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The Earth is likely to have acquired most of its
water during accretion. Internal heat of planetesimals
by short-lived radioisotopes would have caused
some water loss, but impacts into planetesimals
were insufficiently energetic to produce further
drying. Water is thought to be critical for the
development of plate tectonics, because it lowers
viscosities in the asthenosphere, enabling subduction.
The following issue persists: if water is necessary
for plate tectonics, but subduction itself hydrates
the upper mantle, how is the upper mantle initially
hydrated? The giant impacts of late accretion
created magma lakes and oceans, which degassed
during solidification to produce a heavy atmosphere.
However, some water would have remained in
the mantle, trapped within crystallographic defects
in nominally anhydrous minerals. In this paper,
we present models demonstrating that processes
associated with magma ocean solidification and
overturn may segregate sufficient quantities of water
within the upper mantle to induce partial melting and
produce a damp asthenosphere, thereby facilitating
plate tectonics and, in turn, the habitability of Earth-
like extrasolar planets.
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1. Introduction
At present, the small fraction of water in Earth’s asthenosphere is replenished by subduction.
However, how the upper mantle was initially hydrated remains unresolved. The primordial
Earth is thought to have accumulated water through two possible avenues: original accretion
of hydrous material or delivery through a late accretion following the Moon-forming impact.
While the presence of metallic cores in terrestrial planets suggests that early accretion may have
taken place in a reducing environment with very little water [1], meteorite compositions as well
as the certainty of radial mixing during accretion suggest that the terrestrial planets accreted with
some non-zero water content [2,3]. The transition from planetesimal accretion to oligarchic growth
led to the expansion of the proto-Earth’s accretion feeding zone to distances spanning the outer
asteroid belt and perhaps even the orbits of Jupiter and Saturn [4,5]. A majority of terrestrial
water may have been carried by a few planetary embryos from the outer asteroid belt, which then
combined to form the Earth during the final stages of planetary accretion [6].

Giant impact events associated with the final phase of planetary formation may lead to
the creation of one or more partial silicate mantle magma oceans on terrestrial planets [7–10].
The heat released during accretion and core formation is sufficient to melt the Earth [11,12].
An impact of a similar scale as the Moon-forming event [13] may produce a whole-mantle
magma ocean. Although whole-mantle magma oceans are thus far unproven via geochemical
evidence, constraints from various incompatible elements suggest that the early Earth may have
experienced fractional crystallization of at least one magma ocean. Tucker & Mukhopadhyay [14]
found that fractional crystallization and outgassing of at least two giant impact-induced magma
oceans are required to explain the elevated 3He/22Ne ratios of mid-ocean ridge basalts relative to
that of the solar nebula. Fractional crystallization of a magma ocean may also be responsible
for heterogeneities in 142Nd and 182W [15] and He and Ne isotopes [16] in mantle source
regions.

Magma ocean processes are detailed in Abe [17,18], Solomatov [11], Elkins-Tanton et al. [19]
and Elkins-Tanton [20,21]. For Earth-sized planets, magma oceans may solidify from the bottom-
up because the solidus and adiabat intersect at depth [11,12,20]. Alternatively, magma oceans
may solidify both upward and downward from the mid-mantle due to density inversions
between solidifying phases and residual liquid where liquids sink, creating basal magma
oceans (summarized in Elkins-Tanton [21]). Fractional solidification of a magma ocean produces
compositional heterogeneity in the resulting solid mantle; it is a silicate differentiation event for
the planet.

Density stratification is also produced during fractional solidification. Because the magnesium
ion is smaller than that of iron, magnesium is preferentially incorporated into mantle silicate
minerals during crystallization. The remaining magma ocean liquid becomes increasingly rich
in dense iron and other incompatible elements, yielding an unstable mantle profile with density
increasing towards the planet exterior as solidification progresses from the bottom up. As a result,
the solid mantle overturns until it reaches a gravitationally stable configuration. Even shallow
fractionated magma oceans will overturn if there is underlying undifferentiated material warm
enough to allow for sinking and reorganization, because the density of the final solids will be
higher than the average bulk density. Finally, the planet conducts heat through the mantle and
radiates it through the newly formed atmosphere and ultimately into space.

