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Abstract

The links between systemic insulin resistance (IR), brain-specific IR and Alzheimer’s disease 

(AD) has been an extremely productive area of current research. This review will cover the 

fundamentals and pathways leading to IR; its connection to AD via cellular mechanisms, the most 

prominent methods and models used to examine it, an introduction to the role of extracellular 

vesicles (EVs) as a source of biomarkers for IR and AD, and an overview of modern clinical 

studies on the subject. To provide additional context, we also present a novel analysis of the spatial 

correlation of gene expression in the brain with the aid of Allen Human Brain Atlas data. 

Ultimately, examining the relation between IR and AD can be seen as a means of advancing the 

understanding of both disease states, with IR being a promising target for therapeutic strategies in 

AD treatment. In conclusion, we highlight the therapeutic potential of targeting brain IR in AD 

and the main strategies to pursue this goal.

Normal insulin signaling and insulin resistance

Insulin is one of the key hormone regulators of metabolism throughout the body, through a 

variety of largely tissue-specific actions. Elevations in blood glucose and other nutrients 

after meals trigger the release of hormones which homeostatically regulate blood glucose 

levels, particularly insulin, which is secreted by the β cells of the pancreas [1], and the 

insulin-regulating incretins, glucagon-like peptide-1 (GLP-1) and gastric inhibitory 

polypeptide (GIP). Insulin exerts its actions through binding of the extracellular α subunit of 

the insulin receptor, which leads to a conformational change that autophosphorylates the 

intracellular β subunit of the receptor via tyrosine kinase activation [2]. This kinase 

activation leads to the recruitment and phosphorylation of the Insulin Receptor Substrates 1 

and 2 (IRS1 and 2), which represent the first node in the insulin signaling cascade and exerts 

downstream effects on several key regulatory proteins of cell metabolism, cell survival, 

growth, and differentiation, including the mammalian target of rapamycin (mTOR), PKB, 

and glycogen synthase kinase 3 (GSK3) [3, 4]. The divergent branches of the insulin 
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pathway largely converge downstream onto Akt activation, primarily through PI3K 

activation of PDK [5, 6].

A key physiological action of insulin is to increase glucose uptake into cells, especially in 

muscle and adipose tissue [1], by translocation of various insulin-dependent glucose 

transporters (GLUT) to the plasma membrane. Specifically, the insulin cascade leads to 

PI3K/ PDK/Akt activation, which in turn leads to inactivation of AS-160 [7–9], which, 

coupled with the activation of other Rab GTPases, is thought to stimulate the translocation 

of certain insulin-dependent GLUTs, such as GLUT 4, to the membrane [10–12]. Of 

particular interest for brain metabolism are GLUT1, GLUT4, and GLUT3. GLUT1 is 

present in nearly all cell types, whereas GLUT 4 is primarily expressed in skeletal myocytes 

and adipocytes [13–15]. While GLUT3 is the primary brain neuronal GLUT and is mainly 

expressed in axons and dendrites, GLUT 1 and 4 have also been detected in brain tissue [16, 

17]. GLUT3 is unique in terms of its low Michaelis-Menten constant, allowing for 

continuous transport of glucose into neurons even under low extracellular concentrations 

thereby providing a consistent energy source [18]. Different isoforms of GLUT 1 mediate 

glucose uptake by astrocytes as well as the endothelial cells of the Blood Brain Barrier 

(BBB). The BBB contains insulin-independent GLUT1 and GLUT3 transporters that ensure 

a dynamic response of glucose transport to meet variable energy demands independent of 

insulin [19]. This dynamic responsiveness of the BBB is highlighted in a study that found 

that when glucose transport across the BBB was increased, the luminal expression of 

GLUT1 increased, whereas abluminal expression increased with decreased glucose transport 

[20]. On the other hand, BBB insulin receptor expression is reduced with prolonged 

peripheral hyperinsulemia [21] and in aging [22], whereas insulin levels in the brain of older 

individuals are also reduced [23]. The combined effects of aging and peripheral IR may lead 

to a substantial decrease in brain insulin and insulin receptors and a corresponding decrease 

in insulin-dependent glucose transport. The effects of decreased insulin signaling on glucose 

transport may also be differentially impacted upon different brain regions depending on the 

type of GLUTs they express. GLUT 4 mRNA co-localized with GLUT3, insulin and insulin 

receptor mRNAs have been identified in the nuclei of basal forebrain cholinergic neurons, 

which may function as nutrient sensors. This partial GLUT4 dependence may help explain 

the vulnerability of these cells in low energy conditions and Alzheimer’s disease (AD) [18, 

24, 25].

