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Cytoglobin regulates blood pressure and vascular
tone through nitric oxide metabolism in the
vascular wall
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The identity of the specific nitric oxide dioxygenase (NOD) that serves as the main in vivo

regulator of O2-dependent NO degradation in smooth muscle remains elusive. Cytoglobin

(Cygb) is a recently discovered globin expressed in fibroblasts and smooth muscle cells with

unknown function. Cygb, coupled with a cellular reducing system, efficiently regulates

the rate of NO consumption by metabolizing NO in an O2-dependent manner with decreased

NO consumption in physiological hypoxia. Here we show that Cygb is a major regulator of

NO degradation and cardiovascular tone. Knockout of Cygb greatly prolongs NO decay,

increases vascular relaxation, and lowers blood pressure and systemic vascular resistance.

We further demonstrate that downregulation of Cygb prevents angiotensin-mediated

hypertension. Thus, Cygb has a critical role in the regulation of vascular tone and disease. We

suggest that modulation of the expression and NOD activity of Cygb represents a strategy for

the treatment of cardiovascular disease.
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E
ndothelium-derived relaxing factor, identified as nitric oxide
(NO), is a key mediator regulating vascular tone and blood
pressure (BP)1,2. NO mediates vascular relaxation through

binding to and activation of soluble guanylate cyclase (sGC) in
the smooth muscle of vessels3. Vascular NO levels are controlled
by both the rate of NO generation and the rate of NO
metabolism. While NO is synthesized by a specific well
characterized NO synthase in the endothelium (eNOS), the
process of NO degradation and metabolism in the vascular wall is
poorly understood4–6. It is hypothesized that NO degradation in
the vessel wall is mediated by an O2-dependent NO dioxygenase
(NOD) such as myoglobin (Mb), haemoglobin-a (Hb-a) or
cytoglobin (Cygb) that oxidizes NO to nitrate7–14. However, the
identity of the specific NOD that functions as the main in vivo
regulator of O2-dependent NO degradation in smooth muscle is
still unknown. Additional questions also remain regarding the
identity of the cellular reducing system that couples with this
NOD to regulate the rate of NO consumption in vascular smooth
muscle12,15.

Each member of the globin family of proteins has a unique
pattern of cellular expression and localization. Tetrameric Hb is
mainly located in red blood cells16, Mb is mainly located in
cardiac and skeletal muscle17, neuroglobin is mainly present in
neurons18,19 and monomeric Hb-a has recently been discovered
in the myoendothelial junction of resistance vessels14. Cygb has
been found predominantly in fibroblasts and in the vascular
wall13,14,20. The concentration of Hb-associated haem in blood
approaches 8 mM, and the concentration of Mb in heart
and skeletal muscle is several hundred micromolar or higher.
At such high globin concentrations, the rate of NO consumption
in blood, heart and skeletal muscles is very rapid21–25. Unlike Hb
and Mb, the Cygb concentration in cells where it is expressed,
such as smooth muscle, is in the micromolar range26,27. At
this concentration, Cygb could play a role in regulating
NO concentrations in the smooth muscle of the vessel wall,
where NO levels are of critical importance for activation of sGC,
which in turn regulates vascular tone1,3.

In cells and tissues where Mb is highly abundant such as in
cardiac muscle, Mb has been reported to function as a potent NOD
to reduce cytosolic NO concentrations22,28. This process was
shown to be crucial for the breakdown of NO in cardiac muscle
and to regulate the dose–response of the effects of NO on the heart.
Hearts with genetic knockout of Mb were more sensitive to infused
NO with increased cardiac depression and vasodilation. This NOD
function was further hypothesized to protect myocyte cytochromes
against increases in NO levels22. However, Mb has been reported
to be either absent from vascular smooth muscle or present in only
trace amounts, leading to the concept that there must be another
globin with the primary function of regulating NO degradation in
vascular smooth muscle13,15,29.

Recently, it has been reported that Hb-a is expressed in
endothelial cells and enriched at the myoendothelial junction
in small arteries and arterioles, where it can serve to regulate
NO flux out of the endothelial cell to the vascular smooth
muscle14,30. Endothelial cytochrome b5 reductase 3 was further
reported to regulate this process through the reduction of the haem
iron of Hb-a, and genetic and pharmacological inhibition of
cytochrome b5 reductase 3 was found to enhance NO bioactivity in
small vessels. Thus, Hb-a has been reported to play a critical role
as a NOD located at the myoendothelial junction where it can
serve to regulate NO efflux from the endothelium.

Questions remain regarding the process of NO metabolism
in vascular smooth muscle and how this regulates vascular
tone. While Cygb is expressed in smooth muscle cells (SMCs),
its function has not yet been elucidated31–34. When coupled
with suitable cellular reducing systems, such as ascorbate or

cytochrome b5 reductase/cytochrome b5/NADH, Cygb has been
demonstrated to function as a NOD, efficiently regulating the rate
of O2-dependent NO consumption12,15. Cygb uniquely
metabolizes NO in a highly O2-dependent manner with
decreased NO consumption in physiological hypoxia35–37. As
such, one can hypothesize that regulation of the expression level
or NOD function of Cygb could modulate basal vascular tone and
blood pressure.

In this study, we demonstrate in cellular, isolated vessel and
in vivo models, that Cygb is a highly efficient NOD, and serves as
a major regulator of NO degradation and cardiovascular tone in
the vascular wall. Both ascorbate and cytochrome b5 reductase/
cytochrome b5/NADH serve as effective reducing systems for
Cygb, with the latter serving as the major reducing system in
SMCs. Knockout of Cygb greatly prolongs NO decay, increases
vascular relaxation and lowers blood pressure and systemic
vascular resistance (SVR) with increased tissue perfusion.
Furthermore, it was observed that downregulation of Cygb can
prevent angiotensin-mediated hypertension. Thus, Cygb is shown
to have a critical role in the regulation of vascular tone and
prevention of disease.

Results
Globin expression level, reduction and NO consumption. In
order to assess the importance of a given globin protein in the
metabolism and consumption of NO in smooth muscle, it is
necessary to determine at what level it is expressed and what its
rates of reduction and NO consumption are. Therefore, initial
experiments were performed in smooth muscle cells (SMC) first to
measure the expression levels of the globin proteins Cygb, Mb and
Hb-a that have been reported to have important NOD function.
These experiments were then followed by spectrophotometric
measurements of the reduction rates and electrochemical
measurements of the rates of NO consumption by each globin in
the presence of ascorbate or an enzymatic reducing system.

Quantitative immunoblotting was performed comparing the
level of each globin from SMC homogenates to a series of purified
protein standards of known concentration for each globin. From
this quantitative immunoblotting, we observe that Cygb is the
most abundant globin in aortic smooth muscle cells (aSMC)
(Fig. 1a,b). We measure that the concentration of Cygb is B5 mM,
while Mb levels are over 40-fold lower. Hb-a is trace or
undetectable with levels 4200-fold below those of Cygb.

Since the process of globin reduction is the rate-limiting step
for NOD activity37, it is important to characterize the relative
kinetics of globin reduction. Cygb has a uniquely fast reduction
rate15,36. We observe that the reduction rate of Cygb is B10 times
faster than that of other globins such as Mb or Hb-a when
reductase systems (such as cytochrome b5 reductase/cytochrome
b5/NADH) are used, and several hundred times greater when
ascorbate (Asc) is the reductant (Fig. 1c–f). This leads to a 10- to
100-fold more rapid rate of NO consumption by Cygb than other
globins (Fig. 1g,h). Thus, based on its relatively high expression
level and its high NOD activity, Cygb would be predicted to be
the major pathway of NO degradation in SMCs.

