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Abstract

Purpose of review—Recent clinical studies and management guidelines for the treatment of the 

organic acidopathies methylmalonic acidemia (MMA) and propionic acidemia (PA) address the 

scope of interventions to maximize health and quality of life. Unfortunately, these disorders 

continue to cause significant morbidity and mortality due to acute and chronic systemic and end-

organ injury.

Recent findings—Dietary management with medical foods has been a mainstay of therapy for 

decades, yet well controlled patients can manifest growth, development, cardiac, 

ophthalmological, renal and neurological complications. Patients with organic acidopathies suffer 

metabolic brain injury which targets specific regions of the basal ganglia in a distinctive pattern, 

and these injuries may occur even with optimal management during metabolic stress. Liver 

transplantation has improved quality of life and metabolic stability, yet transplantation in this 

population does not entirely prevent brain injury or the development of optic neuropathy and 

cardiac disease.

Summary—Management guidelines should identify necessary screening for patients with MMA 

and PA, and improve anticipatory management of progressive end-organ disease. Liver 

transplantation improves overall metabolic control, but injury to non-regenerative tissues may not 

be mitigated. Continued use of medical foods in these patients requires prospective studies to 

demonstrate evidence of benefit in a controlled manner.

Keywords

methylmalonic acidemia; propionic acidemia; brain injury; liver transplantation; medical foods

Introduction

Methylmalonic acidemia (MMA) and propionic acidemia (PA) are rare, autosomal recessive, 

multisystemic inborn errors of branched chain amino acid metabolism which cause 
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significant morbidity and mortality in infancy and childhood, and, for survivors, significant 

debilitating end-organ damage into adulthood. MMA and PA, as organic acidopathies (OAs), 

result in defective mitochondrial metabolism of coenzyme A (coA)-activated carboxylic 

acids, which are largely derived from the metabolism of branched-chain amino acids, odd-

chain fatty acids, and cholesterol. Clinical features of OAs may occur due to accumulation 

of toxic metabolites, altered mitochondrial energy metabolism, carnitine depletion, and 

coenzyme A sequestration. Acute illness may be associated with metabolic acidosis, acute 

alterations of consciousness or encephalopathy, anorexia, and nausea and vomiting [1, 2]. 

Chronic complications include poor growth, movement disorders, progressive spastic 

quadraparesis, epilepsy, cardiac dysfunction (PA>MMA), progressive renal disease (MMA), 

osteopenia/osteoporosis, vision loss (MMA>PA), and functional immunodeficiency [1, 3–

35]. Recent investigation into the pathophysiology of the end-organ effects seen in patients 

with OAs has improved screening for disease related complications, and recent treatment 

recommendations are the first steps toward standardization of care [36].

Clinical Presentation, Diagnosis, and Management

PA and MMA classically present in a term neonate within the first 3 days of life, who feeds 

poorly, is pancytopenic, becomes progressively encephalopathic, and ultimately progresses 

to coma and death without prompt identification and management [22, 37–44]. The 

differential diagnosis in this age group includes sepsis, hypoxic-ischemic encephalopathy, 

drug intoxication (from maternal exposure before and/or during delivery), and other inborn 

errors of metabolism. Sick neonates who appear septic or encephalopathic with an anion gap 

metabolic acidosis, ketoacidosis, lactic acidosis, hyperammonemia, and/or hypoglycemia 

should be stabilized expectantly with reversal of catabolism using dextrose containing fluids 

with a glucose infusion rate of 6–8 mg/kg/min, with intralipids at 2–3 grams/kg/day, while 

removing all source of protein from the infant. Workup for intoxication-type inborn errors of 

metabolism (IEM) should occur immediately upon clinical indication and include blood gas 

(non-capillary), comprehensive metabolic panel, complete blood count, blood culture, 

urinalysis (specifically for urine ketones, which should be negative in a healthy newborn 

without and IEM), lactate, ammonia, urine organic acids, plasma amino acids, and an 

acylcarnitine profile [45].

Once the infant is acutely stabilized and diagnosed, lifelong aggressive management by 

metabolic physicians remains essential. Despite management based on best practices, 

including dietary protein restriction, carnitine supplementation, and the use of drugs to 

modulate ammonia, these patients frequently experience acute metabolic decompensation 

during acute illness or other stressors such as surgical or interventional procedures [1, 45–

58]. In older patients with the classical OAs, acute decompensation events continue, 

frequently due viral illness or surgical procedures. Frequently, these patients will have 

significant complications due their disease, discussed below.