In the simplest case, the overturned solid mantle is compositionally stable and resistant
to thermal convection. During this early period, before the onset of thermal convection, a
solid conductive lid would grow near the planetary surface and hinder the onset of plate
tectonics. Time is required for this cold boundary to overcome compositional stability at the
top of the mantle and initiate small-scale thermal convection there. Thickening of a conductive
lid at the planetary surface would grow at a rate proportional to (κt)1/2, where κ represents
the diffusivity of the conductive lid and t represents time. The conductive lid will continue
to grow until it reaches its critical Rayleigh number and becomes unstable, at which time
the onset of convection takes place (estimated to be approx. 25–100 Myr after magma ocean



3

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A375:20150394

........................................................

solidification and overturn [22]). Similarly, the bottom boundary of the mantle would require
significant heating from the core before thermal buoyancy would overcome compositional
stability there.

In this paper, we first describe how water can be delivered to a growing Earth and retained
through the high-energy processes of melting and differentiation. We then track water through
the magma ocean solidification process, as the majority of water is expelled onto the planetary
surface, while a small but critical fraction is retained in the now-solid mantle. This newly
solidified mantle will overturn through compositional density instability. We subsequently
describe a process by which magma ocean overturn may have caused sufficient enrichment of
water in the upper mantle of the primordial Earth to facilitate the onset of convection and, in
turn, plate tectonic activity. This process should also occur for greater than or equal to 1 Earth
mass (ME) terrestrial extrasolar planets. Plate tectonic activity on extrasolar planets would play
an integral role in regulating surface and atmospheric conditions and would therefore support
long-term planetary habitability.

2. Evidence for water retention during primary planetary formation
Water, or hydroxyl (OH), was delivered by planetesimals and planetary embryos to the growing
Earth during primary accretion (here defined as the period the Earth obtained most of its mass,
ending with the Moon-forming impact). Despite the high temperatures that may have been
achieved in planetesimals by radiogenic decay of 26Al [23,24], models do not show a complete loss
of water from planetesimals [25–27]. Even meteorites from differentiated bodies show traces of
retained water [2], though analyses of nominally anhydrous minerals in these meteorites should
be done for confirmation. Additionally, very little water is needed to make a wet planetary
surface. If homogeneously mixed into the mantle, the Earth’s hydrosphere adds only about
230 ppm (0.023 wt%) of water. With as little as 500 ppm of water in the Earth’s magma ocean,
the solidified and cooled planet would have a damp mantle and sufficient surface water for the
habitable planet we have today.

Arguing that the Earth (and other terrestrial planets) was accreted from materials with a trace
of water is not sufficient, however. The planets need to have been able to retain traces of water
in their interiors and on their surfaces through the processes of magma ocean solidification and
steam atmosphere cooling and collapse. Here, a combination of sample analyses and modelling
helps support the hypothesis of water retention through the giant impact stage of accretion.

The Moon was long thought to be almost completely dry, or at least, to possess in bulk
several orders of magnitude less water than does the Earth. The discovery of water in
volcanic glass beads shows conclusively that the melting source regions of the magmas contain
water [28,29]. The bulk Moon is not likely to contain more than about 100 ppm water [28–30],
but this water is heterogeneously distributed (as would be expected from magma ocean
solidification), leaving some melting source regions damp. The source regions of the lunar
picritic glasses vary from about 200 to about 500 km depth [31]. Recent modelling of the
physical conditions of the Moon-forming process further support the retention of even the most
volatile species at some level [32,33]. Thus, the Moon-forming impact did not fully dry the
Moon.

Following the solidification of the magma ocean and the production of a steam atmosphere,
the planet cools and the atmosphere collapses into surface water [17,18,20,34,35]. Water can
be stripped from the atmosphere by an active Sun before collapse from steam to water [36],
but that did not likely happen to the Earth because of its gravitational field and distance
from the Sun. Furthermore, models show that atmospheric stripping by the tail of accretion is
inefficient [37,38].

We therefore argue that terrestrial planets are accreted with sufficient water to produce a damp
mantle and a wet surface. Though planets inevitably sustain a tail of accretion that delivers
additional water and other elements and molecules, this tail of accretion is not necessary to
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produce a habitable planet. The models presented hereafter proceed from a newly solidified Earth
with a damp mantle.

