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Abstract

The metabolic syndrome (MetS) is a cluster of cardiovascular risk factors including insulin 

resistance (IR), dyslipidemia and hypertension, which may also foster development of chronic 

kidney disease. The mechanisms of MetS-induced kidney disease are not fully understood. The 

purpose of this review is to summarize recent discoveries regarding the impact of MetS on the 

kidney, particularly on the renal microvasculature and cellular mitochondria. Fundamental 

manifestations of MetS include insulin resistance (IR) and adipose tissue expansion, the latter 

promoting chronic inflammation and oxidative stress that exacerbate IR. Those in turn can elicit 

various kidney injurious events through endothelial dysfunction, activation of the renin-

angiotensin-aldosterone system, and adipokine imbalance. IR and inflammation are also major 

contributors to microvascular remodeling and podocyte injury. Hence, these events may result in 

hypertension, albuminuria, and parenchymal damage. In addition, dyslipidemia and excessive 

nutrient availability may impair mitochondrial function and thereby promote progression of kidney 

cell damage. Elucidation of the link between MetS and kidney injury may help develop 

preventative measures and possibly novel therapeutic targets to alleviate and avert development of 

renal manifestations.
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Epidemiology

According to the American Heart Association, individuals with the metabolic syndrome 

(MetS) show 3 or more of the following conditions: 1) Central or abdominal obesity (by 

waist circumference); 2) Elevated triglyceride levels; 3) Low high-density lipoproteins 

(HDL); 4) Hypertension; 5) Elevated fasting glucose.[1] The International Diabetes 
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Federation criteria are similar, but more specific regarding the definition of central obesity 

categorized by country or ethnic group.[2] A waist circumference greater than 94cm for 

Europids males is considered central obesity, whereas 90cm are indicative in Asian males.

Although greater awareness of MetS may have contributed to improvements in treatment of 

risk factors like hypertension and diabetes, nearly 35% of all adults and 50% of those 60 

years or older were still estimated to have MetS.[3] MetS is an important contributor to 

cardiovascular morbidity and mortality. Among 12,561 subjects from the United States 

Third National Health and Nutrition Examination Survey, 13.3% of the excess 

cardiovascular mortality in the United States could be attributed to higher prevalence of 

MetS and MetS with baseline cardiovascular disease.[4] Moreover, Mets often progresses to 

frank type-2 diabetes, particularly in subjects with hyperglycemia. In a recent study of 

28,209 patients, yearly conversion rates to diabetes were only 0.6% in MetS individuals with 

normoglycemia or mild hyperglycemia, but 2.5% in those with intermediate hyperglycemia 

(6.1–7.0 mmol/L)[5], leading to particularly elevated risk for cardiovascular complications.

Studies have suggested that individuals with MetS are also at increased risk for developing 

chronic kidney disease (CKD), reflected by microalbuminuria[6, 7] and renal dysfunction.

[8] Patients with 1–2 traits of MetS are twice more likely to have microalbuminuria than 

those without the syndrome, and the likelihood rises to 130% in those with more than 3 

traits.[6] In a study including 5,800 patients with type-2 diabetes, MetS independently 

predicted the new-onset of CKD.[4] After adjustments for diabetes and hypertension, MetS 

remained an independent risk factor contributing to development of CKD, defined as a fall 

the kidney function over a 9-year follow-up.[8] Patients with MetS undergoing nephrectomy 

also showed a higher prevalence of features characterizing CKD, including global and 

segmental glomerulosclerosis and loss of renal function, compared to those without MetS.

[9] Recent studies also suggest that the presence of MetS before renal transplantation 

predicts subsequent development of new-onset diabetes after transplantation, and the 

presence of MetS after transplantation adversely influenced allograft survival.[10, 11] Over 

an 18-month follow-up post-transplantation, the hazard ratio for creatinine elevation was 2.6, 

and patient survival was significantly diminished.[10] These observations establish MetS as 

a trigger for renal injury in CKD, which magnifies the adverse impact of other insults. Given 

the central role of the kidney in maintenance of bone homeostasis,[12] MetS may also 

contribute to bone mineral disorders in these subjects.[13]

The pathways activated by MetS to induce kidney disease are not fully understood. Over the 

past few years, studies have identified several new injurious pathways that MetS activates in 

the kidney.[14] Central tenets of MetS include insulin resistance (IR) and chronic 

inflammation, a major contributor to microvascular remodeling. In addition, dyslipidemia 

and excessive nutrient availability may induce mitochondrial dysfunction; adipokines, the 

renin-angiotensin system, and oxidative stress may permit development of hypertension. 

