 *** 0.228 168.718 *** 0.051 3.109 0.429

Response Time 313.797 *** 0.018 457.459 *** 0.19 31.676 *** 0.069

Missed 22.754 *** 0.199 42.738 *** 0.174 15.122 *** 0.134

Accuracy 118.634 *** 0.046 169.012 *** 0.051 18.554 *** 0.112

4–8Hz (θ) 8.331 ** 0.405 9.818 *** 0.478 3.66 ** 0.389

8–11Hz (α1) 4.061 *** 0.583 5.663 ** 0.614 1.756 0.571

11–14Hz (α2) 5.046 ** 0.529 5.639 ** 0.615 3.323 ** 0.413

14–25Hz (β1) 1.687 0.771 2.413 0.789 0.561 0.806

25–35Hz (β2) 2.441 * 0.699 1.433 0.863 0.668 0.777

35–40Hz (γ1) 1.58 0.782 2.469 0.785 0.319 0.88

40–44Hz ()γ2) 2.42 * 0.7 2.18 0.805 0.23 0.91

https://doi.org/10.1371/journal.pone.0174949.t004

Table 5. Statistics of behavioral responses. RT: Response Time(s), Missed: Number of Missed trial/Total Number of Trial, Acc: Accuracy Rate (excluded

missed trial), Rating: SMEQ subjective rating scaled to 0–1 range, m: mean value, **p < 0.001 and *p < 0.05.

Task Low Mean SD Medium Mean SD High Mean SD p mlow − mmedium mlow − mhigh mmedium − mhigh

Cal RT 0.96 0.11 1.80 0.21 1.97 0.16 <0.001 −0.85** −1.02** −0.17**

Rating 21.44 0.11 41.70 0.15 58.00 0.19 <0.001 −20.26** −36.56** −16.30**

Missed 0.15 0.02 2.90 0.11 7.35 0.13 <0.001 −2.75** −7.20** −4.45**

Acc 0.95 0.03 0.58 0.03 0.47 0.03 <0.001 0.38** 0.49** 0.11*

Fin RT 0.58 0.06 0.79 0.13 1.34 0.18 <0.001 −0.21** −0.76** −0.55**

Rating 19.61 0.10 32.02 0.15 48.45 0.18 <0.001 −12.41** −28.84** −16.43**

Missed 0.00 0.00 0.00 0.00 0.20 0.02 <0.05 0.00 −0.20* −0.20*

Acc 0.99 0.02 0.92 0.02 0.72 0.02 <0.001 0.07 0.26* 0.20**

Rot RT 1.66 0.19 1.86 0.17 1.94 0.11 <0.001 −0.20** −0.29** −0.09**

Rating 41.16 0.20 53.63 0.18 67.33 0.17 <0.001 −12.47** −26.17** −13.70**

Missed 1.90 0.09 4.00 0.13 5.40 0.14 <0.001 −2.10** −3.50** −1.40

Acc 0.72 0.03 0.58 0.03 0.44 0.03 <0.001 0.14** 0.28** 0.14**

Lin RT 0.70 0.08 1.14 0.21 1.40 0.26 <0.001 −0.43** −0.70** −0.27**

Rating 20.08 0.11 29.46 0.20 41.76 0.23 <0.001 −9.38** −21.68** −12.30**

Missed 0.00 0.00 0.30 0.03 0.70 0.04 <0.05 −0.30 −0.70* −0.40

Acc 0.98 0.02 0.83 0.02 0.69 0.02 <0.001 0.15** 0.30** 0.15**

https://doi.org/10.1371/journal.pone.0174949.t005
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Fig 5. Power of different EEG frequencies in four cognitive task. 1, 2 and 3 are low, medium and high

difficulty level respectively. Blue line is indicated the medium level. Red line means it is significantly different

from medium level and gray line means not significant.

https://doi.org/10.1371/journal.pone.0174949.g005
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it can be seen there was a relative increase in the frequency components around 20–35Hz

when the subject was executing the task. Following completion, frequency components in the

20–30Hz range were suppressed, while the theta range (4–8Hz) increased. We also observed

that the response time for the low level is shorter than that for the high level, and we are actu-

ally comparing the period during task and after task. This observation represents the change

between engagement during task and relaxation after activity.

Medium and high difficulty levels of arithmetic operation and mental rotation require lon-

ger response time, we observed the power bursted across the time course in theta and alpha I

range. As for the low difficulty level, the shorter the time response, the larger suppression in

beta and gamma observed.