3. Magma ocean models

(a) Model framework
A variety of geochemical studies suggest that the Earth is likely to have accreted from
planetesimals of chondritic compositions (see review by Drake & Righter [39]). In particular,
enstatite chondrites provide the closest oxygen isotopic match to the bulk Earth [40]. Chondritic
meteorites have variably been found to contain up to 20 wt% water [3], while certain achondrites
may contain as much as approximately 3 wt% water [2], although most meteorites are drier.
Because impact models show that melting from planetesimal collisions occurs internally
preferentially to externally [41,42], it is likely that volatiles were at least partially retained through
the final stages of planet formation. In view of this, we model scenarios for terrestrial magma
ocean solidification and overturn using initial water contents spanning from 0.001 wt%–5 wt%.
We model magma ocean depths ranging between 250 and 2800 km (i.e. nearly whole mantle). We
employ the same code previously used for modelling a magma ocean for the primordial Earth in
Elkins-Tanton [20] and Brown et al. [43].

The mineral phase assemblages used in our code are controlled by pressure and are
determined a priori for all models (figure 1). We assume fractional crystallization from the bottom
up, accounting for the continuously evolving composition of the residual magma ocean liquid.
Though a whole-mantle terrestrial magma ocean may well begin solidification at a septum
above the core–mantle boundary [21], this physical detail will not substantially change the
broad conclusions of these simpler models, assuming the mantle solidifies through fractional
crystallization. In cases where a magma ocean solidifies from its interior in both upward and
downward directions, essentially creating two magma oceans separated by a growing cumulate
septum, the volume of the basal unit (located near the core–mantle boundary) would be far
smaller than the overlying unit due to the cubic scaling of volume in a spherical body. Therefore,
modelling a whole-mantle magma ocean with a basal magma unit that does not participate in
overturn is approximately equivalent to modelling a single magma ocean with depth reaching
the top of the basal magma ocean. As such, we do not model basal magma oceans in this work.

We model scenarios in which magma ocean cumulates retain either 0% or 1% interstitial
liquids, depending on the model. Inclusion of interstitial liquids will increase the water content
in the cumulate mantle. All water in excess of liquid saturation limits is outgassed into an
atmosphere. Because the timescale of magma ocean solidification (approx. 5 Myr for a whole-
mantle magma ocean and approx. 10 kyr for a shallow 500 km magma ocean [20]) is significantly
shorter than thermal diffusion through the mantle, the solidified cumulates maintain their
solidus temperature throughout the process. The solidus used in this study was constructed by
polynomial fit to minima of the solidi from Elkins-Tanton [20] (which was determined by fitting
experimental data on continental peridotite composition KLB-1 from Takahashi [44], Herzberg &
Zhang [45] and Tronnes & Frost [46]) and Abe [18]. The equation describing the polynomial fit is

T(P) = −4.28 × 10−6P4 + 2.51 × 10−3P3 − 5.92 × 10−1P2 + 7.17 × 101P + 5.90 × 102, (3.1)

where T is temperature in Celsius and P is pressure in GPa.
Using predetermined experimental distribution coefficients, mineral-melt exchange and

thermochemical parameters (see Elkins-Tanton [20] for details), we calculate mineral
compositions in equilibrium with the magma ocean composition. Mineral densities are calculated
based on temperature, pressure and composition. The mineral phase assemblages we use in
our model are inappropriate for addressing the final few, near-surface stages of solidification
because the highly evolved, late-stage magma ocean liquids would no longer solidify into an
upper mantle assemblage. Therefore, in our simulations we halt magma ocean solidification at
99% completion by volume, leaving the remaining 1% unfractionated. In half of our models,
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Figure 1. Mineral assemblages and relative abundances assumed to solidify from a terrestrial magma ocean. Trace elements
and volatiles are not shown but would be incorporated into each phase in varying quantities. Adapted from figure 1 in Elkins-
Tanton [20].

these surficial cumulates do not participate in magma ocean overturn. The remaining half of our
models consider the implications of their water content on the upper mantle if they do participate
in overturn as an end-member scenario. Although experiments to accurately determine the
composition of primordial near-surface cumulates do not currently exist, the code maintains a
record of their volatile content.