Better understanding of the mechanisms by which MetS injures the kidney may direct future 

studies and possibly novel therapeutic targets to alleviate and prevent the development of 

renal manifestations of MetS.
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Microvascular Remodeling

We and others have observed that in humans and animals MetS induced renal parenchymal 

damages, such as tubular atrophy and interstitial fibrosis.[9, 15] Microvascular remodeling 

manifesting as arterial and arteriolar sclerosis within kidney lesions in patients with MetS 

have also been observed,[9] and ultrasound revealed elevated resistive indices in intra-renal 

inter-lobar arteries,[16, 17] indicating vasoconstriction and microvascular remodeling. 

Direct evidence for the effects of MetS on microvessels has been obtained from studies in 

animal models. In rats, a 6-week MetS diet (60% fructose) induced wall thickening in outer 

cortical and juxtamedullary afferent arterioles,[18] mimicking arteriolar sclerosis observed 

in humans. In MetS Ossabaw pigs, dysregulated angiogenesis was observed after a sixteen-

week diet, accompanied by increased tissue fibrosis,[15] partly due to elevation of 

Angiotensin II (AngII), consistent with activation of the renin-angiotensin-aldosterone 

system observed in MetS.[19] Accumulation of visceral adipose and fat infiltration of the 

kidney may also induce inflammation-driven neovascularization through multiple cytokines 

that are enriched in adipose tissue, such as tumor necrosis factor (TNF)-α and interleukin-6.

[20, 21]

Using a 3-dimensional micro-CT, we found that at its early stage MetS in fact stimulated 

microvascular proliferation in the kidney.[22, 23] The increase in microvascular density 

(Figure 1, Top) was associated with upregulated expression of vascular endothelial growth 

factor (VEGF),[22] possibly secondary to oxidative stress[24] commonly seen in MetS, and 

hyperinsulinemia that directly increases VEGF production.[25] The small microvessels (20–

40 µm) that proliferated [22, 23] may contribute to maintain renal perfusion, and may 

initially account for elevated renal blood flow (RBF) and glomerular filtration rate (GFR) 

that characterize the early stage of MetS. However, those newly generated vessels often have 

disorganized architecture, because following a 16-week MetS diet they become more 

torturous,[23] suggesting that at later stage of MetS intra-renal vessels may be dysfunctional 

and unstable. In addition, sustained mechanical strain on glomerular capillaries due to 

hyperfiltration likely increases propensity for microvascular loss.[26]

Furthermore, under physiological condition insulin may regulate GFR through local renal 

vasodilation, which can be blocked by indomethacin[27] and augmented by activation of 

endothelial nitric oxide (NO) synthase.[28] However, this effect of insulin might be lost over 

time in MetS subjects with IR,[29] who manifest endothelial dysfunction due to 

downregulated expression of eNOS and increased endothelin-1 levels.[30] Uric acid, which 

is often elevated in MetS, also inhibits NO production, thus contributing to endothelial 

dysfunction.[18] Renal microvascular endothelial dysfunction increases glomerular capillary 

wall permeability and albuminuria, which may also promote glomerular capillary loss[21] in 

prolonged MetS and progression of renal injury. Indeed, MetS patients show a steeper 

decrease in kidney function over time compared to non-MetS patients, suggesting limited 

renal reserve, which might be the consequence of kidney vascular remodeling and 

parenchymal damage in MetS.[9] Moreover, MetS may impose vascular remodeling and 

accelerate development of atherosclerotic lesions. Renal artery stenosis, detected in 16% 

patients with cardiovascular events,[31] further decreases blood supply to the kidney and 

exacerbates renal damage. Indeed, in post-stenotic swine kidneys, MetS precipitates or 
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magnifies loss of microvessels,[15] thereby aggravating tissue injury. This synergistic 

interaction between MetS and renal ischemia is associated with increased oxidative stress 

and inflammation, which disrupt microvascular stability.[15, 23] As renal artery stenosis is 

increasingly observed in the aging modern society, the link between MetS and the severity of 

intra-renal microvascular remodeling in stenotic kidneys needs to be considered during 

management of these patients.