Measurement of the product of NO consumption by Cygb. In
order to confirm that Cygb consumes NO through the process of
NO dioxygenation where nitrate is the product, we assayed for
the amounts of the NO degradation products nitrite and nitrate
in the presence and absence of Cygb using an HPLC-based
NOx analyzer. In the absence of Cygb, the major NO degradation
product is nitrite, with only small amounts of nitrate detected
(Fig. 2a,c), while in the presence of Cygb almost exclusively
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Figure 1 | Expression of globin proteins, reduction rates and rates of NO consumption of Cygb, Mb and Hb-a. Level of Cygb (a) and Mb (b) in human

aortic smooth muscle cells (aSMCs) measured by quantitative immunoblotting. These results indicate that there is B45 ng of Cygb and B1 ng of Mb in

106 aSMCs. Hb-a was not detectable with a level 4200-fold below that of Cygb. Assuming a cell volume of 400mm3 (ref. 11), the intracellular

concentration of Cygb is estimated at B5.3 mM and that of Mb at B0.13mM and Hb-ao0.03 mM. Positions of nearest molecular weight markers are

shown. Reduction of globins by 10 mM Asc (c) or b5R (30 nM)/b5 (0.5mM)/NADH (100mM) (d). Measured rate constants of Cygb, Mb and Hb-a
reduction by 10 mM Asc (e). Measured rate constants of Cygb, Mb and Hb-a reduction by b5 reductase (30 nM)/b5 (0.5mM)/NADH (100mM) (f).

Calculated rate of NO consumption by Cygb, Mb and Hb-a in the presence of 1mM globin and 0.3 mM Asc (g). Calculated rate of NO consumption by

Cygb, Mb and Hb-a in the presence of 1mM globin and 50 nM b5 reductase with excess b5 and NADH (h). The calculation was based on the equation in

Supplementary Fig. 1, also for more detail see ref. 61. Error bars: mean±s.e.m., n¼ 3 per group; **Po0.01 for Cygb versus Mb, þ þPo0.01 for Cygb versus

Hb-a; P values determined using a two-tailed t-test.
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nitrate formation is observed (Fig. 2b,d). Thus, Cygb functions as
a NOD with conversion of NO to nitrate.

Role of Cygb in NO metabolism in vascular smooth muscle. In
order to determine the role of Cygb on NO metabolism in
smooth muscle of conduit and resistance vessels, we measured
the rate of NO consumption in rat aSMCs and mesenteric
SMCs (mSMC), as well as matched cells treated with Cygb-siRNA
to knockdown Cygb expression. Cygb levels were evaluated by
immunoblotting (Fig. 3a). The first four bands correspond to
standard amounts of pure Cygb. Bands 5 and 6 are from
homogenates obtained from control aSMCs and matched Cygb
siRNA-treated cells; bands 7 and 8 are control mSMCs and
matched Cygb siRNA-treated cells. Cygb levels were B80%
depleted in these Cygb siRNA-treated SMCs.

With knockdown of Cygb, the rate of NO consumption
measured by electrochemical NO sensor in aSMCs or mSMCs
was decreased by B70–75% (Fig. 3b–d). With Cygb-siRNA
treatment, B20% of basal Cygb levels remain (Fig. 3a), which
suggests that the process of NO consumption in these SMCs is
largely Cygb dependent, with o12% through other pathways.

Role of b5R in NO metabolism in vascular smooth muscle.
Questions remain regarding which cellular reducing system is
involved in the process of Cygb reduction and NO dioxygenation.
Since it is thought that cytochrome b5 reductase 3 (b5R) is
of particular importance as a globin reductase, experiments

were performed in vascular SMCs with b5R-siRNA treatment
to knockdown b5R expression. From immunoblotting experi-
ments as shown in Fig. 4a, the b5R-siRNA was highly effective in
decreasing b5R expression with B90% decrease seen while con-
trol scrambled siRNA had no effect. With this decrease in b5R
expression, the rate of NO consumption was decreased by B60%
(Fig. 4b,c). Based on the 90% efficiency of knockdown of b5R, this
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Figure 2 | NO dioxygenase activity of cytoglobin. Nitrite and nitrate
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64% of NOx in control but decreases to 4% in the Cygb samples. Error

bars: mean±s.e.m., n¼4 per group; **Po0.01 for Cygb versus control with

no Cygb; P values determined using a two-tailed t-test.
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versus time after NO was injected into the solution to achieve an initial

concentration of 0.5mM. Means and standard errors of the rate of

NO decay by SMCs and Cygb-KD SMCs from aorta (c) and mesenteric

artery (d). Error bars: mean±s.e.m., n¼ 3–5 per group, **Po0.01 control

SMCs versus Cygb-KD SMCs; P values determined using a two-tailed t-test.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14807

4 NATURE COMMUNICATIONS | 8:14807 | DOI: 10.1038/ncomms14807 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


suggests that at least 67% of the NO consumption in the SMCs is
b5R dependent.

Globin expression levels and localization in vessels. To further
evaluate the role of Cygb in vascular NO degradation, the levels
and location of Cygb expression were measured in vessels of wild-
type (WT) and Cygb� /� mice. Similar to the results in isolated
SMCs, immunoblotting of WT aortic homogenates demonstrated
that Cygb expression was by far the highest among all globins
tested, while in Cygb� /� vessels there was no detectable Cygb
and the expression of sGC, Mb and Hb-a were not significantly
different in Cygb� /� and WT aorta (Fig. 5a,b). Immunohis-
tochemistry demonstrated that in WT mice, Cygb is highly
expressed in SMCs (red staining) but is not present in the
endothelium (green staining of eNOS as an endothelial marker).
In contrast, Cygb is not detected anywhere in the vascular wall or
endothelium of Cygb� /� mice (Fig. 5c). Thus, Cygb is the major
globin expressed in vascular smooth muscle and is not present in
the endothelium.

Vasodilatory function and NO degradation in vessels. To
examine the effect of Cygb on vascular tone, we measured
vasodilatory response of isolated aortic segments to endogenous
and exogenous NO. Phenylephrine-precontracted aortas of
Cygb� /� and WT mice were studied. The Cygb� /� vessels were
much more sensitive to either the endothelium-dependent
agonist acetylcholine (ACh) or the endothelium-independent NO
donor nitroprusside, with a marked shift to the left in the
vasodilation–response curves observed for Cygb� /� compared
to WT, with 39-fold lower (13–0.33 nM Ach) or 20-fold lower
(3.0–0.15 nM nitroprusside) values seen for 50% relaxation,
respectively (Fig. 5d,e). To determine if the enhancement of
vasodilation in Cygb� /� vessels is due to a lower rate of NO
metabolism in the vessel wall, we measured the NO diffusion
across the vascular wall of aortas from Cygb� /� and WT mice
using an NO electrode35,38 (Supplementary Fig. 2). To prevent
interference from endothelium-derived NO, the endothelium was
removed by gently rubbing the endothelial surface of the opened
aortic segment39,40. The NOS inhibitor L-NAME (1 mM) was
also added to inhibit NO generation from any remaining NO
synthases. The measured peak NO flux across the aortic wall of
Cygb� /� mice was 46 times higher than that of WT (Fig. 5f,g).