(b) Organization of water frommagma ocean solidification and overturn
Nominally anhydrous minerals in the Earth’s mantle are capable of carrying petrologically
significant amounts of OH within crystallographic defects (table 1 and references therein).
Assuming that accretionary water exists in the Earth interior during magma ocean solidification,
water will be partitioned up to saturation in solid cumulates while the excess is exsolved
and degassed into a growing atmosphere [20]. Late-crystallizing magma ocean cumulates are
rich in dense iron and incompatible elements. These cumulates are also enriched in water
because early crystallizing lower mantle minerals (dominantly perovskite and post-perovskite)
have water saturation values a factor of approximately 100 times lower than upper mantle
minerals such as olivine and pyroxene (figure 2). In particular, α-, β- and γ-olivines have water
saturation levels ranging approximately between 1 wt% and 3 wt% at pressure–temperature
conditions approximating the upper mantle. By contrast, the lower mantle minerals perovskite
and post-perovskite have water saturation levels approximately less than 0.01 wt%. Furthermore,
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Table 1. Solid-melt distribution coefficients and water saturation levels for mantle minerals.

mineral

solid-melt
distribution
coefficient source

H2O
saturation
(wt%) source

α-olivine 0.002 Aubaud et al. [47]
Grant et al. [48]
Koga et al. [49]
Kohn & Grant [50]

0.12 Bell et al. [51]
Hauri et al. [52]
Koga et al. [49]
Kohlstedt et al. [53]
Inoue et al. [54]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

clinopyroxene 0.02 Aubaud et al. [47]
Koga et al. [49]

0.08 Bell & Rossman [55]
Bolfan-Casanova&Keppler [56]
Forneris & Holloway [57]
Hauri et al. [52]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

orthopyroxene 0.02 Aubaud et al. [47]
Koga et al. [49]

0.15 Bell & Rossman [55]
Hauri et al. [52]
Rauch & Keppler [58]
Keppler & Bolfan-Casanova [59]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

plagioclase 0.001 — 0.051 Johnson & Rossman [60]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

spinel 0.02 — 0.2 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

garnet 0.0008 Bell et al. [51] 0.07 Bolfan-Casanova&Keppler [56]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β-olivine (Wadsleyite) 0.1 Demouchy et al. [61]
Kawamoto et al. [62]

2.4 Kawamoto et al. [62]
Kohlstedt et al. [53]
Inoue et al. [54]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

majorite 0.003 Bolfan-Casanova&Keppler [56] 0.0675 Bolfan-Casanova&Keppler [56]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ-olivine (Ringwoodite) 0.03 Bolfan-Casanova&Keppler [56]
Kawamoto et al. [62]

2.5 Bolfan-Casanova&Keppler [56]
Kohlstedt et al. [53]
Ohtani et al. [63]
Inoue et al. [54]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mg-perovskite 0.0001 Bolfan-Casanova et al. [64] 0.001 Bolfan-Casanova et al. [64]
Litasov et al. [65]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fe-perovskite 0.0001 Bolfan-Casanova et al. [64] 0.0015 Litasov et al. [65]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ca-perovskite 0.0001 — 0.004 Litasov et al. [65]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

magnesiowüstite 0.008 Bolfan-Casanova et al. [64] 0.0075 Bolfan-Casanova et al. [64]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

post-perovskite 0.0001 — 0.001 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

perovskite and post-perovskite have water solid-melt partition coefficients approximately 10–100
times lower than olivine and pyroxene (table 1), further limiting the extent to which these
minerals can retain water. Note that these values may also depend on ambient pressures,
temperatures and variations in the Fourier transform infrared spectroscopy procedures used by
different research groups to determine water content (see Keppler & Bolfan-Casanova [59] for
review).

During overturn, dense, water-enriched upper mantle cumulates sink in the solid state to the
lower mantle and lighter cumulates rise until a stable density configuration has been achieved
(figure 3). As the densest upper mantle cumulates sink into the lower mantle, they enter the
perovskite and magnesiowüstite stability zone. Upon crossing into the lower mantle, sinking
cumulates release water in excess of the saturation limits for these minerals. We hereafter refer to
this process as ‘dewatering’ (figure 4). The hydrous material immediately accumulating above the
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Figure 3. Cumulatemantle density before and after overturn for a 2000 km deep terrestrial magma oceanwith an initial water
content of 0.25 wt% at solidus temperatures and a reference pressure of 1 atm.