Inflammation and insulin resistance

Low-grade chronic inflammation is a hallmark of MetS[32], and its the severity seems to 

depend on the prevalent number of components of MetS.[33] In fact, the pivotal role of 

metabolically-induced inflammation is underscored by the proposed term 

“metaflammation”.[34]

Animal studies have highlighted the kidney as a target organ often involved in the 

inflammatory response.[15, 35] A 16-week MetS diet in pigs elevated the levels of 

circulating oxidized low-density lipoprotein (LDL) and soluble (s)E-selectin that recruits 

inflammatory cells,[15] and increased infiltration of pro-inflammatory macrophages in the 

kidney (Figure 1, Bottom), accompanied by development of glomerulosclerosis.[15] 

Similary, Zucker fatty diabetic rats show macrophage infiltration in the tubular-interstitium 

space and neutrophils in peritubular capillaries, associated with wide-spread fibrosis.[35] 

Hence, inflammation may mediate development of renal fibrosis and glomerulosclerosis in 

MetS.

One of the plausible hypotheses is that MetS-induced disruption in many physiological 

regulatory systems due to excessive energy intake, provoking stressor stimuli that 

subsequently trigger inflammatory and oxidative pathways.[34] This response might aim to 

block major anabolic signaling pathways, such as the insulin/insulin growth factor (IGF) 

pathway, thereby diverting energy sources from synthetic pathways.[34] In vitro studies 

demonstrated that the inflammatory mediator interleukin (IL)-6 exerts inhibitory effects on 

IGF-1 signaling pathways (extracellular-regulated protein kinase (ERK)1/2 and Akt) by 

blocking its receptor substrate (IRS)-1[36], or by increasing its clearance.[37]

Adipose tissue expansion, a central tenet of MetS, represents a major source of 

inflammatory cytokines. In human subjects adipocyte size correlates with levels of TNF-α, 

IL-6, and high-sensitivity C-reactive protein (CRP).[38] Experimental studies in MetS 

animals have shown substantial infiltration of inflammatory macrophages and TNF-α in the 

abdominal and peri-renal fat tissue[15, 39], which could serve as a channel for inflammatory 

cytokines to access the kidney. In addition, renal arterial endothelial function was blunted 

when incubated in vitro with perirenal fat harvested from MetS pigs, and restored by TNF-α 
inhibitor, substantiating its injurious effect on the renal vasculature.[39] Weight loss 

improves both inflammatory (CRP, TNF-α, IL-6 and leptin) and anti-inflammatory 

(adiponectin) markers in human subjects[40, 41], and MetS rats treated with anti-

inflammatory mycophenolate mofetil showed reduced systemic and renal inflammation and 

limited renal fibrosis.[35] Therefore, measures to control inflammation in MetS may be 

beneficial for the kidney.
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Even in the absence of other co-existing MetS components, inflammatory mediators alone 

can trigger IR. For example, in humans uremia can cause IR by disrupting insulin signaling.

[42] In vitro, stimulated macrophages produce IL-1β and IL-18, contributing to pancreatic 

β-cell death with chronic hyperglycemia and progression of diabetes.[43] These 

observations suggest that inflammation can be upstream to metabolic derangement. Clinical 

studies have found that Salsalate, a prodrug of salicylate which suppresses inflammation, 

attenuates IKKβ/NF-κB activity, improves glycemic control in patients with type-2 diabetes,

[44] and alleviates IR.[45] TNF-α blockade improved fasting glucose and improved the 

levels of anti-inflammatory adiponectin in obese subjects with abnormal glucose 

homeostasis.[46] Clearly, the cause and effect relationship between inflammation and MetS 

remains to be discerned, and the ability of management of inflammation to alleviate kidney 

injury in MetS warrants further studies.