In insulin resistant states such as type 2 Diabetes Mellitus (T2D), the ability of insulin to 

stimulate glucose uptake via insulin-dependent GLUT transporters is impaired, requiring 

higher than normal concentrations of extracellular insulin to maintain normal circulating 

glucose levels [26]. Early in the course of T2D, these higher insulin concentrations are 

maintained by β cell overstimulation [27]. Conditions of persistent insulin activation trigger 

the excessive autophosphorylation of various Ser/Thr residues on IRS family members [28–

30]. This aberrantly phosphorylated IRS-1 has been implicated in several proposed 

mechanisms of insulin resistance (IR) based on different sites of hyperphosphorylation on 

Ser/Thr residues. In a feed-forward loop, adaptive signaling elements such as mTORc and 

SK61 have been shown to hyperphosphorylate S632 and S302/S522 residues, respectively. 

This results in reduced insulin binding sensitivity of the insulin receptor and subsequent 

cellular IR, as well as the translocation of the active portion of IRS from the membrane to 

Diehl et al. Page 2

Transl Res. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the cytosol [31–34]. S337 phosphorylation on IRS-1 by GSK3-β has been shown to inhibit 

insulin signaling in humans [35], while, phosphorylation at S312 in humans stimulates 

uncoupling of IRS-1 and leads to its degradation [36]. Insufficient downstream signaling as a 

result of this degradation is another proposed hypothesis for IR [37].

Methods of measuring insulin resistance

The gold standard for measuring whole body IR is the euglycemic hyperinsulemic clamp 

technique. While this provides accurate, real time data, the technique is laborious and 

invasive, requiring intravenous injection of insulin and glucose, as well as continuous blood 

collection over multiple hours [38]. The Oral Glucose Tolerance Test (OGTT) has long been 

used to quantify glucose intolerance, but by nature cannot serve as an indicator of insulin 

resistance. The Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), 

developed over 30 years ago by Matthews et al., provides an estimate of insulin resistance 

and β cell function by combining fasting insulin and glucose levels in a single metric [39]. 

Advances in computer-based modeling have led to the updated HOMA2-IR metric, 

improving reliability by accounting for various physiological adjustments. Nevertheless, it 

should be noted that transient fluctuations can also affect fasting glucose and insulin levels 

limiting the reliability of these metrics. The Somogyi effect, a somewhat rare phenomenon 

in T2D patients, results in hyperglycemia after extended hypoglycemia, particularly in the 

early morning. Coupled with the more common dawn effect, which results to variations in 

insulin levels due to circadian hormone fluctuations, it produces significant variability in 

fasting glucose and insulin levels. Because of these factors, it is imperative to develop rapid 

and reliable diagnostic markers for systemic, as well as tissue specific IR.

Peripheral Insulin Resistance

Muscle

Chronic IR in skeletal muscle has long been considered a hallmark of T2D [40]. In an 

insulin resistant state, muscle glycogen synthesis is impaired due to decreased glucose 

uptake [41]. This is thought to be the result of GLUT-4 gene suppression due to excess free 

fatty acids [42, 43]. Fatty acid levels have been shown to negatively correlate with insulin 

activity in skeletal muscle [44], whereas high levels of saturated fatty acids can directly 

induce IR in skeletal muscle by inhibiting normal IRS1 Tyr-phopshorylation [45–48]. 

Recent studies investigating O-linked-β-N-acetylglucosamine (O-GlcNAc) protein 

modifications have shown aberrant modification of IRS Ser/Thr residues (mediated by O-

GlcNAc transferase (OGT) and β-N-acetylglucosaminidase (OGA)) interfering with IRS-

PI3K interaction[49, 50].

Liver

A vital function of the liver is to both produce and store glycogen as a readily available 

glucose reserve for the body. In the normal post-prandial state, glycogenolysis and hepatic 

glucose output is sufficient to meet the energy requirements of the brain and other organs 

[51, 52]. In an insulin resistant state, this output is increased contributing to the phenomenon 

of systemic IR [53]. Moreover, liver-specific IR has long been regarded as a leading 
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contributor to the onset of Non-Alcoholic Fatty Liver Disease (NAFLD), one of the most 

common manifestations of chronic liver diseases [52, 54]. Liver adipose tissue secretes 

several proinflammatory factors, such as IL-6 and TNF-α, which play a role in inducing 

systemic IR. IL-6, which is also secreted by skeletal muscle and select immune cells, can 

target multiple regions of the body, including the brain [55]. Chronically elevated levels of 

IL-6 lead to reduced Tyr-phosphorylation of IRS-1, as well as decreased glycogen synthesis, 

in primary murine hepatocytes as well as the human hepatocarcinoma cell line HepG2 [56]. 

In AD, IL-6 has long been implicated in neuroinflammation, been shown to stimulate the 

formation of amyloid precursor protein (APP), and is often co-localized with beta-amyloid 

(Aβ) plaques in AD patients [57–59]. TNF-α; secreted by various immune cells, acts to 

impair hepatic insulin signaling via inhibiting autophosphorylation of insulin receptor after 

insulin binding, which subsequently reduces tyrosine kinase activation of IRS-1 [60]. 