lower mantle boundary will buoyantly rise and remain in the upper mantle. The implications of
the differing water capacities of the upper and lower mantle and the transition zone for modern-
day thermal convection has been considered by Bercovici & Karato [66], who described the high
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Figure 4. Schematic depicting the dewatering of sinkingmagma ocean cumulates during overturn. Panel (a) shows the initial
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cumulates sinking into the dry lower mantle during magma ocean overturn.
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water capacity of the transition zone and hypothesized about the dehydration that would occur
in material rising into the upper mantle. Richard et al. [67] subsequently considered how hydrous
plate slabs might dewater as they sink into the lower mantle. Here, we focus on the dehydration
that would occur when freshly solidified post magma ocean material sinks downward into the
lower mantle and quantify the amount of water released into the upper mantle as a result of this
dewatering process. We then discuss implications for this released water in the upper mantle
with regard to the onsets of mantle convection and place tectonics. Overturn timescales are
viscosity dependent, but are estimated to reach 98% completion in approximately less than 10 Myr
for mantle viscosities of approximately 1018 Pa s [68], well before the predicted onset of mantle
convection approximately 25–100 Myr after magma ocean solidification and overturn [22].

(c) Dewatering calculations
In our model, the terrestrial magma ocean (independent of depth) is divided into 100 concentric
layers of equal volume. Following the solidification process, each cumulate layer has a unique
composition and water content that is tracked by the code (figure 4). For magma oceans with
depths greater than 600 km, we define the post-overturn lower mantle boundary as the cumulate
model layer located at the depth where the corresponding pressure is 22 GPa (the boundary of
the perovskite–magnesiowüstite stability zone). Cumulate layers with densities greater than that
of this boundary layer will sink while those with densities less than that of the boundary layer
will buoyantly rise in the upper mantle. For magma oceans with depths less than 600 km, this
boundary layer is not captured in the model itself because the dense magma ocean cumulates
can only sink to the bottom of the modelled magma ocean and not all the way into the lower
mantle as they would in principle. For these cases, we assign layers with (atmospheric pressure-
adjusted) densities ρ > 3100 kg m−3 to the lower mantle. We choose this threshold density because
it represents the density corresponding to the post-overturn layer at pressure 22 GPa for a whole-
mantle magma ocean. We calculate the total amount of water present in each model layer
by allowing water in the magma ocean liquids to partition into the mineral in equilibrium
using the partition coefficients in table 1. We then use a lower mantle water saturation limit
of 2.58 × 10−3 wt% to determine the maximum amount of water that can be retained by that
layer as it enters the perovskite-magnesiowüstite stability zone. We obtain this water saturation
limit by assuming a lower mantle mineral assemblage of 64% Mg-perovskite, 8% Fe-perovskite,
8% Ca-perovskite and 20% magnesiowüstite with corresponding water saturation limits of
6.4 × 10−4 wt% for Mg-perovskite [64,65], 1.2 × 10−4 wt% for Fe-perovskite [65], 3.2 × 10−4 wt%
for Ca-perovskite [65] and 1.5 × 10−3 wt% for magnesiowüstite [64]. We define the amount
of dewatering as the difference between the amount of water trapped in cumulates sinking
into the lower mantle and the amount of water that the lower mantle can contain up to
saturation.

Because the top 1% by volume of the magma ocean remains unfractionated in our model, we
cannot precisely determine the fate of those cumulates. This uppermost layer of the magma ocean,
which forms during late-stage fractional crystallization, should be enriched in heavy elements
and water. Several contrasting outcomes have been discussed for the evolution of this top layer
(see Scheinberg et al. [68] and Breuer & Spohn [69] regarding possible outcomes for Mars). This
layer may not participate in overturn because its high water content may enable buoyancy.
It may also be cold enough to become too viscous to flow, yielding a stagnant lid regime.
Alternatively, the high densities produced by heavy element enrichment may have facilitated
complete or partial overturn of this layer. Because the involvement of this layer in mantle overturn
is uncertain, we consider two end-member scenarios for our dewatering calculations. In the
first scenario, we assume that this top (1% by volume in our models) layer will sink into the
lower mantle and that its entire pre-solidification water content will undergo dewatering during
overturn. This provides an upper limit on the amount of dewatering that can occur. In the second
scenario, we assume that this layer does not participate in overturn at all and its water content is
entirely excluded from our dewatering calculations.
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4. Results and discussion