Patients with milder variants of isolated MMA (mut−, or the cobalamin disorders Cobalamin 

A (cblA) or B (cblB), which result in deficiency of the adenosylcobalamin cofactor for 

MUT) or PA may not present until later in infancy, childhood, or adolescence. While the 

definition of early versus late onset remains controversial within the OAs, Heringer et al 

Fraser and Venditti Page 2

Curr Opin Pediatr. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



classify late-onset disease as any patient in whom the first clinical symptoms occur outside 

of the neonatal (first 30 days of life) period, although some patients may not present until 

much later in life [59]. In patients who were not diagnosed by expanded newborn metabolic 

screening (NMS), Heringer and colleagues report that for MMA and PA, the median age at 

onset of clinical symptoms was 6–8 days in the early-onset group, while in the late-onset 

group, the median age at diagnosis was 210–348 days. Approximately half of the non-NMS 

MMA and PA cohort were classified as late-onset, but most of these diagnoses occurred 

during infancy [59]. In MMA, these childhood and adolescent-onset patients may present 

with chronic renal failure, and evaluation for MMA should occur in all patients who present 

with progressive proximal tubular renal dysfunction [60–64]. Late-stage presentation of PA 

may include seemingly isolated cardiomyopathy, while patients with PA and MMA may 

present with progressive spastic quadraparesis, progressive movement disorder, or vision 

loss [6, 7, 14, 32, 33, 35, 58, 65–71]. Some patients who self-restrict protein due limited 

protein tolerance may present later in life with metabolic decompensation or metabolic 

stroke following a surgical or interventional procedure where fasting for several hours is 

required. Additional complications of later-onset MMA and PA are similar to those with 

classical disease and are discussed below.

Diagnosis

Diagnosis typically occurs during an initial decompensation event in the neonatal period, 

which may resemble neonatal sepsis and present with poor feeding, vomiting, lethargy, and 

progression to coma and death without prompt and effective therapy. Diagnosis is based on 

clinical presentation and laboratory analysis, metabolic acidosis, ketoacidosis, lactic 

acidosis, hyperammonemia, hypoglycemia, pancytopenia, and elevated C3 acylcarnitines 

and organic acids in the urine. Metabolites elevated in PA include elevated plasma 

propionylcarnitine, glycine, and alanine, and elevated urinary 3-OH-propionate and 

methylcitrate [72–85]. In MMA, elevations of plasma propionylcarnitine, glycine, and 

alanine coupled with elevation of urinary methylmalonic, 3-OH-propionic, and methylcitric 

acids provide the diagnosis [72–78, 86–88].

Some infants, however, are detected based on NMS prior to a decompensation event. A 

recent study of organic acidemia outcomes using compiled data from the European registry 

and network for intoxication type metabolic diseases (E-IMD) demonstrates that, for infants 

diagnosed with OAs on newborn screening, 52% with cobalamin non-responsive MMA, 

67% with cobalamin responsive MMA, and 49% with PA were asymptomatic at 8 days of 

life [59]. OA patients detected by expanded NMS are somewhat more likely to have normal 

development of motor milestones and less likely to have a movement disorder, although 

movement disorders and metabolic brain injury may occur at any age, and the median age of 

subjects in this study were under 10 years of age [59]. Furthermore, other neurological and 

neurocognitive outcomes were not explored, and thus, in spite of earlier detection, these 

patients are likely to develop some degree of neurological sequela of disease, and other end-

organ sequelae have not been analyzed in this cohort.

Defects in other genes within the propionate catabolism pathway or mitochondrial disorders 

may also result in excretion of methylmalonic acid in the urine [89, 90]. These disorders are 
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rarer than classical isolated MMA, often manifest other biochemically diagnostic markers in 

urine or plasma to suggest the diagnosis, and will not be addressed further in this review.

Biochemical Perturbations in PA and MMA

Mutations in the PCCA and PCCB genes cause PA by generating defective or absent 

propionyl-CoA Carboxylase (PCC), which is biochemically upstream of MUT [91–130]. 