Finally, ceramides produced by the liver have also been implicated as a link between 

peripheral and brain IR, as well as neurodegeneration [61].

Brain Insulin Resistance

The brain was long considered to be an insulin-independent tissue because of insulin’s 

inability to affect bulk glucose uptake in cortical tissue, until radioimmunoassays showed 

high levels of insulin in brain extracts [62–65]. Insulin in the brain is predominantly shuttled 

across the BBB from the periphery, where it is concentrated to levels 50x higher than in 

circulating plasma independently of peripheral hormonal states [62, 66, 67]. Insulin 

receptors on the BBB are capable of signal transduction across the BBB. In addition, 

peripherally produced insulin can be actively transported into the brain via an endocytic-

exocytic mechanism [68]. However, insulin can also be produced de novo in brain regions 

with many pyramidal cells, such as the hippocampus, prefrontal cortex, olfactory bulb, and 

entorhinal cortex [69–73]. While the exact origin of brain insulin is still debated, recent 

studies show that functional insulin signaling components in forebrain regions may exert a 

neuroprotective role in areas responsible for various functions of memory [74, 75]. 

Downstream elements in the signaling pathway known as the “PI3K route” have been shown 

to both promote neuronal cell survival and facilitate synaptic plasticity, and as such are 

heavily implicated in the link between insulin resistance and AD [76].

A variety of factors underlie brain IR. Maternal glucose and insulin sensitivity have been 

shown to directly correlate with fetal brain responses to fluctuations in circulating glucose, 

suggesting that predisposition to brain IR may be present before birth[77]. Multiple genetic 

mutations have been associated with increased predisposition to brain IR, such as mutations 

in the obesity genes Fat Mass and Obesity-Associated Protein (FTO) and Melanocortin-4 

Receptor (MC4R). Polymorphisms spanning across introns 1 and 2 of FTO, which is most 

highly expressed in the brain, exhibit strong effects on brain IR [78]. Carriers of the at risk 

FTO-AA allele who are also carriers of an APOE ε4 allele have a significantly increased 

risk for AD and dementia [79]. MC4R is expressed in specific brain regions that regulate 

systemic metabolism (such as the hypothalamus) and regulates synaptic plasticity [80]. 

Additionally, a single nucleotide polymorphism near the MC4R gene (rs17782313) has been 

directly linked to increases in brain IR [81]. Increased circulating free fatty acids may also 

play a role in establishing brain IR. High fat diet leads to rapid release of pro-inflammatory 
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factors at the hypothalamus, and triggers the JNK pathway to increase activation of NF-kB, a 

factor that inhibits leptin and insulin signaling [82, 83].

Dysfunctional phosphorylation of IRS-1 has been extensively linked with brain IR, similar 

to other tissues. Total levels of insulin signaling proteins in the aforementioned “PI3K route” 

are not significantly different in the brains of AD patients versus cognitively normal 

controls, suggesting that the phosphorylated active states of these molecules may play a role 

in IR and AD pathogenesis [84]. Studies in human hippocampal tissue have shown that 

phosphorylation mediated by factors such as mTOR and GSK-3β, coupled with feed-

forward inhibition from the JNK pathway, leads to specific increased phosphorylation on 

multiple Ser residues of IRS-1 (specifically, S312, S616 and S636) [34, 84, 85]. However, 

conflicting evidence exists showing that S307 phosphorylation in mice (human S312) may 

in fact increase insulin sensitivity and improve insulin signaling [86].

Animal Models of AD and IR

It would be an understatement to say that animal models have proven to be effective and 

informative in the study of AD in relation to brain IR. There is in fact little we would know 

about the mechanisms underlying this relationship without their contribution. Despite this, 

one should keep in mind that there is no definitive orthologous version of AD in animals; 

instead the induction of a neuropathologically similar state in the animal model is used to 

simulate the human disease. In this section, we will review newer induced and transgenic 

animal models that incorporate aspects of both AD and brain IR. In these models the 

metabolic connection between AD and IR is exploited to provide a more valid model for 

translation to human research.

Interference with normal insulin signaling is a favored method of creating an animal model 

with a metabolic state comparable to diabetes. As impairments in insulin signaling can also 

elicit neurodegenerative changes, this method can satisfy the requirements for an animal 

model showing symptoms common to AD and IR. The most intuitive method involves 

mimicking adult onset diabetes by placing mice or rats on a high fat diet (HFD) that 

promotes IR [87]. As this method can easily be used in both wild type and transgenic mice, 

it provides a means of observing the effects of IR in a variety of phenotypes. 