Thus, Cygb regulates endothelium-mediated vasodilation and
vascular tone through its metabolism of NO.

Role of Cygb on BP, cardiac function, vascular tone and cGMP.
Further measurements were performed to determine the role
of Cygb on in vivo BP, cardiac function and vascular tone. The
mean arterial BP of Cygb� /� mice was 30% lower with values
of 65.3±1.9 mmHg for Cygb� /� and 93.7±1.5 mmHg for
WT (Fig. 6a). By echocardiography, cardiac output (CO) was
increased by 68% in Cygb� /� mice compared to WT (Fig. 6b).
SVR of Cygb� /� mice was decreased by 54% from that in
WT mice (Fig. 6c). cGMP levels in Cygb� /� aortas were five-fold
higher than those of WT (Fig. 6d). In addition, the ascending
aorta was clearly dilated in Cygb� /� mice compared to WT mice
with 47% increase in diameter (from 1.5±0.05 mm to
2.2±0.1 mm) (Fig. 6f,g). Thus, Cygb knockout results in
increased activation of sGC with elevated levels of cGMP, causing
marked vasodilation with lower BP and SVR that, in turn, triggers
a compensatory elevation in CO.

Role of NOS-derived NO in vascular relaxation. In order to
further confirm that the diminished tone and enhanced vascular
relaxation in Cygb� /� mice were due to NOS-derived NO, mice
were administered the NOS inhibitor L-NAME. L-NAME exerted
large effects on the cardiovascular function of Cygb� /� mice,
reversing the low mean arterial BP (MABP) and SVR values as
well as the elevated CO to values close to WT, while in WT lesser
effects were seen as expected based on the lower levels of cGMP
present (Fig. 6d,e). Cardiac echo imaging revealed that the aorta
was dilated in Cygb� /� mice compared to WT. After L-NAME
treatment, the aortic dilation in Cygb� /� relative to WT was also
reversed (Fig. 6f,g). In order to obtain further data on micro-
vascular function, perfusion imaging was performed on WT and
Cygb� /� mice. In Cygb� /� mice, B40% increase in tissue
perfusion was seen compared to WT mice. L-NAME treatment
reversed this relative increase in tissue perfusion in Cygb� /�

mice to values similar to those in L-NAME-treated WT mice
(Fig. 6h,i). Thus, inhibition of NO synthesis reverses the profound
vasodilation seen in Cygb� /� mice with higher BP and SVR,
normalization of CO, decreased vessel diameters and lower
tissue perfusion, indicating that lack of Cygb greatly enhances
NO-mediated vascular signalling.
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Effects of Cygb downregulation on Ang II-induced hypertension.
It has been demonstrated that angiotensin II (Ang II)-induced
hypertension is associated with enhanced superoxide generation in

the vessel wall secondary to induction of vascular NADPH oxi-
dase41–43. This increased superoxide is associated with vascular
dysfunction due to superoxide-mediated NO consumption41. Since
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we observe that downregulation of Cygb in SMCs and vessels
decreases vascular tone and BP with preservation of NO and
potentiation of NO signalling, we hypothesized that a decrease in

Cygb-mediated NO consumption may be able to compensate for
the increase in superoxide-mediated NO consumption that occurs
in the vessels of mice with Ang II-induced HTN. Therefore, we
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performed experiments to determine if this could be utilized to
enhance endothelium-dependent vasodilation in order to
ameliorate hypertension (HTN).

Experiments were performed in a mouse model of Ang
II-mediated HTN. WT and Cygb� /� mice were chronically
administered with Ang II by osmotic pump at doses known to
induce HTN44–46. In WT mice, HTN was observed with systolic
BP of 160 mmHg, diastolic BP of 104 mmHg and mean BP of
126 mmHg measured after 4 weeks of Ang II administration
versus values of 120, 85 and 100 mmHg, respectively, in untreated
WT mice (Fig. 7a–c). In contrast, Cygb� /� mice did not develop
HTN post-Ang II administration and BP values remained in the
normal range with values of 105, 70 and 82 mmHg. Thus,

downregulation of Cygb or its NOD function could provide
a novel, highly potent approach to prevent or reverse HTN.
In parallel with the lower BP values, SVR was also lower in the
Ang II-treated Cygb� /� mice compared to WT (Fig. 7d).

Measurements of the flux of NO diffusion across the wall of
small resistance vessels from these control untreated WT and
Cygb� /� mice showed that peak NO flux across the mesenteric
artery wall of Cygb� /� mice was B3.2-fold higher than that
of matched WT vessels. As expected, this difference, while large,
is less than that measured in aorta which has a thicker wall
(Fig. 5). Measurements of the flux of NO diffusion across the
wall of mesenteric artery from Ang II-treated mice demonstrated
that Ang II treatment decreased the measured NO levels with
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decreased NO flux due to increased rate of NO degradation in
the wall of both WT and Cygb� /� vessels (Fig. 7e–g). However,
the NO flux in Cygb� /� vessels remained much higher than in
WT, with values similar to those in normal untreated WT vessels
due to the lower rate of NO consumption in the wall of
these vessels. Thus, the decreased rate of NO degradation with
Cygb knockout lowered vascular resistance, preventing Ang
II-induced hypertension.

Additional experiments were performed to assess the role
of superoxide in the process of NO decay in the vessels of
Ang II-treated mice using a SOD mimetic taken up in cells
(GC4419, Galera Therapeutics, Inc.). In mesenteric arteries
from Cygb� /� mice, treatment with the SOD mimetic largely
reversed the Ang II-associated decrease in NO diffusion flux
with a 130% increase seen, while in WT vessels a 68% increase was
seen, with values restored close to those in vessels not treated with
Ang II (Fig. 7e,f,h,i). Thus, most of the increased
NO consumption seen with Ang II treatment is confirmed to be
secondary to the increased levels of superoxide induced in the
vascular wall by Ang II. In WT and Cygb� /� vessels, treatment
with the SOD mimetic did not alter the NO diffusion flux, and
curves were indistinguishable from those in Fig. 7e. Interestingly,
statistical analysis shows that the effect of Cygb on NO flux and
MABP depends on Ang II, with a highly statistically significant
interaction between Cygb and Ang II. These results confirm that
NO degradation with decreased NO diffusion flux through the wall
of small resistance vessels can occur due to reaction with
superoxide, as induced by Ang II, or due to dioxygenation by
Cygb, and that both pathways of NO consumption interact, with
each contributing to regulation of vascular tone and BP. We further
observe that a decrease in Cygb expression or NOD activity could
compensate for the increased superoxide-mediated NO consump-
tion seen with Ang II administration and prevent hypertension.

Smooth muscle versus endothelial NO consumption. NO is
primarily synthesized in the endothelium and then diffuses into
the vascular smooth muscle, where it influences vessel tone.
Recently, it has been reported that in small resistance vessels
Hb-a is expressed in endothelial cells and enriched at the

myoendothelial junction, where it can serve to regulate NO flux
out of the endothelial cell to the vascular smooth muscle14,30. In
order to assess the relative importance of endothelial versus
smooth muscle mediated NO consumption, we performed
additional experiments comparing measurements of NO flux
across endothelium-denuded mesenteric artery vessels compared
to vessels treated with L-NAME. As reported above,
in Cygb� /� vessels the NO flux was much higher than in
WT (Fig. 8). The NO diffusion flux was observed to be almost
identical in WT vessels with only a slight but not significant
6% higher flux in the endothelium-denuded vessels. Interestingly,
in the Cygb� /� vessels with much higher NO flux and
much lower NO consumption, a small but significant 28%
increase in NO flux was seen in the endothelium-denuded vessels.
Thus, these results suggest that the major process of
NO consumption that limits NO flux through the wall of small
resistance vessels is the process of NO consumption by Cygb in
the smooth muscle; however, there also appears to be a significant
but smaller contribution lost in endothelium-denuded vessels
consistent with the prior reports of a mechanism regulating
NO flux at the myoendothelial junction14,30.