KDA analysis: Identification of task similarity

In Figs 7 and 8, the results of KDA transformation with the task class label are presented. Each

point presents a trial (Blue: Arithmetic operation, Red: Finger tapping, Green: Mental Rota-

tion, Black: Lexical decision). Different kernel and parameter values were tested. Fig 7A which

shows the four tasks overlapping with each other, is transformed by linear discriminate analy-

sis. In Fig 7B, a Gaussian Kernel is used with different parameter values were explored and

finally, parameter = 10 showed better results as several clusters are clearly observed. This

implies the non-linearity of EEG dynamics, as such that non-linear analysis provides a better

approach to characterize the properties.

The KDA transformation for each subject are presented in Fig 8. The distance between

pairs of clusters implies how different brain signal changes are among tasks. Shorter distances

mean that they were more similar. Generally, arithmetic operation and mental rotation clusters

overlapped in most of the subjects, except subjects 3 and 13. On the other hand, finger tapping

is more separable from other tasks. From this transformation, we observed the similarity level

Table 6. Correlation between subjective and objective rating. * p < 0.05 significant difference.

Task Cal Fin Rot Lin

R 0.813* 0.738* 0.686* 0.586*

https://doi.org/10.1371/journal.pone.0174949.t006

Fig 6. Time frequency analysis of the 2.5s-trial across all the subjects. A: Arithmetic operation, B: Finger tapping, C: Mental rotation, D:

Lexical decision. Each Task consists of three difficulty levels.

https://doi.org/10.1371/journal.pone.0174949.g006
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of the brain signal characteristic among the four tasks. This result demonstrates a possibility to

group the cognitive tasks together if we want to build a more general model in the future.

Changes in band power: Spectral characteristic

Fig 9 presents the frequency power change between high and low level of difficulty. The overall

changes in arithmetic operation and finger tapping are more significant. An increase in theta

Fig 7. LDA and KDA results. A: LDA without and kernel. B: KDA with all the subjects trials, Gaussian kernel with parameter = 10.

https://doi.org/10.1371/journal.pone.0174949.g007

Fig 8. KDA results for each subject. C: KDA within each subject using Gaussian Kernel.

https://doi.org/10.1371/journal.pone.0174949.g008
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power is a common feature among all the tasks. This is consistent with previous findings that

theta is related to workload demand [17, 30].

Previous KDA transformation suggested that arithmetic operation and mental rotation are

more similar. The frequency power analysis supported this in that they shared the same trend

in theta, IAF alpha I and both beta I and II frequency ranges.

Working memory consists of a phonological loop and a visual spatial sketchpad [31].

Among the four tasks, finger tapping and mental rotation rely heavily on the visuospatial loop

whereas lexical decision and arithmetic operation involve mainly the phonological loop. Yet,

previous research [32] indicated that visual spatial skill also involved in arithmetic operation

causing it be more similar with mental rotation. Moreover, both of them require a problem

solving process instead of pure long-term memory retrieval or motor coordination.

Fig 9 has showed different patterns of frequency power change which matched with other

research groups’ studies. For example, increase of Beta II in lexical decision task referred to the

orthographic and semantic difference in the choice of vocabulary [33]. Meanwhile, the gamma

increase related to the vocabulary recollection in high difficulty level rather than only familiarity

[34]. As for the finger tapping task, the increase in IAF theta, IAF alpha I and II matched our pre-

vious study about the motor skill acquisition by using a mirror drawing experiment [35]. These

band powers showed that they positively correlated with perceived difficulty level of the task.

T-statistic of TF analysis

Time-frequency T-map analysis allowed us to observe the dynamic change in frequency range

across the time course. Fig 10 shows the time frequency difference between low and high level

after the trial re-sampling. Here, we focus on the change in the common feature, theta activi-

ties. Although all four tasks showed an increase in theta, the time of occurrence could differ.

Arithmetic operation and mental rotation tasks had theta power increase in over the whole

trial whereas it only occurred in the middle of the finger tapping and lexical decision task.

Fig 11 is the conjunction between two pairs of tasks and showing the minimum T value.

Color in red and blue mean the common synchronization and desynchronizaton in two tasks

respectively. The blank color means both task were in opposite trend. The rightmost graph is

the conjunction of all the tasks and we discovered that theta, beta and the IAF analysis have

same trend in synchronization or desynchronization in some time points.

Fig 9. Ratio of absolute power change. Frequency power change between high and low level of difficulty in each task. P-value <0.05.

https://doi.org/10.1371/journal.pone.0174949.g009
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SVM classification: Real-time analysis model

As a practical application, ability to predict the workload using the frequency power feature by

classification technique is necessary. Preliminary result in Fig 5 shows that EEG features from

the medium level of difficulty always overlap with either low or high level. To simplify the clas-

sification model, we have studied the cases with the lowest and highest difficulties. Table 7

presents the test sample accuracy in 10-fold cross validation during 2-class SVM classification.