Neurodegeneration has also been reliably evoked via HFD, as well as tau 

hyperphosphorylation and Aβ burden [88, 89]. Intracerebroventricular Streptozotocin (icv-

STZ) [90] is another prominent method in which a rat or mouse is intracerebrally injected 

with STZ to induce IR as well as neurodegeneration, spatial memory deficits, and a 

concomitant increase in Aβ and plaque formation [91, 92]. Peripherally, the cytotoxic and 

diabetogenic effect of STZ relies on its entry into pancreatic B-cells through the GLUT 2 

transporter, causing oxidative stress, necrosis due to alkylation of DNA, and activation of 

poly-ADP-ribosylation [93]. Centrally, the mechanism of action is proposed to be the 

desensitization of brain insulin receptors [90], and the STZ-vulnerable GLUT2 has been 

found in circumventricular areas of the brain [94, 95]. However, no direct evidence of 

insulin receptor desensitization has been provided, and the current lack of a known 

mechanism of action remains a limitation of this method.
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Transgenic animal models include rats or mice with gene knockouts or inactivations that 

elicit insulin resistance and neurodegeneration similar to that expected of AD and IR in 

humans. The ob/ob transgenic mouse expresses an inactive version of the protein leptin, and 

feeds excessively as a result [96, 97]. These animals are obese and exhibit high blood 

glucose and insulin levels, lower levels of IRS-1and 2, behavioral deficits, and tau 

hyperphosphorylation [98–101]. A similar transgenic model is the db/db mouse, which fails 

to respond to leptin and also reliably displays a phenotype of obesity, increased tau 

phosphorylation and IR accompanied by profound behavioral deficits in learning and 

memory [102–104].

IR and Oxidative Stress in AD

A recent and prominent concern has been the role of IR as a factor promoting oxidative 

stress in the pathogenetic cascade of AD [105, 106]. The term “oxidative stress” refers to an 

imbalanced biochemical state wherein the cell is producing more reactive oxygen species 

than its antioxidant activity can withstand [107]. The brain is particularly vulnerable to 

oxidative stress due to its high oxygen requirements; low antioxidant levels that only 

decrease further with age, and the sheer membrane lipid content available for destructive 

peroxidation [108–110]. Many researchers now implicate oxidative stress as a causative 

factor upstream of Aβ and tau [111, 112].

AD is increasingly viewed as a consequence of a dysfunctional metabolic state, which 

makes specific metabolic dysfunctions such as IR and oxidative stress obvious culprits in its 

progression. The process by which this occurs is by no means straightforward. Neurons 

become especially vulnerable to oxidative stress when insulin signaling is disrupted, and 

oxidative stress leads to further IR [113–116]. Both IR and oxidative stress independently 

lead to the accumulation of Aβ and phosphorylated tau [117, 118]. Oxidative stress also 

occurs as a result of metabolic syndrome and obesity [119]. This web of possibly 

inextricable connections firmly places IR, oxidative stress, and AD in a complex positive 

feedback system.

One direct method for severing this oxidative-stress/IR knot would be to address oxidative 

stress by way of antioxidants. This has been a focus of numerous basic and clinical studies, 

in which antioxidant supplements, such as the free-radical scavenging vitamins C and E, 

estrogen, statins, fish oil, and resveratrol have all shown some effect in decreasing the risk of 

AD [120–123]. Likewise, caloric restriction and exercise recruits a variety of antioxidant 

defenses with similar preventive effects [124]. The IR/AD/antioxidant issue has been 

investigated using animal models displaying high oxidative stress, as well as in humans 

using phenotypes or measured exposure to risk factors for oxidative stress due to lifestyle or 

environment [125, 126]. It is important to note that the evidence in support of antioxidant 

supplements in AD comes from animal and epidemiological studies, whereas clinical trials 

have generally been negative. Overall, it seems that oxidative stress has an upstream role in 

AD pathogenesis, and lifestyle changes leading to its decrease (diet, exercise) may be a 

better therapeutic strategy than antioxidant supplementation.
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Brain IR and Aβ pathology

Aβ refers to several peptides between 39–43 amino acids in length that are formed by the 

cleavage of the larger APP molecule through actions of β and γ secretases, and are a product 

of normal cellular metabolism with a possible but yet unknown physiologic role. Aberrant 

oligomerization of certain Aβ peptides (such as Aβ42) and formation of extracellular 

plaques with Aβ fibrils at their center are histopathological hallmarks of AD in post mortem 

brain tissue [127–130]. In sporadic AD, Aβ oligomerization may partly occur because of 

reduced Aβ degradation and clearance from the brain [131, 132]. In normal conditions, 

stimulation by insulin accelerates Aβ clearance from the brain, preventing extracellular 

accumulation and eventual fibril and plaque formation [133]. In the AD brain, Aβ oligomers 

have been shown to increase activation of the JNK pathway, leading to increased IRS-1 

pS616 as well as Tau pS422 [134]. Furthermore, Aβ is known to suppress cell surface 

distribution of insulin receptor as a mechanism of inhibiting insulin function and inducing/

aggravating the IR state [135–137]. A feed-forward mechanism where Aβ oligomers 

aggravate brain IR via Ser-phosphorylation of IRS-1, which in turn decreases Aβ clearance 

and increases extracellular Aβ is plausible.