Discussion
The function of Cygb has been debated since its first discovery
just over a decade ago31,34. Roles in oxygen delivery, redox
biology, cell signalling and NO regulation have been proposed47.
Cygb is considered to have a common evolutionary ancestor
with Mb34. In accordance with the literature29, we observe
that Mb concentrations in vascular smooth muscle are very low,
440-fold lower than Cygb. This preferential expression of Cygb
over Mb would suggest that there is an important functional
benefit or role uniquely provided by Cygb. Indeed, we observed
that Cygb has a uniquely fast reduction rate that is more than
10-fold to 100-fold faster than for Mb, depending on the reducing
system, resulting in more than a 10-fold higher rate of
NO consumption (Fig. 1). This higher rate of NO consumption
by Cygb than Mb is consistent with prior reports36. In a similar
manner, Hb-a expression was 4200-fold less than Cygb and
its reduction rate and rate of NO consumption was similar to
Mb and more than 10-fold slower than Cygb. From this data,
we can see that Cygb is a highly potent NOD that is efficiently
and rapidly reduced by cellular reducing systems. Along with
the relatively high expression level of Cygb in smooth muscle
compared to that of other globins, this confers Cygb with a major
role in the O2-dependent metabolism of NO. With knockdown of
Cygb expression in SMCs from aorta or mesenteric artery, more
than 70–75% of NO metabolism in vascular smooth muscle was
shown to be Cygb dependent. Thus, Cygb serves as the major
mechanism of NO degradation in vascular smooth muscle.

In addition to its high potency as an NOD, the NOD activity of
Cygb has uniquely high O2 dependence. In general, the rate of
NO decomposition by oxy-globins decreases when O2 concentrations
decrease, as levels of nitrosyl globins increase and oxy-globins
decrease as illustrated in Supplementary Fig. 1 and previously
detailed12. With Cygb, hypoxia sharply decreases the rate of
NO metabolism, while with Mb only a gradual linear decrease
occurs12,15. It has been reported that in the O2 concentration
range from 0 to 50 mM with ascorbate as reductant, the rate
of NO dioxygenation by Cygb is over 100-times more sensitive
to changes in O2 concentration than Mb15. Thus, Cygb is
uniquely suited for O2-dependent regulation of NO levels and
metabolism in vessels.

The decrease in the Cygb NOD function with physiological
hypoxia has been hypothesized to preserve NO levels and
tissue perfusion under hypoxia. Furthermore, under conditions
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of hypoxia, nitrite can be reduced back to NO serving as
a NOS-independent pathway of NO generation48–50. With severe
hypoxia progressing to anoxia, we have previously observed that
reduced Cygb can reduce nitrite back to NO8,11, further
enhancing NO and vasorelaxation under conditions of severe
hypoxia. However, with the low P50 of O2 binding to Cygb of
1.5 Torr, Cygb-mediated NO production secondary to nitrite
reduction is significant only at very low pO2, and would only be
expected to be important during severe prolonged ischaemia, not
in the normal physiological regulation of vascular tone. Thus,
under normoxia, Cygb functions as an NOD, oxidizing NO to
nitrate (Fig. 2) while under anoxic conditions, Cygb can reduce
nitrite back to NO. Based on the unique O2 dependence of
its effects on NO, Cygb has been proposed to have a role in
O2-dependent flow regulation and hypoxic vasodilation11,12,15.

Under normal physiological conditions, endothelium-derived
NO regulates vascular tone. NO is required for endothelium-
dependent vasodilation which requires diffusion of eNOS-derived
NO from the endothelium to the site of sGC in the vascular
smooth muscle. Therefore, one might expect that the major
NOD in vessels would be present in the smooth muscle where
it would serve to regulate the magnitude and duration of
sGC activation. Indeed, we observed that Cygb expression was
present within the SMCs of the vessel wall and absent from the
endothelium (Fig. 5c). With knockout of Cygb, the magnitude of
endothelium-dependent or endothelium-independent vessel
relaxation was greatly increased, with over a 20-fold shift in
the vasodilation dose–response curves to acetylcholine or the
NO donor SNP (Fig. 5). With knockout of Cygb, the diffusion
flux of NO across the wall of the aorta was increased more than
sixfold and across the much smaller mesenteric artery by more
than threefold (Figs 5 and 7). Much higher cGMP levels were
detected in freshly harvested, unstimulated vessels with fivefold
higher levels than in WT vessels (Fig. 6d), confirming that Cygb
expression regulates both NO degradation and sGC activation.

In addition to large effects on the function of ex vivo vessels, in
Cygb� /� mice, large alterations were seen on in vivo vascular
tone, BP and cardiac function compared to the background
matched WT mice. MABP and SVR values were markedly
decreased by 30% and 54%, respectively (Fig. 6). Furthermore,
CO was increased by 68% in the Cygb� /� mice, likely as
a compensation for the marked vasodilation present. Interest-
ingly, NOS inhibition largely reversed the low MABP and
SVR values as well as the elevated CO of the Cygb� /� mice to
values close to those in WT, confirming that these alterations
were secondary to enhanced NOS-derived NO levels. From
ultrasound measurements, the aorta was also observed to be
dilated in Cygb� /� mice compared to WT and this was also
largely reversed by L-NAME. A marked increase in tissue
perfusion was also observed in the Cygb� /� mice compared to
WT, further demonstrating vasodilation of the small resistance
vessels that control tissue perfusion. This increased perfusion was
also reversed by NOS inhibition. Together these results indicate
that the NOD function of Cygb is of critical importance for
the in vivo regulation of NO levels that in turn control vascular
tone, BP, cardiac function and tissue perfusion.

In a wide variety of cardiovascular diseases, ranging from
hypertension to atherosclerosis, impaired endothelium-mediated
vasodilatory function occurs secondary to impaired NOS function
or enhanced NO scavenging. Since we observed that down-
regulation of Cygb expression enhances endothelium-derived
NO and secondary NO-mediated signalling and vasodilation,
one can hypothesize that downregulation of Cygb-expression
levels or NOD function could ameliorate or even serve to prevent
cardiovascular disease. As Ang II-induced hypertension has
been well demonstrated to be due to enhanced superoxide

generation and secondary NO degradation41–43, we evaluated if
downregulation of Cygb expression could prevent or ameliorate
the onset of Ang II-induced hypertension. While, as expected,
chronic Ang II administration induced hypertension in WT mice
(Fig. 7a–c), in contrast, Cygb� /� mice did not develop
hypertension. In parallel with the lower BP values, SVR also
remained lower in the Ang II-treated Cygb� /� mice compared
to WT (Fig. 7d). Measurements of the NO diffusion flux across
the wall of resistance vessels from control or Ang II-treated
mice demonstrated that Ang II treatment decreased NO flux
due to an increased rate of NO degradation in the wall of both
WT and Cygb� /� vessels (Fig. 7e–g). This increased rate of
NO degradation was secondary to enhanced superoxide
generation, since it was largely reversed by a SOD mimetic
(Fig. 7h,i). The NO flux in Cygb� /� vessels remained much
higher than in WT vessels, with values similar to those in normal
untreated WT vessels, due to the lower rate of NO consumption
in the wall of these vessels. Thus, downregulation of Cygb or its
NOD function could provide a novel, highly potent approach to
prevent or reverse hypertension.