The samples were taken from across all the subjects and the accuracy reached greater than 70%

in Arithmetic operation, finger tapping and lexical decision. Mental rotation had a relative

lower accuracy of around 64%, because of the relatively small difficulty gap between the levels

as indicated in Fig 4. This test has demonstrated the potential real application of short term

prediction of the mental workload using a single channel EEG device.

Discussion

This study aims to develop an EEG-based mental workload-detection application by building

a generalized model for four different cognitive and motor tasks. Our findings showed that

Fig 10. T-statistic map of each task comparing high and low difficulty level.

https://doi.org/10.1371/journal.pone.0174949.g010
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the frontal theta activity is a common feature across these tasks. This result is consistent with

previous studies that theta activities increase with the level of mental effort [17, 18]. Mean-

while, the correlation of mental workload level and other frequency bands is task-dependent

[3, 36].

With a 2.5s analysis window size, the accuracy of mental workload classification could

reach 65%–75%, which is slightly higher than other EEG studies with around 60% accuracy

[36, 37]. It might be related to three factors: intra subject variance, task duration and the selec-

tion of EEG channel.

First, previous studies have reported that individually adjusted frequency bands are useful

for the analysis of event-related potential [26]. The individual differences in alpha peak were

evaluated by computing the IAF-defined power value from baseline. Second, unlike previous

study which took long measurement and had subject to give an overall rating afterwards, the

current experiments was composed of very brief trials and required participants to feedback

on the subjective mental workload level immediately after each session. The short-time analy-

sis window indicated the moment when the subjects were engaging in the task. Indeed, as Dai

et al. suggested that using all channel in the analysis might cause large variance and result to a

poorer classification of the task [38]. Active EEG channels should be selected whereas unre-

lated channels should be discarded in order to improve the accuracy. Our findings illustrated

that EEG signals collected from a single-channel dry sensor at Fp1 provide sufficient informa-

tion in generating a reasonable bio-marker of mental workload.

This study takes the first step in bringing laboratory research technique to real life applica-

tion with the latest mobile EEG technology. Our findings indicated that event-related frontal

EEG theta frequency band power is a common feature of mental workload across different

cognitive and motor tasks. The advantage of this model is the ability to detect short term

Fig 11. Conjunction of task t-map. (Left) each pair of tasks, (Right) four tasks conjunction.

https://doi.org/10.1371/journal.pone.0174949.g011

Table 7. Testing sample accuracy of 2-class SVM classification.

Cal Fin Rot Lin

Objective 75.40% 76.00% 60.40% 74.42%

Subjective 73.91% 73.31% 64.91% 73.03%

https://doi.org/10.1371/journal.pone.0174949.t007
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mental workload in real time. Due to the limited sample size of the current study, counterbal-

ance was performed on the order of the four different tasks but the difficulty level. Although

the current design resembles to the real-world practice that we usually complete the relatively

easy task before heading to the difficult one, we could not rule out the possible practice effect

across the three difficulty levels within each condition. The practice effect, if any, should

improve the performance of the later trials within each condition (i.e. the high difficulty trials)

and hence reducing the behavioral difference between the low and high difficulty trials. How-

ever, even under a potential practice effect, robust differences in the behavioral measures were

still observed between the low and high difficulty trials. On the other hand, as the order of the

four conditions is counterbalanced across subjects, the low, medium and high difficulty trials

of the four conditions were interleaved within the experiment which reduced the chance of

having the effect of fatigue and boredom biasing the data of a particular difficulty level. Future

studies with a larger sample size may investigate how EEG activities may be affected if the

order of difficulty level is changed.

With the goal of bridging the gap between fundamental neuroscience research and real-

world application (e.g. evaluating the real-time mental workload of students in a classroom set-

ting), our study has provided a proof of concept in using single channel frontal EEG for short

term mental workload detection. The EEG-based workload detection provides alternative

approach to evaluate the study progress of students by monitoring the physiological response.

The application can also be extended to self-study outside the classroom. When students are

spelling vocabularies or solving an arithmetic problem, the short-term workload detection can

provide feedback for self-evaluation. This study also shed new light on the possibility in devel-

oping a biomarker for quantifying mental workload and providing a real-time feedback on the

dynamic change of mental workload.
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S1 Dataset. EEG and behavioral data of 20 subjects.
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