Aβ can be degraded by a variety of peptidases, such as Insulin Degrading Enzyme (IDE), 

neprilysin, and angiotensin converting enzyme, as well as multiple serine proteases 

(plasmin, urokinase-type and tissue-type plasminogen activators) [138, 139]. Because of 

IDE’s ability to degrade insulin, amylin, and Aβ42, it is thought to be a link connecting 

hyperinsulemia, IR and AD [140, 141]. IDE’s unique structure with two half-dome subunits 

connected by a linker limits its ability to cleave large Aβ subunits[142]. Therefore, IDE is 

thought to only cleave monomeric Aβ [138, 142]. In mice, insulin resistance leads to 

increased brain amyloidosis through an increase in gamma-secretase activity, as well as 

decreased IDE [143, 144]. Furthermore, in human AD patients with the APOE ε4 allele, 

IDE expression in areas such as the hippocampus is greatly reduced [145].

Brain IR and tau pathology

Tau is a member of a large group of proteins known as microtubule associated proteins 

(MAPs). In its native conformation, tau is a soluble and unfolded protein involved in 

microtubule stabilization and axonal outgrowth in neurons. However, hyperphosphorylated 

tau’s aggregative properties play a role in the pathogenesis of various neurodegenerative 

diseases. In AD, tau aggregates to intracellular neurofibrillary tangles, which alongside 

extracellular amyloid plaques constitute the two main histopathological hallmarks used to 

identify the disease in post-mortem brain tissue [146].

Several studies have implicated insulin and IR in the development of tau aggregates. Tau 

aggregation potential depends on its phosphorylation state, which is dependent on the local 

activity of kinases and phosphatases. Intravenous insulin administration exerts a biphasic 

effect on tau phosphorylation. Short-term administration of insulin to human neuroblastoma 

cells or rat primary cortical neurons leads to rapid hyperphosphorylation of tau at several 

Ser/Thr residues, whereas prolonged exposure resulted in decreased phosphorylation of 

these epitopes [147, 148]. This increase and subsequent decrease was mirrored by GSK-3β 
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activity, widely considered to be the primary kinase responsible for the phosphorylation of 

Tau in vivo and is modulated by insulin via the PKB/Akt pathway [149–152]. Upstream of 

GSK-3β, PKB/Akt itself also functions as a Ser/Thr kinase and can phosphorylate Tau 

directly, at least in vitro [153, 154]. Conversely, inhibiting the Ser/Thr phosphatases 

responsible for tau dephosphorylation can also increase the overall phosphorylation of tau. 

PP2A is the primary tau phosphatase implicated in AD and T2D and is suppressed by insulin 

administration in both human animal studies [155–159]. This should not be interpreted as a 

simple activation/inhibition model; GSK-3β, Akt/PKB, and PP2A also show regulatory 

effects on each other and a differential preference for the many available tau epitopes [154]. 

In broad terms however, the combined effects of insulin on tau phosphorylation by GSK-3β 
and lack of de-phosphorylation by PP2A may be a basis for explaining the increased 

tendency for Tau aggregation in AD and brain IR. Moreover, increased cytosolic levels of 

IRS-1 pS312 and pS616 correlate with the presence of neurofibrillary tangles in the brains of 

AD patients, whereas IRS-1 pS312 is restricted to nuclear regions of the cell in cognitively 

normal controls. This finding suggests that IRS-1 phospho-species may have actions 

promoting tau pathology in AD beyond their role in the development of brain IR [160].

Spatial Co-Expression of AD & IR Related Genes

The advent of microarray techniques has brought with it the ability to sample massive 

amounts of genetic transcript data from human brain specimens. The Allen Human Brain 

Atlas (AHBA) is a groundbreaking online bioinformatics resource that enables users to 

freely examine the multi-sample microarray data from six normal human post-mortem brain 

specimens [161]. As this data contains a well-distributed set of approximately 500–1000 

regional samples across each brain, it has the resolution needed to compare the spatial 

pattern of gene expression across different genes and brain regions. This information can be 

used to examine the similarity of gene expression across the brain, positing that “co-

expressed” genes that share common spatial patterns of expression may also be related 

functionally [162]. For this analysis, AHBA expression data was downloaded from the Allen 

Brain Atlas data portal (www.brain-map.org) for each gene of interest. When multiple 

probes for the same gene existed, the expression z-scores were averaged within samples. 

Within each subject, the expression z-scores for genes of interest were correlated with each 

other, resulting r-scores were then z-transformed and averaged across subjects, then inverse 

z-transformed back to r using a custom MATLAB script. The resulting mean r-scores were 

displayed in heat map format for ease of comparison.