From the current study, it is clear that NO degradation in the
vascular wall is largely due to the NOD function of Cygb in
the presence of cellular reducing systems. From siRNA-mediated
knockdown experiments, b5R was shown to be the major reductase
involved, with a 67% decrease in NO degradation rate estimated;
however, other enzymatic or non-enzymatic reducing systems may
also be involved, such as P450 reductase and ascorbate12,15,36,51.
Interestingly, b5R has also been reported to be of critical
importance for the process of Hb-a mediated NO dioxygenation
at the myoendothelial junction that has been reported to regulate
NO flux out of the endothelial cell to the vascular smooth muscle
of small resistance vessels14,30. In an effort to assess the role of
endothelial factors such as Hb-a on the overall process of NO
metabolism in small resistance vessels, we measured NO flux
across endothelium-denuded mesenteric artery vessels compared
to vessels treated with the NOS inhibitor L-NAME. In Cygb� /�

vessels, the NO flux was much higher than in WT vessels (Fig. 8).
While the NO diffusion flux in WT vessels showed only a slightly
but not significantly higher flux in the endothelium-denuded
vessels, in the Cygb� /� vessels, with much higher NO flux and
lower NO consumption, a significant 28% increase in NO flux was
seen in the endothelium-denuded vessels. Thus, the major process
of NO consumption that limits NO flux through the wall of small
resistance vessels is due to NO consumption by Cygb in the
smooth muscle; however, there also appears to be a significant
but smaller contribution from the endothelium, consistent with the
prior reports of a mechanism regulating NO flux at the
myoendothelial junction14,30.

In conclusion, we demonstrate that Cygb has a critical role in
regulating in vivo vascular tone, BP and cardiovascular function.
Cygb is shown to be the main pathway of NO metabolism in
vascular smooth muscle, regulating NO flux through resistance
and conduit vessels. Downregulation of Cygb ameliorated
Ang II-mediated hypertension. Since impaired endothelium-
dependent NO signalling is a central trigger of a wide range
of cardiovascular disease (from hypertensive, to diabetic, to
atherosclerotic), downregulation of Cygb or its NOD function,
in order to enhance vascular NO levels and restore protective
NO signalling, could provide a much needed remedy. Therefore,
therapeutic approaches to modulate Cygb expression and
its NOD function could be of great value in the prevention
and amelioration of cardiovascular disease.

Methods
Knockdown of Cygb or b5R in aortic and mesenteric SMCs. Rat aSMCs
(Lonza Walkersville, Inc., Walkersville, MD) or mesenteric arterial SMCs were
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prepared, characterized and cultured in our laboratory according to previous
studies52–57. Briefly, under aseptic conditions, the vessel was carefully dissected out
from the rat, cleaned of extraneous tissues under the dissecting microscope, placed
in a sterile HBSS and washed. The vessel was transferred to a 35 mm culture dish
containing 347 U ml� 1 collagenase solution (type 2, 347 U mg� 1; Worthington
Biochemical) and incubated at 37 �C for B45 min. The vessel was transferred into
a dissection dish containing HBSS and the ends were gently pinned down then cut
open longitudinally, with the luminal surface upward. The endothelium was
removed by scraping the cell layer off under the dissecting microscope. The vessel
(without adventitia) was gently transferred to a 35 mm culture dish containing
pre-warmed culture medium and incubated overnight. The vessel was again gently
transferred to a 35 mm culture dish containing 347 U ml� 1 collagenase solution
and 3 U ml� 1 elastase solution (type IV, 6 U mg� 1; Sigma-Aldrich) and incubated
at 37 �C for B30 min. The partially digested tissue in the enzyme solution was
transferred to a 15 ml conical tube and carefully tritrated, with a sterile Pasteur
pipette (1–1.5 mm tip opening) with attached rubber bulb, until the tissue dissolved
and the cells dissociated. A 10 ml aliquot of cultured medium was added to stop the
enzyme digestion. A 10 ml sample of suspension was tested for the appearance of
single cells. The cell suspension was centrifuged at 1,500 r.p.m. for 5 min. The
supernatant was carefully aspirated and 2–5 ml of pre-warmed complete culture
medium was added to re-suspend the cells at a density of about 8� 105 cells per
ml. Cells were then seeded into 25 cm culture flasks and placed into a 37 �C,
5% CO2 incubator. Within 24 h, all viable cells were attached and the medium
was then replaced with fresh pre-warmed complete culture medium. Half of the
culture medium was replaced every 2–3 days until a confluent SMC monolayer
was obtained.

Cells were characterized morphologically (hill and valley, elongated and
spindle-like shape) as well as by checking the expression of myosin heavy chain
(in freshly prepared cells) and smooth muscle-specific a-actin, the most specific
smooth muscle markers. Cells were cultured and passaged in DMEM:F12
supplemented with 20% heat-inactivated fetal bovine serum, GA-1000 and
50 IU ml� 1 penicillin/streptomycin (50 IU ml� 1/50 mg ml� 1) according to the
Lonza protocol. Experiments were performed using 70–80% confluent cells
at passages 4–6.

SMCs were transfected with Cygb siRNA or cytochrome b5 reductase 3 (b5R)
siRNA (Santa Cruz Biotechnology) using Lipofectamine RNAiMAX (Invitrogen)
according to the manufacturer’s recommendations11. Briefly, Lipofectamine
RNAiMAX was mixed gently by pipetting up and down with antibiotic-free
Opti-MEM medium (6ml:100 ml ratio for each 1 ml growth medium) and
incubated at room temperature for 5 min. An aliquot of Cygb or b5R siRNA
(final concentration of 100 nM) was mixed with the Lipofectamine RNAiMAX/
Opti-MEM mixture and incubated at room temperature for 30 min. In total, 1 ml of
each of the mixtures was added to a separate 15 cm culture well containing SMCs
exponentially growing in 9 ml of antibiotic-free Opti-MEM medium. Cygb,
b5R and the corresponding scrambled siRNA-transfected cells were incubated at
37 �C in a 5% CO2-humidified incubator for 7 h, and Opti-MEM medium was
changed to DMEM:F12 complete medium to provide essential nutrients and
growth factors for optimal growth and cell survival. Forty-eight hours post
transfection, Cygb, b5R or the corresponding scrambled siRNA-transfected
cells were collected for further studies and protein expression was evaluated by
Western blotting.