(a) Amount of dewatering
Initial magma ocean water contents less than 0.05 wt% did not result in dewatering of sinking
cumulates. For the end-member scenario that excludes the top 1% by volume of the magma
ocean from our calculations, we find that for initial magma ocean water contents in excess of
approximately 0.05 wt%, the dewatering process may enrich the upper mantle with significant
quantities of water (e.g. we obtained a 0.2 wt% water enrichment in the cumulate mantle for a
whole-mantle magma ocean with no interstitial liquids and a 5 wt% initial water content; figure 5).
Inclusion of 1% interstitial liquids in the models increases the amount of dewatering by a factor of
less than 2 (figure 6). Including water contained in the uppermost 1% of the magma ocean further
enriches the upper mantle (e.g. we obtained an approx. 1 wt% water enrichment for a whole-
mantle magma ocean with no interstitial liquids and a 0.5 wt% initial water content; figure 5). In
all cases, water enrichment increases with initial magma ocean water content and magma ocean
depth. Note that even if cumulates associated with this top layer do not sink into the lower mantle,
the water they contain following magma ocean solidification will either remain in the crust or
upper mantle or be degassed to the atmosphere.

(b) Fate of released water
The precise fate of the water liberated as a result of magma ocean overturn depends on percolation
speeds and the relationship between upper mantle temperatures and solidi. The water will be
positively buoyant because of its low density. Some of this water may recombine up to saturation
with upper mantle minerals, and some may survive for some percolation distance in high-
pressure polymorph phases. Water released into the upper mantle by the dewatering mechanism
could trigger partial melting. The resulting hydrous silicate magmas would in turn be positively
buoyant; hydrous magnesian primitive mantle melts are expected to be positively buoyant in the
upper mantle [70].

The presence of water in peridotite leads to solidus depression that is roughly linear with
bulk water content; for example, a bulk water content of 0.1 wt% is capable of lowering melting
temperatures in the mantle by approximately 200°C for pressures ranging from 1 to 8 GPa [71].
The presence of water would also lower viscosities in the upper mantle. Hirth & Kohlstedt [72]
determined that the viscosity of the MORB source region (which has a water content of
0.01 ± 0.005 wt%) is approximately 500 times lower than the viscosity of dry olivine aggregates.

Since the dewatering process described in this paper is, in principle, capable of enriching the
upper mantle with potentially up to 0.1–1 wt% water (depending on the initial magma ocean
water content and the fate of the top layer from our models), viscosities in the upper mantle could
have been lowered to well below that of the modern MORB source region particularly for deep
magma oceans exceeding approximately 1000 km in depth. The combination of lowered melting
temperatures and viscosities in the upper mantle as a result of the dewatering process may have
encouraged mantle convection. Rapid thermal convection in the upper mantle would increase the
outward heat flux. This, in turn, can control thickness of plates, possibly inhibiting the formation
of a one-plate lithosphere and setting the stage for subduction and plate tectonics [66].

(b) Timing the onset of plate tectonics on Earth
When exactly plate tectonics began on the early Earth is debated. Harrison [73] suggests,
from the chemistry of ancient zircons indicating liquid water and granite formation, that plate
tectonics was operating by 4.4 Ga. Xe isotopes and magmatic compositions may indicate that plate
tectonics on Earth began around the Hadean–Archean transition, around 4 Ga [74]. Geochemical
similarities between variably dated 4.4–3.8 Ga mafic intrusions and rocks from a modern forearc
also support subduction during the Hadean or Eoarchean eons. In contrast, inclusions in mantle
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Figure 5. Amount of water released into the upper mantle as a result of the dewatering process for magma oceans ranging
in depth between 250 and 2800 km, excluding contributions from interstitial liquids. (a) Calculated water release including the
layer corresponding to the top 1% by volume of magma ocean cumulates for initial water contents ranging between 0.001 wt%
and0.45 wt%. (b)Water release excluding the top layer formagmaocean initialwater contents rangingbetween0.001 wt%and
0.45 wt%. Dashed white lines at magma ocean depths of 485 km and 590 km denote boundary depths at which we employed
different versions of the code for different depth intervals to exclude mineral phases that do not factor in such shallowmagma
oceans. Because a different upper mantle mass was used to calculate the amount of dewatering for shallow magma oceans
(see text) discontinuities may be observed in the amount of water released between our results for magma ocean depths
between approximately 800 km and approximately 550 km (denoted by vertical red lines). (c) Water release including the layer
corresponding to the top 1% by volume of magma ocean cumulates for initial water contents ranging between 1 wt% and
5 wt%. (d) Water release excluding the top layer for magma ocean initial water contents ranging between 1 wt% and 5 wt%.