Evidence indicated that IR is not infrequently associated with CKD.[47, 48] In a 9-year 

study, the severity of IR was directly related to the risk of developing CKD.[48] In slightly 

overweight non-diabetic patients, the prevalence of CKD significantly and progressively 

rises with increasing levels of serum insulin and IR.[49] As mentioned earlier, 

hyperinsulinemia may induce glomerular hyperfiltration, endothelial dysfunction, and 

increased vascular permeability,[50] leading to albuminuria. In nondiabetic subjects, even a 

short-term insulin infusion increases urinary albumin excretion.[51] In turn, albumin in the 

tubular lumen may lead to tubulo-interstitial injury and fibrosis.[52] The link between IR 

and kidney disease might be attributable to the dependence of the kidney on insulin, which 

binds to all nephron cells, including the glomerulus and the entire length of the renal tubules.

[53, 54] Particularly, the glomerular podocytes, major components of the glomerular 

filtration barrier, have higher expression of insulin receptors compared with endothelial and 

mesangial cells,[55] and insulin may control podocyte contractility associated with 

glomerular permeability.[56, 57] Conceivably, changes in the abundance or sensitivity of 

insulin receptors in MetS may regulate renal physiology and/or pathology. Furthermore, 

elevated insulin levels have been found to stimulate IGF-1 production, which increases 

connective tissue growth factor, causing renal fibrosis.[58] Indeed, insulin-sensitizing 

compounds, such as thiazolidinediones (TZD), abrogate interstitial fibrosis in Zucker obese 

rats fed a high-protein diet.[59] These findings suggest that the interaction of insulin with its 

receptor bears direct ramification for renal structural and functional impairment in MetS. As 

hyperglycemia becomes more evident, advanced glycation end products (AGEs) also 

participate in kidney damage via their receptors on podocytes and endothelial cells. 

Deposition and activation of AGEs promote cellular hypertrophy and apoptosis, as well as 

inflammation.[60] Whether systemic levels of AGEs correlate with severity or progression 

of kidney damage in MetS needs to be examined.

More recently, adipocytokines linked to IR, low grade inflammation, endothelial 

dysfunction, and vascular damage have been proposed to modulate kidney function.[61] 

Adiponectin, which is linked to insulin sensitivity, regulates function of podocytes, major 

sites of adiponectin receptor in the kidney.[62] Mice with reduced or abolished expression of 

adiponectin exhibit exacerbation of podocyte injury, albuminuria, and renal fibrosis 

compared with wild-type animals.[63–65] The regulatory role of adiponectin on podocyte 

function is likely mediated through the 5’ AMP-activated protein kinase (AMPK) pathway, 
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and adiponectin-knockout mice exhibit increased albuminuria and fusion of podocyte foot 

processes. In cultured podocytes, adiponectin administration was associated with increased 

activity of AMPK, and both adiponectin and AMPK activation reduced podocyte 

permeability to albumin and podocyte dysfunction.[64]

Conversely, serum levels of leptin, which regulates hunger and satiety, are 5–10-fold higher 

in obese than in healthy individuals. In vitro, leptin induces glomerular mesangial cell 

hypertrophy,[66] which subsequently increases the amount of filtered protein and albumin. 

Leptin has been shown to activate several cell signaling pathways in a cell-specific manner. 

In vitro, leptin can alter rat glomerular cell size via activation of the mitogen-activated 

protein kinase pathway through ERK 1/2,[67] and hypertrophy in glomerular mesangial cells 

via activation of phosphoinositide 3-kinase and ERK1/2.[66] Leptin enhanced tissue growth 

factor (TGF)-β/smad signaling in rat kidney fibroblasts, and leptin deficient ob/ob mice had 

significant reduction in TGF-β mRNA levels, Smad-2/3 activation, and fibrotic tissue.[68]

Resistin, an adipose sensor that contributes to obesity,[69] is also independently associated 

with albumin excretion.[70] Although the mechanisms of resistin-related kidney injury is 

less clear, studies have shown that it upregulates expression of Intercellular Adhesion 

Molecule-1 and vascular cell adhesion molecule-1.[71] In addition, both leptin and resistin 

enhance renal sympathetic nerve activity,[72] the latter possibly via phosphatidylinositol 3-

kinase.[73]

Therefore, IR and dysregulated adipokines in concert target different renal cell types via 

various pathways to elicit kidney disease in MetS. Nonetheless, while IR is speculated as an 

important mediator of MetS-related CKD,[19] its complex role in regulating renal function, 

solute transfer, and blood pressure needs to be better defined.