Isolated MMA is caused by mutations in the MUT gene encoding methylmalonyl-CoA 

mutase (mut) or the genes encoding the enzymes responsible for the generation of 5-

deoxyadenosylcobalamin (AdoCbl) cofactor of Mut (MMAA and MMAB) (Fig. 1)[131–

148]. The subtypes of MMA are based on complementation subclasses and include mut, 
cblA, and cblB, based on the enzymatic cause of the condition[149]. Mut deficiency may be 

further divided into subclasses based on the degree of enzymatic activity of the mutase 

enzyme, designated mut0, for enzymes with null activity, and mut− for enzymes with 

reduced or minimal activity[141]. Other causes of isolated MMA include much rarer 

deficiencies in other enzymes within the propionate catabolism pathway or in other 

components of mitochondrial function.

With normal enzymatic function, propiogenic precursors are converted sequentially from 

propionyl-CoA to methylmalonyl-CoA to succinyl-CoA, which is subsequently metabolized 

within the TCA cycle [131, 132, 150–152]. This complex role of PCC and MUT within 

mitochondrial energy metabolism mirrors the biochemical and clinical findings associated 

with OA disease [153–159]. Approximately two-thirds of normal propiogenic load is 

generated from dietary intake and muscle turnover, while around one-third naturally 

originates from gut bacterial sources [160, 161]. During decompensation, acidosis in these 

patients occurs due to accumulation of organic acids and ketoacids, while lactic acidosis also 

occurs, particularly in severe decompensation or with severe secondary mitochondrial 

dysfunction [61, 162–166]. Accumulation of propionyl-CoA, and to some extent 

methylmalonyl-CoA, results in secondary inhibition of N-acetylglutamate synthase (NAGS), 

causing secondary hyperammonemia in these patients [167–170]. Generation of 

propionylcarnitine moieties may result in cardiac arrhythmias and cardiomyopathy due to 

secondary carnitine deficiency [29, 171].

Complications and Management of MMA and PA

Because normal mitochondrial function requires sufficient energy production through the 

citric acid cycle and oxidative phosphorylation, MMA and PA result in multi-systemic 

chronic disease, particularly in the highly energetic organs such as brain, heart, kidney, and 

eye. End-organ injury occurs due to both primary toxicity of both the accumulating primary 

and secondary metabolites and deficiency of succinyl-CoA resulting in Kreb cycle and 

oxidative phosphorylation dysfunction. Periods of acute illness frequently chronically 

worsen the patient’s basal condition due to increased energetic dysfunction.
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Dietary Management

In the well state, OA patients are typically maintained on a protein-limited diet, or if enteral 

gastric feedings are required, combinations of standard, age-appropriate enteral formulas 

with formulas specially-designed for OA patients may be employed. While protein 

restriction is more aggressive in patients with other inborn errors of metabolism, in OAs 

dietary protein intake should target the recommended daily allowance for protein (0.8 grams 

protein/kg body weight), unless differences based on the individual patient response require 

lower or higher concentrations. Patients with spasticity or severe choreoathetosis may 

require additional protein nutrition for their increased energetic demand, and other patients 

with brittle, difficult to manage disease may require less whole protein and, based on 

clinician preference, addition of medical foods or formulas [12, 53, 172–179]. The primary 

dietary goal in OA patients should remain prevention of catabolism and allow normal 

growth, without causing obesity. Thus, providing sufficient protein, preferably from natural 

protein sources with as little amino acid-deficient protein from medical foods as possible, is 

preferred. Recently, dietary analysis of a large cohort of patients has revealed that patients 

with MMA typically tolerate the recommended daily allowance of protein. However, many 

of these patients were receiving a large proportion of protein from propiogenic-deficient 

sources and were also noted to have poor growth in height and weight, elevated leucine 

levels, and low levels of isoleucine and valine, often requiring specific amino acid 

supplementation [180]. Prior patients on such diets developed severe amino acid deficiencies 

[176, 178]. Thus, the use of medical foods deficient in propiogenic precursors appears to 

result in branched chain amino acid deficiencies and may worsen outcomes. Therefore, 

coordination with a metabolic dietician is strongly recommended to ensure that nutritional 

and amino acid deficiencies are prevented, and future prospective studies on the safety and 

efficacy of medical foods for OAs should occur to ensure that iatrogenic secondary effects 

are prevented in this already vulnerable population.