diamonds may support the onset of plate tectonics as late as 3 Ga [75]. By linking the initiation of
subduction to the first appearance of ophiolites, Stern [76] suggests that plate tectonics may not
have commenced until as late as the Neoproterozoic.

On the modern Earth, the time necessary for a convection cell to fully complete one cycle
around 500 Myr, with one ‘transit’ across the mantle taking around 100 Myr [77]. Our models
suggest a rapid timescale for magma ocean solidification (upper limit of around 5 Myr for
a whole-mantle magma ocean). Because primitive mantle water contents produced by our
dewatering process are sometimes higher than that of modern MORB, our results are consistent
with low mantle viscosities and therefore vigorous mantle convection commencing early in the
Earth’s history. This convection would aid the onset of plate tectonics by producing volcanism
and basal stresses on the conductive lid, and by slowing the thickening of that lid. In summary,
our model results support an early (Hadean or Eoarchean) onset for plate tectonic activity on the
Earth, or at least ductile drip-style lithospheric recycling, such as hypothesized by Foley et al. [78].
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Figure 6. Amount of water released into the upper mantle for model runs including and excluding 1% interstitial liquids.
(a) Models for a 1000 km deep magma ocean. (b) Models for a 2800 km deep magma ocean.

(c) Implications for the onset of plate tectonics on terrestrial planets
Ground and space-based surveys have thus far identified over 1000 planets outside our solar
system. Extrasolar planets with masses up to 10 Earth masses (ME) are termed ‘super-Earths’.
While the sizes and constitution of these bodies are not generally known, it is likely that several
of the detected super-Earths are indeed rocky terrestrial planets with an internal structure similar
to that of the Earth. The surface conditions, thermal evolution and, in turn, the habitability of
these worlds is largely dependent on their tectonic regime [79].

Both observations in our solar system and fluid dynamic theory predict two regimes of
planetary lid behaviour with respect to mantle convection. The first, exemplified in our solar
system by the Moon, Mars, Mercury and Venus, is stagnant lid convection, when cooling through
the planet’s surface drives up temperature-dependent viscosity and forms a thick mechanical
lithosphere that does not break or move with underlying mantle convection [80]. The second
is plate tectonics, in which the lid is broken into plates that move with respect to each other,
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and sometimes sink back into the mantle. The transition to plate tectonics is controlled by the
viscosity ratio between the lithosphere and convecting mantle [81]. Thus, the steady thickening
and stiffening of the lithosphere through cooling early in the planet’s evolution must be halted
before the lithosphere becomes too stiff, and at the same time, mantle viscosity has to be low
enough to encourage convection.

Whether or not super-Earths should be expected to exhibit plate tectonic activity remains
unresolved. Analytical models suggest that plate tectonics may be inevitable on greater than
1 ME terrestrial planets because larger planets have greater convective stresses, which enable
lithospheric failure and departure from the regime of stagnant lid convection [82]. On the other
hand, plate tectonics may be less likely to occur on such planets because their higher gravities
would result in higher yield stresses [83]. Numerous studies have found that water is likely a
stronger influence on the development of plate tectonics than planetary mass [84–86]. On the
Earth, water plays a necessary role in shaping plate tectonic activity, as hydration lowers the
strength of the asthenosphere, causing it to deform and flow [87]. Water also greatly influences
movement of plate boundaries at depth, where sliding behaviour is attributed to the development
of phyllosilicates [88]. It has been proposed that our solar system is unusually enriched in
26Al, causing terrestrial bodies in our solar system to be drier than most terrestrial extrasolar
planets (see discussion in [89]). Because this isotope is mainly produced by supernovae and only
persists for several million years before it is largely decayed, for 26Al to contribute significantly
to planetary heating and drying a supernova must occur within the same molecular cloud
as that of a newly forming solar system (i.e. within a few million years before planetesimal
formation) [90]. Given these circumstances, it is possible that many extrasolar terrestrial planets
accreted wetter than those within our solar system and therefore may be more likely to have plate
tectonics if these bodies generated enough internal heating to differentiate and produce a silicate
mantle.