Obesity

Substantial evidence has shown that obesity directly influences renal hemodynamics and 

structure. A 1-month high-fat diet promptly increases the extracellular fluid and causes a 

shift in sodium balance.[74] Elevated aldosterone levels due to activation of the renin-

angiotensin-aldosterone system and increased sympathetic activity in obesity are likely the 

major culprits that promote sodium retention[75, 76] by increasing tubular reabsorption. 

Elevated salt reabsorption at the segment proximal to the macular densa also induces a rise 

in GFR through tubulo-glomerular feedback, contributing to hyperfiltration.

Yet, obesity-related glomerulopathy (ORG) may not be mediated solely by hemodynamic 

factors. As an individual gains weight, each podocyte must undergo mechanical stretch to 

cover a larger surface area to accommodate the increased glomerular volume,[77] resulting 

in decreased podocyte density and increased foot process width in adults with ORG.[78] 

Podocyte number increases in size in animals fed ad libitum in proportion to the extent of 

glomerular hypertrophy at the early stage.[79] Over time, when podocyte enlargement is no 

longer proportional to glomerular hypertrophy, podocytes fail and detach, causing localized 

denudation of the glomerular basement membrane, subsequent adhesions to the Bowman 

capsule and parietal cell coverage, forming a nidus for development of segmental sclerosis,
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[80] and result in proteinuria.[81] In addition, an average of 12% individuals with ORG 

progress to focal segmental glomerulosclerosis (FSGS), which typically affects 

hypertrophied glomeruli.[82, 83] Although those pathological alterations can be prevented 

by calorie restriction,[79] development to FSGS is often irreversible and may eventually lead 

to end-stage renal disease.[81]

Oxidative stress and mitochondrial dysfunction

Oxidative stress, characterized by elevated reactive oxygen species (ROS) levels, causes 

damage to proteins, lipids and DNA, and has been proven to play an important role in MetS.

[84, 85] In humans, lipid peroxidation, represented by plasma thiobarbituric acid reactive 

substance and urinary 8-epi-prostaglandin-F2α, correlate with BMI and waist 

circumference.[86]

A major source of ROS MetS is the NADPH oxidase (NOX) family of enzymes, and 

accumulating evidence has shown that NOX, particularly NOX1,2, and 4 which are highly 

expressed in the kidney,[87] play vital roles in intrarenal oxidative stress. Upregulated by 

metabolic factors, NOX leads to glomerular overproduction of ROS in podocytes, 

endothelial cells, and mesangial cells, which is closely associated with the initiation and 

progression of kidney diseases. Exposure of cultured mouse podocytes to high glucose 

resulted in apoptosis, which involved increased NOX activity and ROS production.[88] The 

transgenic TG(mRen2)27 rats, which harbor the mouse renin transgene and renin-

angiotensin system activation, shows increases in systolic blood pressure, albuminuria, renal 

NOX activity, accompanied by periarteriolar fibrosis and podocyte foot-process effacement.

[89] NOX4 has also been identified as a critical mediator of high glucose- or angiotensin II-

induced mesangial cell activation.[90, 91]

Even short exposure of vascular smooth muscle cells to AngII, which is often augmented in 

MetS, increases mRNA expression of NOX1 and NOX4 several-fold,[92] suggesting NOX 

activity is Ang II-dependent,[89]. Furthermore, additional mechanisms in injured kidneys 

may exacerbate oxidative stress, resulting in a vicious circle. TGF-β increased in the rat 

kidney fibroblasts the activity of both NOX2 and NOX4.[93] Hence, there is close link 

between oxidative stress and kidney health. Therapeutic strategies targeting oxidative stress 

may be useful to prevent or alleviate kidney injury in MetS.