The spatial co-expression analysis shows substantial overlap between many of the AD and 

IR genes examined in this manuscript. Earlier, Tau hyperphosphorylation was tied to insulin 

regulation and an interaction between GSK-3β, while MAPT/Tau is likewise strongly 

associated with Akt in the described pathway. In the heat map (figure 1) and brain map 

images (figure 2) we can see positive correlations between IRS-1 and GSK-3β as an 

example, indicating strong spatial co-expression of these genes. The relation between IRS-1 

and JNK can also be seen in figure 1; the two genes show spatial co-expression as well as 

with GLUT-3 and INSR. Uncorrelated or negatively correlated genes of interest likely have 

effects that are less dependent on regional co-expression.
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Clinical studies on IR and AD

Neuroimaging studies on IR and AD

Advances in neuroimaging techniques are behind some of the most groundbreaking recent 

findings on this topic allowing researchers to detect a variety of AD/IR-related brain changes 

in-vivo, which is crucial for human research, and even longitudinal animal studies. 

Fluorodeoxyglucose Positron emission tomography (FDG-PET) imaging has a lengthy 

background as a means of probing both AD and brain metabolism. FDG is an analog of 

glucose that gathers in tissue undergoing glucose metabolism, providing a reliable marker of 

the cerebral metabolic rate for glucose (CMRGlc). As has been shown as early as 1989 [163] 

and confirmed repeatedly ever since [164, 165], in AD, CMRGlc is drastically decreased in 

a characteristic regional pattern including posterior cingulate, precuneus, parietotemporal, 

and frontal cortices. Intriguingly, the same pattern of relative hypometabolism was shown in 

relation to HOMA-IR in cognitively normal older adults with prediabetes/T2D [166] or at 

higher risk for AD given their parental history [167]. In a study of patients with MCI and 

AD, we showed that HOMA-IR is negatively associated with glucose metabolism in brain 

areas vulnerable to AD pathology, but not in areas typically unaffected by AD [168]. In 

addition, we showed that HOMA-IR is associated with a maladaptive increase in metabolism 

at the hippocampus in MCI patients who are going to progress to AD dementia [168].

PET is a flexible technique and other useful radiotracers have been developed to address 

different aspects of AD, particularly Pittsburgh compound B (PiB) and Florbetapir (F18-

AV-45) for marking Aβ accumulations[169, 170], and most recently Flortaucepir (18F-

AV-1451) and other tracers for tau. Conflicting findings exist on the relationship between Aβ 
deposition and peripheral IR, with some studies showing no such relationship [171, 172] and 

others indicating a relationship for normoglycemic but not hyperglycemic cognitively 

normal older adults [173]. Tau-PET imaging has attracted a surge of interest due to recent 

findings that it presents a stronger relation to neurodegeneration and cognitive decline than 

Aβ [174, 175], but being a very recent development there are no published results to report 

on the relation of tau distribution to IR.

Magnetic Resonance Imaging (MRI) has also been used to study IR in relation to AD. 

Structural MRI has been used to find an association between the duration of T2D and the 

presence of AD-like neurodegenerative lacunae and hippocampal atrophy in older 

individuals [176]. In addition, HOMA-IR has been negatively associated with gray matter 

volume in late middle-aged, cognitively healthy individuals in a pattern typical of AD 

atrophy [177]. Brain iron concentration can be measured using T2* relaxation sequences; 

recent evidence has shown a relation between brain iron overload in the hippocampus and 

other areas with both IR and deficits in cognitive performance [178]. Advanced two-

dimensional (2D MRS) methods currently gaining favor are capable of detecting glucose 

concentrations within specific regions of the brain [179] and may be used some day to study 

IR in relation to AD. Diffusion MRI has revealed deficits in the microstructural integrity of 

grey and white matter in AD [180–183] and T2D [184–186] that are associated with 

impaired cognitive performance. Functional MRI (fMRI) has been used to demonstrate that 

insulin infusion enhances neuronal activity in the medial temporal lobe [187], that patients 
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with T2D showed connectivity decreases in regions associated with AD [188, 189], and that 

higher peripheral insulin levels are associated with less cognitive decline and atrophy in AD 

patients [190].

As a general comment to all neuroimaging studies to date, since no good biomarker of brain 

IR existed, the field had to rely on the assumption that some peripheral IR measure can be 

used as a surrogate of brain IR. With the discovery of IRS-1 phospho-peptides in neural-

origin plasma extracellular vesicles (EVs) [191] we have introduced a unique biomarker for 

brain IR. We hope that future neuroimaging studies will take advantage of this novel 

biomarker and examine more brain-specific associations.

CSF Insulin and Glucose

Cerebrospinal fluid (CSF) has long been known to carry appreciable concentrations of 

glucose and insulin, which partially reflect blood levels [192]. In humans, the transfer of 

blood insulin into the CSF has been validated during intravenous injections of insulin [193]. 