SDS–polyacrylamide gel electrophoresis and immunoblotting. Whole-cell
lysates or pure proteins, in RIPA buffer, were quantitated using a Bio-Rad
DC protein assay kit. The standard procedures for SDS–polyacrylamide gel
electrophoresis and immunoblotting were followed as described previously58.
Proteins were separated at room temperature on a reducing graded (4–20%)
Tris-glycine polyacrylamide gel at 125 V. Protein bands were transferred
electrophoretically to a PVDF membrane in 12 mM Tris-HCl, 96 mM glycine,
20% methanol using an Xcell II Blot Module (Invitrogen) at 25 V constant for
90 min. The following antibodies (Santa Cruz Biotechnology) were used: rabbit
polyclonal anti-Cygb (sc-66855; diluted 1:200), anti-Mb (sc-25607; diluted 1:200),
anti-Hb-a (sc-21005; diluted 1:200), cytochrome b5 reductase 3 (sc-398043;
diluted 1:200) and mouse monoclonal anti-actin (sc-47778; diluted 1:500).
HRP linked anti-mouse and anti-rabbit (Cell Signaling Technology; 7,076 and
7,074, respectively) were used as secondary antibodies at a dilution of 1:3,000.
Membranes were blocked for 1 h at room temperature in Tris-buffered saline (TBS)
containing 0.05% Tween 20 (TBST), with 5% dried milk and incubated overnight
with primary antibodies at 4 �C. Membranes were then washed three times
in TBST, incubated for 1 h with horseradish peroxidase-conjugated secondary
antibody in TBST at room temperature and again washed three times in TBST.
Protein bands were then detected with ECL Western Blotting detection reagents
(Amersham Biosciences) and exposed to an X-ray film. Protein band densities were
quantified by a high resolution Pharos FX Plus Molecular Imager (Bio-Rad). The
protein concentration was obtained by the quantitation of the band densities using
a high resolution Pharos FX Plus Molecular Imager (Bio-Rad) of Cygb and Mb and
comparing them to band densities of pure protein standards run in parallel11.

Measurement of ferric globin reduction. The reduction of globins by a reductant
(Asc) or a reducing system (cytochrome b5 reductase (b5R)/b5/NADH) was

performed in a cuvette under anaerobic conditions. The reaction was monitored
using a Cary 50 ultraviolet/vis spectrophotometer by measuring the changes in
absorbance at 416 nm for Cygb(Fe3þ ), 410 nm for Mb(Fe3þ ) or 406 nm for
Hb-a(Fe3þ ) with time at 37 �C51. After addition of 1.5 ml buffer solution and
placement of the Clark O2 electrode, the cuvette was sealed with a parafilm
membrane. An Apollo 4,000 Free Radical Analyzer (WPI Inc., Florida) was
used along with the Clark electrode to monitor O2. The solution was stirred using
a magnetic stir bar at the bottom of the cuvette. An argon gas tube was inserted in
the cuvette to bubble argon into the solution for 15 min to quickly remove O2.
Before injecting a sample of ferric globin into the test solution, the argon gas tube
was removed from the solution and placed above the solution surface to keep an
argon flow in the cuvette. About 20 min after injecting a sample of ferric globin
(3 mM) for reduction by Asc or ferric globin (3 mM)þ b5 (0.5mM)þNADH
(100 mM) for reduction by b5R/b5/NADH into the solution, either Asc (10 mM)
or b5R (30 nM) was added to initiate reduction of the ferric globin. From the
recorded kinetic curves, the initial rates of Cygb(Fe3þ ), Mb(Fe3þ ) or Hb-a(Fe3þ )
reduction and their rate constants were determined.

Immunofluorescence of expression of Cygb and eNOS in the mouse aorta.
Mouse aorta was isolated and placed in a block holder containing OCT embedding
compound and snap frozen in dry ice. Sections from the blocks were cut at 4 mm on
a cryotome and processed for immunostaining. The frozen sections were then
blocked with 1% BSA in TBST, incubated with primary rabbit polyclonal anti-Cygb
and mouse anti-eNOS antibodies (Santa Cruz Biotechnology) in TBST
(1:500 dilutions)þ 1% BSA for 1 h at room temperature, followed with the
incubation of respective secondary goat anti-mouse Alexa Fluor 488-conjugated
and goat anti-rabbit Alexa Fluor 568 (1:1,000 dilutions) as necessary, for 1 h at
room temperature. After washing with TBS-T, the sections were mounted in
anti-fade mounting medium (Fluoromount-G, Birmingham, AB) and examined
using an Olympus FV 1,000 confocal microscope (Olympus America Inc.,
Melville, NY) with the � 40 objective with 405, 488 and 568 nm excitations for
DAPI, green and red fluorescence, respectively59.

Preparation of NO stock solutions. NO stock solutions for these experiments and
the work that follows were prepared as described previously35,60. The preparation
process was performed in a fume hood. Briefly, NO gas was scrubbed of higher
nitrogen oxides by passage first through a U-shaped tube containing NaOH pellets
and then through a 1 M deaerated (bubbled with 100% argon) KOH solution,
in a custom-designed apparatus using only glass and/or stainless steel tubing
and fittings (no plastic components). The purified NO was collected by saturating
a deaerated phosphate buffer solution (0.2 M potassium phosphate, pH 7.4)
contained in a glass sampling flask (Kimble/Kontes, Vineland, NJ) fitted with
a septum for anaerobic extraction of the NO solution with a gas-tight Hamilton
syringe (Hamilton Robotics, Reno, NV).

Measurements of the rate of NO metabolism by SMCs. Measurements were
performed in a four-port water-jacketed electrochemical chamber (NOCHM-4,
WPI, Sarasota, FL) at 37 �C in air-equilibrated buffer as described in our previous
papers15,61. The solution was rapidly stirred with a magnetic bar during the
NO measurements. Two Clark-type NO electrodes (NOCHM-4, WPI,
Sarasota, FL) were placed in the chamber through two ports on the side wall
of the chamber for measuring the rate of NO metabolism by isolated normal SMCs,
Cygb knockdown (Cygb siRNA) SMCs or cytochrome b5 reductase 3 knockdown
(b5R siRNA) SMCs. Before adding the SMCs into the solution, we first measured
the rate of NO decay in the buffer solution. Then, 7� 106 per ml SMCs were added
into the chamber and the rate of NO decay was measured after NO was injected
into the solution to achieve an initial concentration of 0.5 mM using a 10 ml
gas-tight Hamilton syringe.

Construction of Cygb� /� mice. C57BL/6 Cygb knockout (Cygb� /� ) mice were
used derived from the colonies previously generated as described62. Briefly, mice
lacking exon 1 of the Cygb gene were generated using the lox-P system63. The
targeting vector (pTVneo/Cygb) was constructed from PCR DNA fragments from
SV129 mouse genomic DNA. Embryonic stem cells (1� 107 cells per ml) were
transfected with a linearized targeting vector (20mg) by electroporation and
cultured in selection medium containing 150mg ml� 1 geneticine (G418).
Homologous recombinant clones were aggregated with C57BL/6-DBA2 F1 mouse
morulae and one produced chimeric mice that transmitted the knockout construct.
Chimeric males were mated with C57BL/6J females to obtain Cygb heterozygous
mice which were backcrossed to the C57BL/6J background for more than nine
generations (mice purchased from Japan SLC, Inc., Tokyo, Japan). Cygb
heterozygous mice were intercrossed. The litter sizes were normal and analysis
of the tail biopsies at 4 weeks of age from 102 offspring from heterozygote crosses
revealed the presence of homozygous mutant mice at a frequency of 24%. The
homozygotes appeared normal morphologically and histopathologically 1 month
after birth. All mice were cared for according to the guidelines approved by
the Institutional Animal Care and Use Committees of Osaka City University and
The Ohio State University.
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Measurements of NO diffusion and NO metabolism in the aortic wall. The
flux of NO diffusion across the aortic wall was measured by Clark-type
NO electrodes35. Aortas were excised from adult, male Cygb� /� mice or age-
matched adult, male C57BL/6J mice of 9–12 months of age. A segment of aortic
ring was longitudinally opened and the opened aortic wall was placed on an
NO electrode with an aorta attachment as depicted in Supplementary Fig. 2. The
flux of NO diffusion across the aortic wall was recorded by the aortic-wall-covered
electrode after NO was injected to provide an initial concentration of 3 mM in the
surrounding solution. [NO] in the solution was recorded by a second NO electrode.