The mitochondrion is an intracellular organelle crucial for handling ROS production, which 

when excessive impairs cellular function. Under normal condition, mitochondria extract 

energy stored in nutrients that drives work within the body,[94–96] and a series of feedback 

and regulatory steps enables matching the rate of mitochondrial oxidative phosphorylation 

with cellular ATP demands.[97, 98] As the kidney has high energy demand and is rich in 

mitochondria, mitochondrial dysfunction plays a critical role in the pathogenesis of kidney 

diseases by affecting almost all renal cell types,[99, 100] including participating epithelial-

mesenchymal transition which contributes to loss of functional parenchyma.[101, 102]

In the setting of MetS, excessive nutrient availability supplies superfluous electrons to the 

respiratory chain, while lack of physical activity results in low ATP demand, favoring 
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mitochondrial dysfunction and disproportionate superoxide formation.[103] Several 

elements that prevail in MetS may further disrupt mitochondrial function. Oxidized-LDL 

increases mitochondrial membrane potential and impairs redox status,[104] leading to 

apoptotic events; it may also cause vascular endothelial dysfunction by translocating 

mitochondrial proteins.[105] Patients with diabetic nephropathy demonstrate lower gene 

expression of the renal mitochondrial inner membrane organic anion transporters 1 and 3, 

and of genes and proteins critical for mitochondrial biogenesis.[106] Similarly, their urine 

exosomes has decreased mitochondrial DNA.[106] NOX4-derived ROS decrease 

mitochondrial function in endothelial cells via disruption of the electron transport chain I,

[107] and causes extracellular matrix protein accumulation in mesangial cells.[108, 109] 

Interestingly, these changes are associated with AMPK inactivation,[108] and its activation 

reduced renal fibrogenesis.[109] A key pathway by which AMPK stimulation protects cells 

in a calorie-deprived state is by stimulating the master regulator of mitochondrial biogenesis, 

PPAR-γ coactivator-1α.[110] AMPK also inhibits activity of mammalian target of 

rapamycin, which mediates NOX4-induced podocyte injury,[111, 112] thereby preventing 

kidney damage progression.[113, 114] Furthermore, AngII not only increases mitochondrial 

production of ROS,[115] but may also promote mitochondrial degradation through the AT1-

receptor, and suppress their biogenesis through the AT2-receptor.[116, 117] Therefore, MetS 

may affect renal mitochondrial structure and function through several different pathways.

Mitochondrial dysfunction might also cause or worsen IR.[118] A 35% decrease of 

mitochondrial DNA (mtDNA) density in peripheral blood cells precedes development of 

type-2 diabetes in patients.[119] Genetic studies also identified human mtDNA haplogroups 

that can modulate susceptibility to type-2 diabetes.[120] Interestingly, Rosiglitazone, one of 

the TZDs that increase insulin sensitivity, also recovers mitochondrial electron transport 

function in mice with aldosterone-induced mitochondrial dysfunction.[121] We have 

recently also found cardioprotective effects of mitochondrial-targeted peptides in MetS,[122] 

yet their effects on the kidney remain to be explored.

Taken together, mitochondrial function is vital in sensing and modulating energy metabolism 

in MetS, and development of mitochondria-targeting therapeutics may potentially benefit 

patients with MetS and associated tissue injury.

Hypertension

Hypertension is an important hallmark of MetS and a common cause of kidney disease. 

Several mechanisms link hypertension to MetS, among which obesity is a major contributor. 

Obesity alone is associated with an increase in the severity of hypertension and the number 

of required antihypertensive medications, and impedes achieving blood pressure control.

[123] The direct link between hypertension and dyslipidemia-induced obesity was shown in 

animal studies. In rabbits, blood pressure rises by 6% after a one-week high–fat diet, and 

falls back after resumption of normal diet.[124] Adipocytes are rich sources of the precursor 

protein of AngII and angiotensinogen[125] as well as aldosterone synthase.[75] Indeed, 

plasma aldosterone is independently associated with obesity.[126] A 5% weight loss in 

obese women reduces renin-angiotensin-aldosterone activity in both adipose tissue and 

plasma.[127] In addition, increased visceral and retroperitoneal fat may boost hypertension 
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by compressing the kidneys. The intra-abdominal pressure in obese patients can be double 

that of normal subjects,[128, 129] and excessive fat accumulation in and around the kidneys 

is associated with increased intrarenal pressures, impaired pressure natriuresis, and 

hypertension.[130]

In addition to the effects of fat, high serum insulin level is associated with an increase in 

circulating levels of the potent vasoconstrictor endothelin-1 in healthy and IR individuals.