Medical Management

Patients with PA and MMA require carnitine supplementation to prevent secondary carnitine 

deficiency (L-carnitine, enterally administered at 50–100mg/kg/day), and those patients with 

B12 responsive MMA, usually cblA disease, should receive daily injections of 

hydroxocobalamin (1 mg, intramuscularly every day) [12, 57, 144, 145, 181, 182]. Some 

patients are treated with cycles of enteral antibiotics (metronidazole) to reduce the burden of 

propiogenic gut flora [36, 161, 173, 183]. Some brittle patients with chronic 

hyperammonemia may be treated orally with sodium benzoate or sodium phenylbutyrate 

(Buphenyl) at 10 grams/m2/day, with careful monitoring of amino acid levels and 

electrolytes [12, 36]. This is not a standardized practice, but may be instituted by a metabolic 

physician based on professional experience and provider preference.

Acute Metabolic Decompensation

Patients with OAs may become very ill from otherwise mild viral illnesses, and other events 

that cause physical or emotional stress may trigger catabolism, including surgical 

procedures, labor and childbirth, and abrupt changes in nutritional status. Aggressive acute 
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management of intercurrent illness and mitigation of other stressors must be undertaken to 

limit the degree of decompensation and sequelae from these events. Limited reports indicate 

that patients with PA and MMA may not maintain sufficient humoral immune response to 

combat viral infection [184, 185]. Reversal of catabolism, promotion of anabolism and 

identification and treatment of the underlying precipitating etiology are paramount to 

management of the acute decompensation.

With intercurrent illness, PA and MMA patients typically present with nausea and vomiting, 

worsening anorexia, and encephalopathy, with laboratory studies demonstrating metabolic 

acidosis, ketonuria, hyperammonemia, pancytopenia, and electrolyte disturbances [1, 22, 45, 

86]. These decompensation events typically present with decreased oral intake or enteral 

feeding intolerance, vomiting, and altered mental status or lethargy. Without aggressive 

reversal of catabolism with intravenous dextrose-containing fluids (typically 10–12.5% 

dextrose in normal saline with appropriate electrolyte additives at 150% of maintenance, 

unless renal function demands different electrolyte composition or volume), patients with 

OAs may die or suffer severe metabolic brain injury [22, 36, 45]. Some providers choose to 

employ intralipid in addition to dextrose fluids for additional caloric support [36, 45]. In 

addition to reversal of catabolism, more aggressive metabolic therapies are employed during 

decompensation, including ammonia scavenging with sodium phenylacetate-sodium 

benzoate (Ammonul, intravenous preferably via central line, variable dosing based on age/

weight) or disinhibiton of urea cycle function by N-carbamylglutamate (Carbaglu, oral, 100 

mg/kg bolus followed by 25–62 mg/kg every 6 hours, currently under investigational status 

with the United States Food and Drug Administration) [36, 45, 186–189]. The ammonia 

scavengers allow conjugation of amino acids to the scavenger compounds to bypass the urea 

cycle and permit excretion [39, 159, 190, 191]. Inhibition of carbamylphosphate synthetase I 

(CPS1), a urea cycle enzyme, by accumulating metabolites in OAs causes secondary 

hyperammonemia in these disorders [167]. N-carbamylglutamate, an N-acetylglutamate 

analogue, allosterically activates CPS1 and inhibits the secondary effects of the propionate 

metabolites on CPS1 [36, 45, 189, 192–195]. Once catabolism has been reversed and 

acidosis corrected, complete nutrition should be reinitiated as soon as possible, preferably 

via the enteral route. Once the precipitating source is identified and treated or managed, the 

patient may be transitioned back to standard diet.

Chronic Management and Screening Recommendations

Optimal management of individuals with MMA and PA includes careful dietary 

management and regular screening for known complications of the OAs [12, 22, 36, 57]. 

Table 1 catalogues the most common complications associated with PA and MMA and the 

recommendations for screening and management. Metabolic “strokes”, frequently indicated 

by significant acute mental status changes or new or worsening abnormal movements, 

require immediate laboratory and imaging evaluation and reversal of catabolism [12, 17, 22, 

34, 65–67, 196–198]. Once dextrose-containing intravenous fluids and treatment of the 

underlying precipitant are initiated, MRI and magnetic resonance spectroscopy may be 

performed to evaluate the location and extent of evolving injury [17, 66, 199–202]. 