Mesenteric artery dissection and cannulation by electrode. Adult, male
Cygb� /� mice or age-matched adult, male C57BL/6J mice (9–12 months of age)
were anaesthetized using an intraperitoneal injection of ketamine (100 mg kg� 1)
and xylazine (10 mg kg� 1). First and second order mesenteric arteries (1st and 2nd
branch from superior mesenteric artery) were dissected in physiological saline
solution bubbled with 95% O2/5% CO2 and isolated from surrounding adipose
and connective tissue using a dissecting microscope and mounted onto the tip
of a micro-cylindrical carbon electrode for measurements of NO diffusion kinetics
as depicted in Supplementary Fig. 3. For denuded endothelium experiments, vessels
were mounted onto the tip of the carbon electrode as described above, but were
gently rotated around the electrode three times before experiments. The flux of
NO diffusion across the mesenteric arterial wall was recorded by the carbon
electrode after NO was injected to provide an initial concentration of 0.5 mM
NO in the solution. [NO] in the solution was recorded by a second Clark-type
NO electrode or carbon NO electrode. To prevent the effect of endogenous
NO generation from eNOS in the vascular wall, 1 mM L-NAME (a NOS inhibitor)
was added to the solution in experiments using vessels with intact endothelium.
To examine the effect of Ang II-induced vascular superoxide (O2

�� ) on
NO diffusion in the wall of mesenteric resistance arteries with Ang II treatment, the
flux of NO across the arterial wall was measured as described in the absence and
presence of 50 mM superoxide dismutase mimetic (SODm) (GC4419, Galera
Therapeutics, Inc.).

Mouse aortic ring preparation for vascular function measurements. Prepara-
tion of the isolated mouse aorta was similar to that previously described64. Briefly,
the thoracic aorta was gently dissected from anaesthetized and heparinized adult,
male Cygb� /� mice or age-matched adult, male C57BL/6J mice (9–12 months of
age), carefully cleaned of fat and connective tissues, and cut transversely into rings
of 2–3 mm in length. The rings were mounted on a wire myograph (Multi
Myograph System-610M, Danish Myo, Aarhus, Denmark) with care taken not to
damage the endothelium, and then suspended in 5-ml organ baths containing
modified KHB (containing (in mM) 118 NaCl, 24 NaHCO3, 4.6 KCl, 1.2 NaH2PO4,
1.2 CaCl2, 4.6 HEPES, and 18 glucose) and continuously purged with 95% O2–5%
CO2 (37 �C, pH 7.4). Aortic rings were equilibrated for 90 min with an initial
resting tension of 1 g, and the bathing solution was changed at 15-min intervals.
Changes in isometric tension were recorded on a PowerLab/8sp multichannel
data-acquisition system (AD Instruments, Colorado Springs, CO) using ADI Chart
software (version 5.3) for digital processing and data analysis. After equilibration,
the responsiveness and stability of each ring was checked by the successive
administration of a maximally effective concentration of L-phenylephrine
hydrochloride (phenylephrine; 1 mM). The integrity of the vascular endothelium
was assessed pharmacologically by acetylcholine (Ach)-induced relaxation of
phenylephrine-pre-contracted rings. Preparations were then washed three times
with drug-free buffer and allowed to relax fully for 30 min before the experimental
protocol began. To determine the vasodilatory response to ACh, the aortic rings
were pre-contracted with phenylephrine, and dose–response curves for aortic
relaxation were obtained by the cumulative addition of Ach or sodium
nitroprusside to the organ bath. The concentration of agonist in the organ bath
was increased in steps of 1-log units. ACh was added to yield the next higher
concentration only when the response to the lower dose reached a steady state.
One dose–response curve for ACh was constructed for each ring. The vasodilator
(relaxant) responses were expressed as per cent decreases of phenylephrine-
induced pre-contraction, where the contraction produced by 1 mM phenylephrine
in each ring from its initial resting tension (1 g) was considered as 100%.

Blood pressure, CO and SVR measurements. Blood pressure was measured
by non-invasive tail-cuff method in conscious adult, male Cygb� /� mice or
age-matched adult, male C57BL/6J mice (9–12 months of age) using a CODA
high-throughput acquisition system (Kent Scientific, Torrington, CT). Briefly, mice
were placed on a warming platform and allowed to acclimatize for 10 min before
readings were obtained. Mice were trained for 7 days by measuring BP daily, after
which BP recordings were made twice a week. Each session consisted of five
acclimatization cycles followed by 15 BP measurements cycles. On the data
collection day, two sessions of 15 BP measurements were obtained and the average
of accepted readings from both sessions was used for systolic, diastolic, and mean
BP in each individual mouse65. The computer software of the CODA system
measures the systolic and diastolic pressures with inflation of a pneumatic tail
cuff with a transducer that measures the BP waveform. If the mouse moves during
measurement the noise distorts the waveform and the system software cannot

measure the BP. Thus the software determines signal to noise and accepted
readings, discarding noisy inaccurate measurements. Cardiac output was calculated
from heart rate (HR) and stroke volume (SV) measured with a VisualSonics
VEVO 2,100 Ultrasound System using the equation CO¼HR� SV. Systemic
vascular resistance (SVR) was calculated from the following: SVR¼MABP/CO.
For L-NAME experiments, L-NAME was dosed intraperitoneally at 300 mg kg� 1

per day in PBS for at least 6 days.

Measurement of cGMP levels in mouse aorta. Adult, male Cygb� /� mice or
age-matched male C57BL/6J mice (6–9 months of age) were anaesthetized by
intraperitoneal injection of 100 mg kg� 1 ketamine and 10 mg kg� 1 xylazine.
Descending aortas were dissected from the mice and quickly cleaned of adhering
fat and connective tissue under a dissecting microscope in PBS. Cleaned aortas
were homogenized in 0.1 N HCl and centrifuged at 10,000g. Supernatant was
collected and used for ELISA detection of cGMP (Enzo Life Sciences, Farmingdale,
NY). The acetylated format of the assay was used in order to improve sensitivity.
Acetylation was performed by 1:20 addition of the acetylating reagent (1:2 acetyl
anhydride:triethylamine) to the samples, which were then subjected to the ELISA
assay according to the manufacturer’s instructions. Aortic cGMP levels were
expressed as picomoles per mg of protein in homogenates.

Echocardiography. Transthoracic echocardiography was performed using
the VisualSonics Vevo 2100 system. Adult, male Cygb� /� mice or age-matched
adult, male C57BL/6J mice (9–12 months of age) were anaesthetized using
2.0% isoflurane in 95% O2/5% CO2 at a rate of B0.8 l min� 1. Anaesthesia was
maintained by administration of oxygen and B1% isoflurane. Electrode gel was
placed on the ECG sensors of the heated platform and the mouse was placed supine
on the platform to monitor electrical activity of the heart. A temperature probe was
inserted into the rectum of the mouse to monitor core temperature. The MS-400
transducer was used to collect the contractile parameters of the heart in the short
axis M-mode. The aortic diameter of the heart was measured from the long axis
B-mode.