Interestingly, in obesity, the CSF/plasma insulin ratio is decreased. Similarly, the CSF/

plasma ratios for leptin and adiponectin are also decreased [194, 195]. IR as measured by 

HOMA-IR has been shown to correlate with increased CSF levels of AD biomarkers such as 

soluble amyloid precursor protein β (sAPPβ), P-tau181 and Aβ42, with ApoE ε4 carriers 

showing even higher levels of these proteins [144, 196]. Additionally, increased CSF levels 

of insulin correlate with decreased cognitive performance in patients with diabetes and AD 

[197].

Extracellular Vesicles as biomarkers for IR and AD

EVs (a subtype of which are exosomes, 30–150 nm in size), are membranous particles and 

are secreted from nearly every cell type throughout the body. A hot topic in recent research, 

these small vesicles are thought to serve a variety of functions in both healthy and disease 

states, from cellular waste removal to shuttles of various proteins, and are most recently 

being utilized as a soucres of biomarkers. A role for EVs in AD was first suggested by 

studies where EVs extracted directly from murine brain tissue were shown to contain full 

length APP, as well as various fragment length APP cleavage products, including Aβ [198, 

199] Moreover, secreted EVs have been shown to contain hyperphosphorylated tau as well 

as Aβ, the latter through sorting into multivesicular bodies (MVB’s), a canonical step in the 

endosomal-exosomal formation pathway[200]. Moreover, astrocytic derived EV’s have been 

shown to mediate apoptosis leading to brain cell loss [201]. Lastly, there is evidence to 

support that tau overexpression selectively recruits mitochondrial proteins implicated in 

neurodegeneration to exosomes, providing a novel link between tau exosome secretion and 

AD pathology [202]. However, there are also findings that support a neuroprotective role of 

exosomes in the face of neurodegenerative diseases. For instance, EVs are also known to 

contain proteolytically active IDE which may be degrading extracellular Aβ [203]. 

Additionally, it is thought that EVs released by astrocytes may serve to regulate synaptic 

transmission, as well as synaptic regeneration following injury, supporting a neuroprotective 

role [204].
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One of the most interesting and exciting aspects of EV research is the potential for them to 

be used as source for biomarkers for neurodegenerative diseases. For instance, EVs are 

highly enriched in miRNA, small noncoding RNA that function in RNA silencing and 

regulation of gene expression. Several miRNAs associated with neuronal development 

(miR-29, miR -128, miR-137), differentiation (miR-9, miR-107, miR-124, miR-128), 

apoptosis (miR-29b), and oxidative stress (miR-128) are downregulated in AD [205]. Our 

team has been a pioneer in pursuing protein biomarkers for AD using plasma EVs enriched 

for neuronal origin. These neuronal origin-enriched EV biomarkers include pathogenic 

proteins (total tau, p-tau, and Aβ42), but also intracellular signaling molecules normally not 

detectable in the soluble phase of plasma, such as phosphorylated IRS-1 species, Cathepsin-

D, REST, LRP6, and others [191, 206–208].

Of particular interest are our findings concerning IRS-1. In plasma EVs enriched them for 

neuronal origin, we measured total IRS-1, pSer312-IRS-1 and p-PanY-IRS-1 in a clinical 

cohort of AD patients and cognitively normal (CN) older control subjects (as well as patients 

with Frontotemporal Dementia, as a neurodegenerative disease control, and cognitively 

normal patients with T2D, as a metabolic disease control. We showed that these two 

phospho-species, as well as their ratio, were highly significantly different in AD patients vs. 

all control groups. Interestingly, subjects with T2D had intermediate values between AD 

patients and CN controls, suggesting that the peripheral IR that characterizes T2D is linked 

to some degree to brain IR and corroborating the extensive body of literature suggesting that 

IR and T2D are risk factors for AD, but by no means obligatory causative factors. 

Furthermore, IRS-1 phospho-species achieved remarkable classification accuracy for AD 

patients vs. controls and, in a separate smaller cohort, were already abnormal up to 10 years 

before clinical onset of AD[191]. These findings not only further establish the links between 

IR and AD, but provide hope for a blood-based diagnostic assay to diagnose AD 

preclinically. With the discovery of IRS-1 peptides in neural-origin plasma EVs we have 

introduced a unique biomarker for brain IR. Importantly, since interventions that aim to 

reverse brain IR in AD are being subjected to clinical trials (e.g. intranasal insulin, 

exenatide), using these biomarkers we may be able to demonstrate target engagement and 

follow response to treatment.

Targeting IR as a therapeutic strategy for AD

Overcoming brain IR by increasing brain availability of insulin

There have been several studies investigating ways to directly administer insulin to the brain 

to increase its local availability, while avoiding systemic insulin effects and hypoglycemia. 