Movement disorders or spastic quadra- or paraparesis, potential sequelae of metabolic 

strokes, should be managed in collaboration with a neurologist and/or physiatrist to allow for 
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optimal function and minimum disability. If spasticity or movement disorder worsens and 

limits the patient’s ability to perform activities of daily living, referral to speech, physical, 

and/or occupational therapy should occur [203].

Patients with PA and, less commonly, MMA may develop life-threatening cardiac 

arrhythmias, particularly prolonged QTc, or cardiomyopathy, with or without carnitine 

deficiency [4, 12, 28, 204, 205]. All individuals should be routinely screened with 

echocardiography and EKG yearly, during admissions for illness (EKG), or with cardiac 

symptoms [12, 36]. Medications that prolong the QT interval should be used with caution in 

OA patients and avoided to the extent possible in patients with known cardiac disease. All 

patients who are hospitalized for metabolic decompensation or due to an invasive or surgical 

procedure should be placed on telemetry to monitor for life-threatening arrhythmias during 

these crises.

The significant ophthalmological effects of MMA and PA require close collaboration with 

an ophthalmologist comfortable with managing the retinal and optic nerve degeneration 

associated with associated with these diseases [6, 7, 14, 35, 70, 206–209]. While effective 

ophthalmic therapies remain elusive, careful monitoring for vision loss and provision of 

support services are vital for maintaining patient function. As ophthalmological innovations 

occur for retinal and optic nerve disease, MMA and PA patients with access to an 

ophthalmologist may benefit from trials with new devices and therapies.

MMA frequently, and PA rarely, result in progressive, severe renal disease, often requiring 

transplant, [8, 61–64, 210–216]. Patients with MMA and PA should be carefully screened 

with laboratory markers of renal function including BUN and creatinine, which are 

frequently near normal until late stage disease, as well as calculated creatinine clearance or 

glomerular filtration rates, and cystatin C. Other markers of renal function, including 

erythropoietin and 1,25-hydroxy vitamin D in the setting of appropriate vitamin D intake/

supplementation may indicate additional investigation for worsening renal disease. Patients 

with indications of declining renal function require referral to a nephrologist for further 

evaluation and management, as dialysis and/or renal transplantation may become necessary, 

particularly in adolescents and adults with MMA. Nephrotoxic medications should also be 

avoided or limited in these patients.

Although the specific mechanisms associated with bone health in OAs remain incompletely 

investigated, patients with PA and MMA are at significantly increased risk for osteopenia or 

osteoporosis that their age-matched peers, with and without renal disease [22, 41]. DXA 

scan evaluation should be performed routinely starting at age 5, the earliest age for which 

height, race, and gender adjustment norms exist, and radiographic evaluation for fractures in 

patients presenting with pain should always be considered. Various pathologies including 

vertebral fusion anomalies, vertebral compression and fractures, as well as generalized 

osteopenia, have been observed. Therapeutic intervention should address morbidity 

associated with such low BMD, and the use of bisphosphonates versus calcitriol to target 

anti-resorption versus anabolic measures to support increased deposition is dependent on the 

individual patient’s findings (BMD, bone age, parathyroid hormone, 1,25-OH and 25-OH 

vitamin D levels, sex hormone production), and even bone biopsy should be considered for 
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responsiveness to bisphosphonates prior to their initiation. If pathological fractures or 

significant osteopenia/osteoporosis are detected on screening, more robust monitoring for 

bone density and response to interventions are indicated. Currently, further studies are 

required to determine the role of medical food use, renal disease, or other contributing 

factors such as immobility or metabolic fragility in the development of low bone mineral 

density.

Transplant

Some individuals have received liver transplants to treat PA and liver, kidney, or combined 

liver-kidney to metabolically stabilize MMA and/or address the chronic renal failure 

associated with MMA disease [12, 18, 24, 60, 196, 201, 217–239]. Liver transplantation has 

become an increasingly popular treatment choice for children with more severe or brittle 

disease, and some adults undergo isolated kidney transplant for MMA-related end-stage 

renal disease. For adolescents, however, combined liver and kidney transplant has also been 

employed in MMA. Liver transplantation does improve the metabolic stability of brittle OA 

patients, and some sequelae may be mitigated, including cardiomyopathy. One center has 

claimed that liver transplantation is more cost-effective than dietary therapy alone [228]. Not 

all sequelae of PA and MMA may be prevented by liver transplantation; some liver-

transplanted patients have developed metabolic stroke after transplant and others have had 

progressive vision loss due to optic atrophy as well [18, 231, 232, 236, 239, 240]. Further 

studies on the long-term outcomes of transplantation and changes to the natural history of 

disease are indicated.