Angiotensin-II delivery and osmotic pump insertion. Adult, male Cygb� /�

mice or age-matched adult, male C57BL/6J mice (8–10 months of age) were
anaesthetized with isoflurane. Under sterile conditions, a dorsal midline incision
was made and a subcutaneous pocket was created in the right flank area. Alzet
mini-osmotic pumps (Model 2004) (Durect Corp., Cupertino, CA) loaded with
200 ml saline or angiotensin-II (Ang-II) 7.2 mg ml� 1 (Sigma-Aldrich, St. Louis,
MO) were inserted subcutaneously to deliver Ang-II at 1 mg kg� 1 min� 1

for a period of 4 weeks66.

Perfusion imaging. Perfusion imaging was performed using a Perimed laser
speckle imager (Perimed Inc., Stockholm, Sweden). Perimed PimSoft software was
used for acquisition and processing the data. Images were taken at a scan rate of
100 images/sec with a field of view of 24 cm� 24 cm. The CCD camera resolution
was 1,388� 1,038 pixels with a magnification up to 20 mm per pixel. Focusing
and adjusting of field of view were done using a square low power laser light and
a measurement distance of 10 cm was maintained during all acquisitions. Perfusion
data were collected for 20 s with image resolution of 0.1 mm. The images
were acquired at resting heart rate condition on the hairless, ventral side of
1% isoflurane-anaesthetized adult, male Cygb� /� mice or age-matched adult, male
C57BL/6J mice (9–12 months of age). For L-NAME experiments, L-NAME was
dosed intraperitoneally at 100 mg kg� 1 in PBS 12 h and 1 h prior to experiments.

NOx measurements. Nitrite and nitrate were measured using an ENO-20 NOx
analyzer (EiCOM Corp., San Diego CA). Each 100ml sample consisted of 2 mM
recombinant human Cygb, 150 U ml� 1 Mn-SOD, 2.5 mM ascorbate and 50 mM
DEA-NONOate (1,1-diethyl-2-hydroxy-2-nitroso-hydrazine sodium) in PBS with
0.1 mM EDTA, pH 7.4. After mixing, each sample was placed in an incubator
shaker at 37 �C, 150 r.p.m. for 60 min. Injection volume into the ENO-20
instrument was 10 ml. The peak areas were determined using the eDAQ
PowerChrom software provided with the instrument. Conversion to molarity
was done by calibration against a range of concentrations of samples prepared
from sodium nitrite and sodium nitrate run on the ENO-20 just prior to the
experimental samples. Controls included all of the sample components except
the Cygb (n¼ 4 for both the Cygb and control).

Protein purification. Recombinant human cytoglobin was purified as previously
reported with some modifications15. The expression plasmid for Cygb
(human Cygb cDNA in pET3ac, Novagen, Merck KGaA, Darmstadt, Germany)
was obtained from Thorsten Burmester (Institute of Zoology and Zoological
Museum, University of Hamburg, Germany) and transformed into Escherichia coli
strain C41(DE3)pLysS. Cells were grown overnight in a 4 l flask in an incubator
shaker at 37 �C in 1 l of Terrific Broth (47.6 g l� 1) supplemented with glycerine
(8 ml l� 1), ampicillin (0.2 g l� 1) and chloramphenicol (0.05 g l� 1). The following
morning, the cells were induced with IPTG (0.24 g l� 1), the flask was sealed with
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parafilm and the bacteria was grown for an additional 6 h at 30 �C with the shaker
set to 100 r.p.m. (decreased from 180 r.p.m.). The cells were harvested by
centrifugation (3,000 r.p.m. for 30 min) and the cell pellet was resolubilized in
100 ml of 50 mM Tris-HCl pH 7.5, 0.5 M NaCl, 1 mM EDTA, 2 mM dithiothreitol,
a pinch of lysozyme and deoxyribonuclease I, and Roche Complete Protease
Inhibitor tablets (as recommended by manufacturer). The cells were placed in
a stainless steel 250 ml beaker immersed in ice and lysed by sonication with
a Branson Digital Sonifier equipped with a 1/200 horn, using four 2 min
repetitions with 10 min cooldown steps between each repetition. Insoluble matter
was removed by centrifugation at 45,000g for 1 h in a high-speed centrifuge.
A 35% ammonium sulfate precipitation was performed on the supernatant, the
pellet was discarded, and the supernatant was dialyzed against 2 l of 50 mM
Tris/HCl, 1 mM dithiothreitol and 0.1 mM EDTA, pH 7.5, with a total of three
buffer exchanges. After dialysis, insoluble material was removed by centrifugation
(45,000g for 1 h), and the protein was concentrated to 50 ml using Amicon Ultra-15
centrifugal filters (Millipore) with a 10,000 molecular weight cut-off. Further
purification was performed with a GE Healthcare AKTA Purifier system with
a 50 ml Superloop (GE Healthcare, Piscataway, NJ, USA) for sample loading.
A HiPrep 16/10 DEAE FF anion-exchange column (GE Healthcare) was run
with sodium chloride gradient elution, followed by a HiPrep 26/60 Sephacryl
S-300 high-resolution size-exclusion column (GE Healthcare) eluted with 50 mM
Tris/HCl, pH 7.5, 100 mM NaCl and 0.1 mM EDTA. The protein was concentrated
and stored in 50ml aliquots at � 80 �C.

Haemoglobin a chains were purified as previously described with minor
modifications67,68. 0.5 g of lyophilized human haemoglobin (Sigma) was solubilized
in 2 ml of 0.25 M NaCl in H2O, pH 6–6.5. This solution was centrifuged at 45,000g
to remove debris, oxidized with a crystal of solid potassium ferricyanide, and run
down a 2 cm� 35 cm column of Sephadex G-25 equilibrated in the NaCl solution.
The haemoglobin was concentrated with Amicon spin filters (30 kDa MWCO,
Millipore) to 1 ml volume, made anaerobic by blowing a stream of argon gas over
the solution for 30 min in a 15 ml conical tube, reduced with solid dithionite, then
again run through the G-25 column to generate HbO2. The procedure of Yonetani
and colleagues was then followed to purify the haemoglobin a chains using a
10-fold excess of 4-(hydroxymercuri)benzoic acid (HMB) to Hb tetramer as
described67. The HMB was allowed to react with the HbO2 overnight at 4 �C, and
the next morning the solution was centrifuged at 45,000g for 30 min to remove
precipitate. The supernatant was run down a 2 cm� 35 cm Sephadex G-25 (fine,
GE Healthcare) column to remove excess HMB, and the eluent was then loaded on
a 3 cm� 10 cm DEAE-Sepharose (Sigma) column equilibrated in 10 mM
potassium phosphate buffer, pH 8.0. The Hb-a eluted during the column wash
step, and the fractions were pooled and concentrated using Amicon spin filters
(10 kDa MWCO, Millipore) for removal of the HMB. Dithiothreitol (4 mM final
concentration) was added to the concentrated protein sample and immediately
applied to a 2 cm� 35 cm Sephadex G-25 column equilibrated in 100 mM
Tris-HCl, 100 mM NaCl and 1 mM EDTA, pH 8.5 to remove bound HMB68. The
eluent protein was concentrated (Amicon spin filters, 10 kDa MWCO, Millipore),
aliquoted and stored at � 80 �C until used.

Data availability. The data that support the findings of this study are presented in
the manuscript and the accompanying Supplementary Information file and can be
obtained from the corresponding authors upon request.
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