[131] Endothelin-1 receptor antagonism effectively reduced blood pressure in animal models 

of IR and hypertension,[132] implicating endothelin-1 in their pathogenesis. Furthermore, 

when coexisting with hyperglycemia, insulin exhibits anti-natriuretic effect by promoting 

sodium retention.[133] As proximal tubular epithelial cells often undergo hypertrophy in 

obese subjects,[134] together they may account for increased sodium reabsorption and 

elevation of arterial pressure. As discussed earlier, increased leptin and reduced adiponectin 

in obesity may also increase sympathetic nerve activity,[135, 136] thus contribute to 

hypertension.

Uric acid (UA)

Hyperuricemia is commonly observed and strongly associated with MetS. The prevalence of 

MetS increased from 5.9% for uric acid levels under 6mg/dL to 59.0% for levels 10mg/dL or 

greater,[137] and hyperuricemia correlates with elevated fasting insulin level.[138] 

Moreover, based on a recent systemic review including 13 studies containing 190,718 

participants, elevated serum uric acid levels showed an increased risk for development of 

chronic renal dysfunction.[139]

Animals studies have revealed that hyperuricemia caused IR possibly due to the 

proinflammatory effect of uric acid on adipocytes [140, 141] and impairment of insulin-

dependent glucose uptake.[142] Using a uricase inhibitor, which leads to hyperuricemia, 

enabled observing a direct relationship between blood pressure and uric acid. In mice, blood 

pressure increases by 10-mm Hg for each 0.03-mmol/L (0.5-mg/dL) incremental rise in 

serum uric acid.[143] Allopurinol, a uric acid lowering drug, prophylactically prevented 

hyperinsulinemia, systolic hypertension, and hypertriglyceridemia.[140] In rat kidneys, 

hyperuricemia increased juxtaglomerular renin and downregulated macula densa neuronal 

NO synthase.[143] In vitro, uric acid inhibited NO production in endothelial cells,[144] and 

dose-dependently inhibited endothelial vasodilatory response to acetylcholine,[140] which 

may in turn compromise blood and oxygen supply to the kidney. Evidently, decreasing uric 

acid levels may have beneficial effects in MetS.

Conclusion

Clearly, the impact of the MetS on the kidney is multifactorial. The current nutritional habits 

and lifestyles of many modern human subjects favors metabolic overload, which underpins 

chronic metabolic diseases. The kidney is a target organ susceptible to MetS (Figure 2), yet 

the appropriate treatment strategy for MetS-associated kidney disease remains to be 

identified. As MetS and type-2 diabetes share some common pathways (e.g. hyperfiltration, 

oxidative stress, etc.), MetS-associated kidney damage may resemble the early stage of 
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diabetic nephropathy and merits further studies. In addition to screening, life-style 

modifications, and management of MetS risk factors and CKD, target-specific therapeutic 

interventions are in need and warrant investigation to prevent the development and slow the 

progression of CKD in MetS.
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Figure 1. 
(Top) Microvascular proliferation in MetS kidneys. Three-dimensional micro-CT reveals 

increased microvascular density in swine MetS (B) compared to normal (A) kidney. 

Reproduced with permission.19 (Bottom) Proinflammatory macrophages infiltration in 

MetS kidney. Amplified infiltration of proinflammatory CD68+ (green) and inducible nitric 

oxide synthase+ (red) double-positive (yellow, white arrow) macrophages in a stenotic 

kidney with concurrent MetS (B) compared to control kidney (A).
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Figure 2. 
Potential mechanisms by which MetS promotes kidney injury. Fundamental manifestations 

of MetS include insulin resistance and adipose tissue expansion, the latter promoting chronic 

inflammation and oxidative stress, which exacerbate insulin resistance. Those in turn can 

elicit various kidney injurious events through endothelial dysfunction, renin-angiotensin-

aldosterone activation, and hypertension, as well as via adipokine imbalance. MetS is also 

closely linked to mitochondrial dysfunction, which can both promote progression of kidney 

damage and development of MetS.
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