Conclusions

For patients with PA and MMA who survive their initial decompensation episode, significant 

morbidity remains a lifelong threat. Better therapies for these disorders remain elusive, but a 

critical mass of patients has now contributed to our understanding of the natural history of 

these diseases. Most importantly, recently proposed diagnostic and management guidelines 

have emerged from worldwide experts in these disorders and should improve management 

of these patients. Dietary management of the OAs should receive additional scrutiny in the 

near future with prospective, controlled studies to demonstrate the optimal circumstances for 

the use of medical foods and improvements in formulations of these foods to prevent 

iatrogenic morbidity. Better understanding of the pathophysiology of metabolic brain injury 

in the OAs must occur to permit further drug targeting for neuroprotection and recovery 

from metabolic insult. Finally, the use of orthotopic liver transplantation to improve 

metabolic stability in patients with OAs is burgeoning and will likely change the natural 

history of these disorders, yet we must ensure our patients’ families understand the 

limitations of this therapy, including ongoing risk to the CNS compartment following 

transplantation and the inherent risks of liver transplantation.
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Key Points

• Diagnostic and management guidelines for PA and MMA are emerging and 

may improve long-term care.

• Prospective, controlled studies are needed to support the use of medical foods 

and their formulations to limit iatrogenic morbidity in PA and MMA.

• The pathophysiology of metabolic brain injury in the OAs requires further 

elucidation to permit future drug targeting for neuroprotection and recovery.

• Orthotopic liver transplantation improves metabolic stability in patients with 

OAs and will likely change the natural history of these disorders, but is not 

curative.
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Figure 1. 
Biochemical Pathway of Propionate Metabolism. For simplification, the methylmalonyl-

CoA epimerase enzyme step has been removed from the pathway diagram. AdoCbl: 

adenosylcobalamin, CblA: Cobalamin A, CblB: Cobalamin B, MUT: methylmalonyl-CoA 

mutase, PCC: propionyl coA carboxylase.

Fraser and Venditti Page 24

Curr Opin Pediatr. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fraser and Venditti Page 25

Table 1

Chronic Manifestations and Management of PA and MMA

Organ System Manifestations PA MMA Evaluation and Management

Constitutional Failure to thrive ++ ++ Consider need for gastrostomy tube placement to permit 
sufficient caloric intake.

Anorexia ++ ++

Feeding difficulty ++ ++

CNS Movement Disorder Spastic quadra-/
para-paresis (progressive)

++ ++ Neurological evaluation and treatment of movement disorders 
and spasticity.

Metabolic “stroke” involving basal 
ganglia

++ ++ MRI with spectroscopy to evaluate prior injury and acute/
evolving injury in symptomatic patients.
Reversal of catabolism.

Variable intellectual disability ++ + Ensure appropriate legal documentation in place for power of 
attorney, guardianship, etc. as indicated based on level of 
functioning.

Ophthalmological Optic nerve atrophy Retinal 
degeneration + ++ Routine ophthalmological evaluation and treatment at regular 

intervals.

Gastrointestinal Pancreatitis ++ + Monitoring of pancreatic enzyme levels with illness and 
adjustment of feeding paradigm as indicated.

Renal Tubulointerstitial nephritis − ++ Routine screening of clinically available markers for renal 
disease. GFR preferable.

Chronic Progressive Renal Failure + ++ Avoid/limit/renally dose nephrotoxic medications in patients 
with evidence of declining renal function.

End Stage Renal Disease + ++ Evaluation for organic acidopathies in patients with renal 
failure of unknown cause with suggestive history.

Cardiovascular Arrhythmias, including prolonged 
QTc

++ + Telemetry for arrhythmias and prolongation of QT interval.

++ + Cardiology evaluation with echocardiography and EKG yearly 
or with symptoms.

Cardiomyopathy ++ +

Heart Failure + − Concurrent management with cardiology for cardiac pathology.

Skeletal Osteopenia/Osteoporosis + + Routine screening with DXA every 5 years.

Pathological Fractures + Routine (yearly) monitoring, consider addition of 
bisphosphonates.
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