With the ongoing discoveries of super-Earth extrasolar planets, the question arises whether
any of these bodies could be habitable. If extrasolar planet water contents are very high an
enormous steam atmosphere might be degassed from the mantle, producing waterworlds. Super-
Earths would likely operate in either a stagnant lid (one-plate) or plate tectonic (multi-plate)
regime. In the stagnant lid regime (i.e. absent of the efficient heat transfer capabilities of plate
tectonics), heat build-up in the mantle may lead to increased melting and potentially extreme
volcanism as seen on Io [91]. Plate tectonics also plays an important role in regulating planetary
atmospheres. Without subduction-driven carbon sequestration, volcanic CO2 would build up in
the atmosphere. CO2 molecules would then displace lighter atmospheric water higher in the
atmosphere. In the upper atmosphere, water is more vulnerable to dissociation and hydrogen
escape, as may have occurred on Venus [92].

As discussed above, mass-based arguments have thus far yielded conflicting results for
whether or not larger (greater than or equal to 1 ME) extrasolar planets can have plate
tectonics [82,83]. Our results suggest that planets with the necessary conditions to support a
perovskite–magnesiowüstite stability zone (e.g. lower mantle pressures exceeding 22 GPa) may
experience sufficient water enrichment in the upper mantle due to magma ocean overturn to
facilitate plate tectonics. Assuming a planet with core radius equivalent to half of the total radius,
a core density of 8000 kg m−3, and a mantle density of 3300 kg m−3, we estimate that the planet
must have a minimum mass of approximately 0.2 ME to yield pressures exceeding 22 GPa at
the base of the mantle. Higher planetary masses are required to move the perovskite stability
zone into the mid-mantle. For comparison, Mars, which lacks plate tectonics, has a mass of
approximately 0.11 ME.

Therefore, our dewatering models predict that Earth-sized planets (e.g. Venus) and super-
Earths would likely develop plate tectonics early. It is unknown whether Venus had plate tectonics
at any stage in its past. The current absence of plate tectonics on Venus may be related to the
anhydrous nature of its crust and mantle. Development of a runaway greenhouse effect on
Venus would have increased surface temperatures, which then led to higher temperatures in
the mantle and, in turn, partial melting and outgassing from the mantle via volcanism [93].
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The short residence time of water in the venusian atmosphere (less than 300 Myr [92])
relative to the estimated 500–700 Myr intervals between hypothesized planet-scale lithospheric
resurfacing events [94] suggests that the vast majority of outgassed water should have been
lost due to hydrodynamic escape and therefore could not be recycled into the mantle by any
known mechanism [95]. It has alternatively been proposed that Venus was dried by impact
devolatilization [96] or planet-wide desiccation due to forming close to the Sun [36]. While the
presence of a perovskite–magnesiowüstite stability zone may facilitate an early onset for plate
tectonics, it is possible that subsequent events (such as those described above for Venus) may
cause plate tectonic activity to cease.

5. Conclusion
Terrestrial planetary bodies are likely to acquire and retain a majority of their water throughout
accretion and planet formation. Giant impacts between planetary embryos during the final phase
of planet formation may have created one or more partial to whole-mantle magma oceans on the
early Earth. As magma ocean solidification proceeds from the bottom-up, water is preferentially
incorporated up to saturation into late-crystallizing, dense cumulates that are gravitationally
unstable. This instability causes these dense cumulates to overturn and sink into the lower mantle.
Because lower mantle minerals such as perovskite and magnesiowüstite have water saturation
limits 10–100 times lower than upper mantle phases such as olivine and pyroxene, sinking
cumulates must undergo dewatering as they enter the lower mantle. This process is potentially
capable of enriching the upper mantle with up to approximately 0.1–1 wt% water. Water retained
in the upper mantle as a result of the dewatering process may induce partial melting, create a
damp asthenosphere, and eventually facilitate onset of mantle convection and plate tectonics on
greater than 1 ME Earth-like planets and super-Earths.
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