Intranasal insulin administration involves bulk flow through the olfactory bulb into the brain 

without affecting systemic insulin and glucose levels. In humans, increased CSF insulin 

levels are present as soon as 60 minutes after intranasal administration[209]. In a Phase II 

clinical trial, intranasal insulin at low doses (20 IU) over the course of four months improved 

cognitive (especially memory) performance, but this effect is not seen at higher doses (40 

IU) [210]. Interestingly, carriers of the APOE ε4 allele did not exhibit any memory 

improvement [211]. A recent follow up study showed gender specific differences in 

patients’s responses and supported modifying effects for APOE ε4 [212].
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Early results investigating the long-acting intranasal insulin analog detemir are also 

promising. Higher brain IR is a predictor of treatment efficacy, with highly resistant patients 

showing improvements in verbal and visuospatial working memory with 40 IU. Detemir 

uniquely showed cognitive improvement for APOE ε4 carriers on the 40 IU dosing regimen 

[213].

Insulin Sensitization (PPAR-gamma)

Thiazolidinediones (TZDs/Glitazones) constitute a group of diabetes drugs that improve 

whole body insulin sensitivity. While their mode of action is still largely unknown, it is 

thought to be through the activation of the perioxisome proliferator-activated receptor 

gamma (PPAR-gamma), a nuclear hormone receptor and transcriptional-level regulator in a 

variety of tissues throughout the body. The final effect is increased expression of GLUT-4, 

suppression of neuroinflammation, and increased Aβ clearance [214]. Two drugs, 

rosiglitazone and pioglitazone, are currently being investigated as therapeutic agents for AD. 

Rosiglitazone potentiates the protective effects of insulin on cultured neurons and inhibits 

the production of Aβ42 in mice, but evidence in human trials is inconclusive [135, 215, 

216]. Additionally, rosiglitazone has been shown to have anti-inflammatory effects 

decreasing levels of NFκB [217]. Pioglitazone acts in a similar fashion to Rosiglitazone as 

an anti-diabetic drug. In mice, pioglitazone improves learning, reduces tau and Aβ deposits 

in the hippocampus, and improves neuronal plasticity [218]. In humans, consistent 

pioglitazone administration has been associated with decreased incidence of dementia, but 

clinical trials are lacking [219].

GLP-1 agonists/Exenatide

GLP-1 is a 30–amino acid peptide primarily produced by intestinal endocrine epithelial L-

cells in response to food in order to stimulate insulin release from the pancreas [220]. 

Peripherally produced GLP1 crosses the blood brain barrier, although it is also produced in 

the brain [220]. A variety of therapeutics have been developed that greatly extend the 

normally rapid half life of native GLP-1, such as exenatide, liraglutide, lixisenatide, and 

albiglutide (a GLP-1 dimer fused to a human albumin) [221]. GLP-1 agonists have been 

shown to engage multiple targets in the pathogenesis of AD (offer neuroprotection [222, 

223], reverse brain IR [224, 225], decrease Aβ and tau levels and deposits [226, 227], 

decrease tau hyper-phosphorylation [228], among multiple actions) in multiple cellular and 

animal models of AD. Most notably, exenatide, the synthetic version of exendin-4, which is 

found in Heloderma lizard venom that shares a 53% homology with human GLP-1 [229], 

has been shown to alleviate brain IR in AD [224] and be neuroprotective against a variety of 

neurodegenerative diseases and insults to the brain besides AD [230–232]. Importantly, 

exenatide has demonstrated clinical effectiveness for Parkinson disease, in terms of motor, 

but also cognitive performance measures [233]. Based on this evidence, our team conducts a 

Phase II clinical trial of exenatide in MCI/early AD (NCT01255163).

Conclusions

This review attempted to disentangle the complex mechanisms underlying brain-specific IR 

vis-à-vis systemic IR and highlight (proven or plausible) links to the AD pathogenic 
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cascade. Given unanswered questions about the sequence of events leading to AD, the 

picture that emerges is far from being complete. Nevertheless, the amount and diverse 

sources of evidence make it certain that brain IR plays a major role in AD pathogenesis, 

which is generally compatible with the prevailing “amyloid hypothesis”. Ultimately, the 

proof of this hypothesis, as for any competing hypothesis, rests on demonstrating 

effectiveness in clinical trials, a goal that only recently started being pursued.
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Figure 1. 
Heat map of the Pearson correlation r between a selection of probes associated with IR y-

axis (top) and AD (x-axis). Heat maps highlight the relation between AD-related and IR-

related gene expression levels. Squares with higher r-values (green to yellow) indicate genes 

that are co-expressed; squares with lower r-values (blue to dark blue) indicate genes with 

little to no spatial overlap.
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Figure 2. 
AHBA sampling locations with expression values superimposed on 3D representations of 

the six human brain specimens as z-scores (red indicates positive, green indicates negative). 

The top row is GSK-3B (probe: CUST_14455_PI416261804) and the bottom row is IRS-1 

(probe: A_24_P225679). Image credit: Allen Brain Atlas.
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